Add a new defclsyspri macro which can be used to request the default
Linux scheduler priority. Neither the minclsyspri or maxclsyspri map
to the default Linux kernel thread priority. This makes it awkward to
create taskqs which run with the same priority as the rest of the kernel
threads on the system which can lead to performance issues.
All SPL callers which previously used minclsyspri or maxclsyspri have
been changed to use defclsyspri. The vast majority of callers were
part of the test suite which won't have an external impact. The few
places where it could impact performance the change was from maxclsyspri
to defclsyspri. This makes it more likely the process will be scheduled
which may help performance.
To facilitate further performance analysis the spl_taskq_thread_priority
module option has been added. When disabled (0) all newly created kernel
threads will use the default kernel thread priority. When enabled (1)
the specified taskq priority will be used. By default this value is
enabled (1).
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Don't include the compatibility code in linux/*_compat.h in the public
header sys/types.h. This causes problems when an external code base
includes the ZFS headers and has its own conflicting compatibility code.
Lustre, in particular, defined SHRINK_STOP for compatibility with
pre-3.12 kernels in a way that conflicted with the SPL's definition.
Because Lustre ZFS OSD includes ZFS headers it fails to build due to a
'"SHRINK_STOP" redefined' compiler warning. To avoid such conflicts
only include the compat headers from .c files or private headers.
Also, for consistency, include sys/*.h before linux/*.h then sort by
header name.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#411
Provide spl_kthread_create() as a wrapper to the kernel's kthread_create()
to provide pre-3.13 semantics. Re-try if the call is interrupted or if it
would have returned -ENOMEM. Otherwise return NULL.
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#339
Update links to refer to the official ZFS on Linux website instead of
@behlendorf's personal fork on github.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The preferred kernel interface for creating threads has been
kthread_create() for a long time now. However, several of the
SPLAT tests still use the legacy kernel_thread() function which
has finally been dropped (mostly).
Update the condvar and rwlock SPLAT tests to use the modern
interface. Frankly this is something we should have done a
long time ago.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#194
Restructure the the SPLAT headers such that each test only
includes the minimal set of headers it requires.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Flagged by the default compile options on archlinux 2010.05, we should
be using the krw_t type not the krw_type_t type in the private data.
module/splat/splat-rwlock.c: In function ‘splat_rwlock_test4_func’:
module/splat/splat-rwlock.c:432:6: warning: case value ‘1’ not in
enumerated type ‘krw_type_t’
Remove RW_COUNT() from the rwlock implementation. The idea was that it
could be used as a generic wrapper for getting at the internal state
of a rwlock. While a good idea it's proven problematic to keep it
correct for multiple archs and internal implementation changes. In
short it hasn't been worth the trouble.
With that and simplicity in mind things have been updated to use the
rwsem_is_locked() function instead of RW_COUNT for the RW_*_HELD()
functions. As for rw_upgrade() it remains only implemented for
the generic rwsem implemenation. It remains to be determined if its
worth the effort of adding a custom implementation for each arch.
Updated AUTHORS, COPYING, DISCLAIMER, and INSTALL files. Added
standardized headers to all source file to clearly indicate the
copyright, license, and to give credit where credit is due.
It turns out that the previous rwlock implementation worked well but
did not integrate properly with the upstream kernel lock profiling/
analysis tools. This is a major problem since it would be awfully
nice to be able to use the automatic lock checker and profiler.
The problem is that the upstream lock tools use the pre-processor
to create a lock class for each uniquely named locked. Since the
rwsem was embedded in a wrapper structure the name was always the
same. The effect was that we only ended up with one lock class for
the entire SPL which caused the lock dependency checker to flag
nearly everything as a possible deadlock.
The solution was to directly map a krwlock to a Linux rwsem using
a typedef there by eliminating the wrapper structure. This was not
done initially because the rwsem implementation is specific to the arch.
To fully implement the Solaris krwlock API using only the provided rwsem
API is not possible. It can only be done by directly accessing some of
the internal data member of the rwsem structure.
For example, the Linux API provides a different function for dropping
a reader vs writer lock. Whereas the Solaris API uses the same function
and the caller does not pass in what type of lock it is. This means to
properly drop the lock we need to determine if the lock is currently a
reader or writer lock. Then we need to call the proper Linux API function.
Unfortunately, there is no provided API for this so we must extracted this
information directly from arch specific lock implementation. This is
all do able, and what I did, but it does complicate things considerably.
The good news is that in addition to the profiling benefits of this
change. We may see performance improvements due to slightly reduced
overhead when creating rwlocks and manipulating them.
The only function I was forced to sacrafice was rw_owner() because this
information is simply not stored anywhere in the rwsem. Luckily this
appears not to be a commonly used function on Solaris, and it is my
understanding it is mainly used for debugging anyway.
In addition to the core rwlock changes, extensive updates were made to
the rwlock regression tests. Each class of test was extended to provide
more API coverage and to be more rigerous in checking for misbehavior.
This is a pretty significant change and with that in mind I have been
careful to validate it on several platforms before committing. The full
SPLAT regression test suite was run numberous times on all of the following
platforms. This includes various kernels ranging from 2.6.16 to 2.6.29.
- SLES10 (ppc64)
- SLES11 (x86_64)
- CHAOS4.2 (x86_64)
- RHEL5.3 (x86_64)
- RHEL6 (x86_64)
- FC11 (x86_64)
- Proper ioctl() 32/64-bit binary compatibility. We need to ensure the
ioctl data itself is always packed the same for 32/64-bit binaries.
Additionally, the correct thing to do is encode this size in bytes
as part of the command using _IOC_SIZE().
- Minor formatting changes to respect the 80 character limit.
- Move all SPLAT_SUBSYSTEM_* defines in to splat-ctl.h.
- Increase SPLAT_SUBSYSTEM_UNKNOWN because we were getting close
to accidentally using it for a real registered subsystem.