Using sparse files for the test configurations had atleast three
significant advantages.
1) Actually test sparse files to ensure they work.
2) Drastically reduce required disk space for the regression test
suite. This turns out to be fairly important when running the
test suite in a virtualized environment.
3) Significantly speed of the test suite. Run time of zconfig.sh
dropped from 2m:56s to 1m:00s on my test system, zpios-sanity.sh
nows runs in only 0m:26s.
This change updates zconfig.sh to reference /dev/zvol/ instead
of simply /dev/. It also extends the texts to verify correct
minor device creation for import/export and module load/unload.
The feature branch 'fix-taskq' in Linux's ZFS tree changes the taskq_dispatch()
flag from TQ_SLEEP to TQ_NOSLEEP to avoid sleeping in some circumstances.
However, this has the side effect that taskq_dispatch() now may fail, and since
the return code was not even being checked, it could lead to zio's not being
scheduled to execute.
I'm fixing this in a simplistic but not very elegant way, by just looping until
taskq_dispatch() succeeds.
Signed-off-by: Ricardo M. Correia <ricardo.correia@oracle.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This test was accidentally readded to the linux-kernel-disk
topic branch. It is being reverted so it can be reapplied with
a few minor tweaks in the right place.
The dmu_object_info_t structures which are roughly 60 bytes
have been moved from the stack to the heap. Every little
bit helps and there's absolutely no reason these temporary
working variables need to be on the stack.
During module load we could deadlock because the zvol_init()
callpath took the spa_namespace_lock before the zvol_state_lock.
The rest of the zvol code takes the locks in the opposite order.
In particular, I observed the following deadlock cause by the
lock inversion.
I've fixed the ording by creating an unlocked version of
zvol_create_minor and zvol_remove_minor. This allows me to
take the zvol_state_lock before the spa_namespace_lock in
zvol_cr_minors_common and simply call the unlocked version.
With the update to onnv_141 how minor devices were created and
removed for ZVOL was substantially changed. The updated system
is much more tightly integrated with Solaris's /dev/ filesystem.
This is great for Solaris but bad for Linux.
On the kernel side the ZFS_IOC_{CREATE,REMOVE}_MINOR ioctl
entry points have been re-added. They now call directly in
to the ZVOL to create the needed minor node and add the sysfs
entried for udev.
Also as part of this change I've decided it would really be
best if all the zvols were in a /dev/zvol directory like on
Solaris. Organizationally this makes sense and on the code
side it allows us to know a block device is a zvol simply by
where it is located in /dev/. Unless Solaris there still is
to ./dsk or ./rdsk as part of the path.