If a device is participating in an active resilver, then it will have a
non-empty DTL. Operations like vdev_{open,reopen,probe}() can cause the
resilver to be restarted (or deferred to be restarted later), which is
unnecessary if the DTL is still covered by the current scan range. This
is similar to the logic in vdev_dtl_should_excise() where the DTL can
only be excised if it's max txg is in the resilvered range.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: John Gallagher <john.gallagher@delphix.com>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Signed-off-by: John Poduska <jpoduska@datto.com>
Issue #840Closes#9155Closes#9378Closes#9551Closes#9588
Provide a common zfs_file_* interface which can be implemented on all
platforms to perform normal file access from either the kernel module
or the libzpool library.
This allows all non-portable vnode_t usage in the common code to be
replaced by the new portable zfs_file_t. The associated vnode and
kobj compatibility functions, types, and macros have been removed
from the SPL. Moving forward, vnodes should only be used in platform
specific code when provided by the native operating system.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9556
Move these Linux module parameter get/set helpers in to
platform specific code.
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9457
- FreeBSD's rootpool import code uses spa_config_parse
- Move the zvol_create_minors call out from under the
spa_namespace_lock in spa_import. It isn't needed and it causes
a lock order reversal on FreeBSD.
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9499
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#9181
Currently the best way to wait for the completion of a long-running
operation in a pool, like a scrub or device removal, is to poll 'zpool
status' and parse its output, which is neither efficient nor convenient.
This change adds a 'wait' subcommand to the zpool command. When invoked,
'zpool wait' will block until a specified type of background activity
completes. Currently, this subcommand can wait for any of the following:
- Scrubs or resilvers to complete
- Devices to initialized
- Devices to be replaced
- Devices to be removed
- Checkpoints to be discarded
- Background freeing to complete
For example, a scrub that is in progress could be waited for by running
zpool wait -t scrub <pool>
This also adds a -w flag to the attach, checkpoint, initialize, replace,
remove, and scrub subcommands. When used, this flag makes the operations
kicked off by these subcommands synchronous instead of asynchronous.
This functionality is implemented using a new ioctl. The type of
activity to wait for is provided as input to the ioctl, and the ioctl
blocks until all activity of that type has completed. An ioctl was used
over other methods of kernel-userspace communiction primarily for the
sake of portability.
Porting Notes:
This is ported from Delphix OS change DLPX-44432. The following changes
were made while porting:
- Added ZoL-style ioctl input declaration.
- Reorganized error handling in zpool_initialize in libzfs to integrate
better with changes made for TRIM support.
- Fixed check for whether a checkpoint discard is in progress.
Previously it also waited if the pool had a checkpoint, instead of
just if a checkpoint was being discarded.
- Exposed zfs_initialize_chunk_size as a ZoL-style tunable.
- Updated more existing tests to make use of new 'zpool wait'
functionality, tests that don't exist in Delphix OS.
- Used existing ZoL tunable zfs_scan_suspend_progress, together with
zinject, in place of a new tunable zfs_scan_max_blks_per_txg.
- Added support for a non-integral interval argument to zpool wait.
Future work:
ZoL has support for trimming devices, which Delphix OS does not. In the
future, 'zpool wait' could be extended to add the ability to wait for
trim operations to complete.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes#9162
Accidentally introduced by dc04a8c which now takes the SCL_VDEV lock
as a reader in zfs_blkptr_verify(). A deadlock can occur if the
/etc/hostid file resides on a dataset in the same pool. This is
because reading the /etc/hostid file may occur while the caller is
holding the SCL_VDEV lock as a writer. For example, to perform a
`zpool attach` as shown in the abbreviated stack below.
To resolve the issue we cache the system's hostid when initializing
the spa_t, or when modifying the multihost property. The cached
value is then relied upon for subsequent accesses.
Call Trace:
spa_config_enter+0x1e8/0x350 [zfs]
zfs_blkptr_verify+0x33c/0x4f0 [zfs] <--- trying read lock
zio_read+0x6c/0x140 [zfs]
...
vfs_read+0xfc/0x1e0
kernel_read+0x50/0x90
...
spa_get_hostid+0x1c/0x38 [zfs]
spa_config_generate+0x1a0/0x610 [zfs]
vdev_label_init+0xa0/0xc80 [zfs]
vdev_create+0x98/0xe0 [zfs]
spa_vdev_attach+0x14c/0xb40 [zfs] <--- grabbed write lock
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#9256Closes#9285
When we check the vdev of the blkptr in zfs_blkptr_verify, we can run
into a race condition where that vdev is temporarily unavailable. This
happens when a device removal operation and the old vdev_t has been
removed from the array, but the new indirect vdev has not yet been
inserted.
We hold the spa_config_lock while doing our sensitive verification.
To ensure that we don't deadlock, we only grab the lock if we don't
have config_writer held. In addition, I had to const the tags of the
refcounts and the spa_config_lock arguments.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#9112
Deleting a clone requires finding blocks are clone-only, not shared
with the snapshot. This was done by traversing the entire block tree
which results in a large performance penalty for sparsely
written clones.
This is new method keeps track of clone blocks when they are
modified in a "Livelist" so that, when it’s time to delete,
the clone-specific blocks are already at hand.
We see performance improvements because now deletion work is
proportional to the number of clone-modified blocks, not the size
of the original dataset.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Sara Hartse <sara.hartse@delphix.com>
Closes#8416
= Motivation
At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.
The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.
We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.
Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.
= About this patch
This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).
Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.
= Testing
The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.
= Performance Analysis (Linux Specific)
All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.
After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).
Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.
Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]
Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png
= Porting to Other Platforms
For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:
Make zdb results for checkpoint tests consistent
db587941c5
Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba59145
Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b
Factor metaslab_load_wait() in metaslab_load()
b194fab0fb
Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe
Change target size of metaslabs from 256GB to 16GB
c853f382db
zdb -L should skip leak detection altogether
21e7cf5da8
vs_alloc can underflow in L2ARC vdevs
7558997d2f
Simplify log vdev removal code
6c926f426a
Get rid of space_map_update() for ms_synced_length
425d3237ee
Introduce auxiliary metaslab histograms
928e8ad47d
Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679
= References
Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project
Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm
Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8442
With the addition of BP_EMBEDDED_TYPE_REDACTED in 30af21b0 a couple of
codepaths make wrong assumptions and could potentially result in errors.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#8951
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#7958
When an import requires a long MMP activity check, or when the user
requests pool recovery, the import make take a long time. The user may
not know why, or be able to tell whether the import is progressing or is
hung.
Add a kstat which lists all imports currently being processed by the
kernel (currently only one at a time is possible, but the kstat allows
for more than one). The kstat is /proc/spl/kstat/zfs/import_progress.
The kstat contents are as follows:
pool_guid load_state multihost_secs max_txg pool_name
16667015954387398 3 15 0 tank3
load_state: the value of spa_load_state
multihost_secs: seconds until the end of the multihost activity
check; if over, or none required, this is 0
max_txg: current spa_load_max_txg, if rewind is occurring
This could be used by outside tools, such as a pacemaker resource agent,
to report import progress, or as a part of manual troubleshooting. The
zpool import subcommand could also be modified to report this
information.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#8696
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends. By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.
This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool. The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience. The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.
The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq. This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.
In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property. It relies on the exact same infrastructure as the
manual TRIM. However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab. When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree. The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.
Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`. This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them. An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8419Closes#598
PROBLEM
========
When invoking "zpool initialize" on a pool the command will
create a thread to initialize each disk. Unfortunately, it does
this serially across many transaction groups which can result
in commands taking a long time to return to the user and may
appear hung. The same thing is true when trying to suspend/cancel
the operation.
SOLUTION
=========
This change refactors the way we invoke the initialize interface
to ensure we can start or stop the intialization in just a few
transaction groups.
When stopping or cancelling a vdev initialization perform it
in two phases. First signal each vdev initialization thread
that it should exit, then after all threads have been signaled
wait for them to exit.
On a pool with 40 leaf vdevs this reduces the vdev initialize
stop/cancel time from ~10 minutes to under a second. The reason
for this is spa_vdev_initialize() no longer needs to wait on
multiple full TXGs per leaf vdev being stopped.
This commit additionally adds some missing checks for the passed
"initialize_vdevs" input nvlist. The contents of the user provided
input "initialize_vdevs" nvlist must be validated to ensure all
values are uint64s. This is done in zfs_ioc_pool_initialize() in
order to keep all of these checks in a single location.
Updated the innvl and outnvl comments to match the formatting used
for all other new sytle ioctls.
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Wilson <george.wilson@delphix.com>
Closes#8230
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210ebCloses#8230
This patch adds a new slow I/Os (-s) column to zpool status to show the
number of VDEV slow I/Os. This is the number of I/Os that didn't
complete in zio_slow_io_ms milliseconds. It also adds a new parsable
(-p) flag to display exact values.
NAME STATE READ WRITE CKSUM SLOW
testpool ONLINE 0 0 0 -
mirror-0 ONLINE 0 0 0 -
loop0 ONLINE 0 0 0 20
loop1 ONLINE 0 0 0 0
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#7756Closes#6885
There are some issues with the way the seq_file interface is implemented
for kstats backed by linked lists (zfs_dbgmsgs and certain per-pool
debugging info):
* We don't account for the fact that seq_file sometimes visits a node
multiple times, which results in missing messages when read through
procfs.
* We don't keep separate state for each reader of a file, so concurrent
readers will receive incorrect results.
* We don't account for the fact that entries may have been removed from
the list between read syscalls, so reading from these files in procfs
can cause the system to crash.
This change fixes these issues and adds procfs_list, a wrapper around a
linked list which abstracts away the details of implementing the
seq_file interface for a list and exposing the contents of the list
through procfs.
Reviewed by: Don Brady <don.brady@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
External-issue: LX-1211
Closes#7819
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#5182
In the case of one pool being built on another pool, we want
to make sure we don't end up throttling the lower (backing)
pool when the upper pool is the majority contributor to dirty
data. To insure we make forward progress during throttling, we
also check the current pool's net dirty data and only throttle
if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
data in the cache.
Authored by: Don Brady <don.brady@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Prashanth Sreenivasa <pks@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Porting Notes:
* The new global variables zfs_arc_dirty_limit_percent,
zfs_arc_anon_limit_percent, and zfs_arc_pool_dirty_percent
were intentially not added as tunable module parameters.
OpenZFS-issue: https://illumos.org/issues/9465
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d6a4c3efCloses#7749
Motivation
==========
The current space map encoding has the following disadvantages:
[1] Assuming 512 sector size each entry can represent at most 16MB for a segment.
This makes the encoding very inefficient for large regions of space.
[2] As vdev-wide space maps have started to be used by new features (i.e.
device removal, zpool checkpoint) we've started imposing limits in the
vdevs that can be used with them based on the maximum addressable offset
(currently 64PB for a top-level vdev).
New encoding
============
The layout can be found at space_map.h and it remains backwards compatible with
the old one. The introduced two-word entry format, besides extending the limits
imposed by the single-entry layout, also includes a vdev field and some extra
padding after its prefix.
The extra padding after the prefix should is reserved for future usage (e.g.
new prefixes for future encodings or new fields for flags). The new vdev field
not only makes the space maps more self-descriptive, but also opens the doors
for pool-wide space maps (expected to be used in the log spacemap project).
One final important note is that the number of bits used for vdevs is reduced
to 24 bits for blkptrs. That was decided as we don't know of any setups that
use more than 16M vdevs for the time being and we wanted to fit the vdev field
in the space map. In addition that gives us some extra bits in dva_t.
Other references:
=================
The new encoding is also discussed towards the end of the Log Space Map
presentation from 2017's OpenZFS summit.
Link: https://www.youtube.com/watch?v=jj2IxRkl5bQ
Authored by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/90a56e6d
OpenZFS-issue: https://www.illumos.org/issues/9238Closes#7665
Details about the motivation of this feature and its usage can
be found in this blogpost:
https://sdimitro.github.io/post/zpool-checkpoint/
A lightning talk of this feature can be found here:
https://www.youtube.com/watch?v=fPQA8K40jAM
Implementation details can be found in big block comment of
spa_checkpoint.c
Side-changes that are relevant to this commit but not explained
elsewhere:
* renames members of "struct metaslab trees to be shorter without
losing meaning
* space_map_{alloc,truncate}() accept a block size as a
parameter. The reason is that in the current state all space
maps that we allocate through the DMU use a global tunable
(space_map_blksz) which defauls to 4KB. This is ok for metaslab
space maps in terms of bandwirdth since they are scattered all
over the disk. But for other space maps this default is probably
not what we want. Examples are device removal's vdev_obsolete_sm
or vdev_chedkpoint_sm from this review. Both of these have a
1:1 relationship with each vdev and could benefit from a bigger
block size.
Porting notes:
* The part of dsl_scan_sync() which handles async destroys has
been moved into the new dsl_process_async_destroys() function.
* Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write
to block device backed pools.
* ZTS:
* Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg".
* Don't use large dd block sizes on /dev/urandom under Linux in
checkpoint_capacity.
* Adopt Delphix-OS's setting of 4 (spa_asize_inflation =
SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed
its attempts to fill the pool
* Create the base and nested pools with sync=disabled to speed up
the "setup" phase.
* Clear labels in test pool between checkpoint tests to avoid
duplicate pool issues.
* The import_rewind_device_replaced test has been marked as "known
to fail" for the reasons listed in its DISCLAIMER.
* New module parameters:
zfs_spa_discard_memory_limit,
zfs_remove_max_bytes_pause (not documented - debugging only)
vdev_max_ms_count (formerly metaslabs_per_vdev)
vdev_min_ms_count
Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9166
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8Closes#7570
1. Add a proc entry to display the pool's state:
$ cat /proc/spl/kstat/zfs/tank/state
ONLINE
This is done without using the spa config locks, so it will
never hang.
2. Fix 'zpool status' and 'zpool list -o health' output to print
"SUSPENDED" instead of "ONLINE" for suspended pools.
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#7331Closes#7563
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123Closes#7459
Problem
=======
When we fail to open or import a storage pool, we typically don't
get any additional diagnostic information, just "no pool found" or
"can not import".
While there may be no additional user-consumable information, we should
at least make this situation easier to debug/diagnose for developers
and support. For example, we could start by using `zfs_dbgmsg()`
to log each thing that we try when importing, and which things
failed. E.g. "tried uberblock of txg X from label Y of device Z". Also,
we could log each of the stages that we go through in `spa_load_impl()`.
Solution
========
Following the cleanup to `spa_load_impl()`, debug messages have been
added to every point of failure in that function. Additionally,
debug messages have been added to strategic places, such as
`vdev_disk_open()`.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/8961
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/418079e0Closes#7459
We should use zfs_dbgmsg instead of spa_dbgmsg. Or at least,
metaslab_condense() should call zfs_dbgmsg because it's important and
rare enough to always log. It's possible that the message in
zio_dva_allocate() would be too high-frequency for zfs_dbgmsg.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Patch Notes:
* Removed ZFS_DEBUG_SPA from zfs-module-parameters.5
OpenZFS-issue: https://www.illumos.org/issues/9236
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/cfaba7f668Closes#7467
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1ebCloses#6900
mdb doesn't have dmu_ot[], so we need a different mechanism for its
SNPRINTF_BLKPTR() to determine if the BP is encrypted vs authenticated.
Additionally, since it already relies on BP_IS_ENCRYPTED (etc),
SNPRINTF_BLKPTR might as well figure out the "crypt_type" on its own,
rather than making the caller do so.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#7390
Currently, the decryption and block authentication code in
the ZIO / ARC layers is a bit inconsistent with regards to
the ereports that are produces and the error codes that are
passed to calling functions. This patch ensures that all of
these errors (which begin as ECKSUM) are converted to EIO
before they leave the ZIO or ARC layer and that ereports
are correctly generated on each decryption / authentication
failure.
In addition, this patch fixes a bug in zio_decrypt() where
ECKSUM never gets written to zio->io_error.
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7372
Once per pass through the MMP thread's loop, the vdev tree is walked to
find a suitable leaf to write the next MMP block to. If no such leaf is
found, the thread sleeps for a while and resumes at the top of the loop.
Add an entry to multihost_history when no leaf can be found, and record
the reason in the error column. The error code for such entries is a
bitfield, displayed in hex:
0x1 At least one vdev (interior or leaf) was not writeable.
0x2 At least one writeable leaf vdev was found, but it had a pending
MMP write.
timestamp = the time in seconds since the epoch when no leaf could be
found originally.
duration = the time (in ns) during which no MMP block was written for
this reason. This does not include the preceeding inter-write period
nor the following inter-write period.
vdev_guid = the number of sequential cycles of the MMP thread looop when
this occurred.
Sample output, truncated to fit:
For records of skipped MMP writes the right-most column, vdev_path, is
reported as "-".
id txg timestamp error duration mmp_delay vdev_guid ...
936 11 1520036441 0 146264 891422313 1740883117838 ...
937 11 1520036441 0 163956 888356657 7320395061548 ...
938 11 1520036442 0 130690 885314969 7320395061548 ...
939 11 1520036442 0 2001068577 882296582 1740883117838 ...
940 11 1520036443 0 161806 882296582 7320395061548 ...
941 11 1520036443 0x2 0 998020546 1 ...
942 11 1520036444 0 136585 998020546 7320395061548 ...
943 11 1520036444 0x2 0 998020257 1 ...
944 11 1520036445 5 2002662964 994160219 1740883117838 ...
945 11 1520036445 0x2 998073118 994160219 3 ...
946 11 1520036447 0 247136 994160219 7320395061548 ...
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#7212
The intent of this patch is extend the existing deadman code
such that it's flexible enough to be used by both ztest and
on production systems. The proposed changes include:
* Added a new `zfs_deadman_failmode` module option which is
used to dynamically control the behavior of the deadman. It's
loosely modeled after, but independant from, the pool failmode
property. It can be set to wait, continue, or panic.
* wait - Wait for the "hung" I/O (default)
* continue - Attempt to recover from a "hung" I/O
* panic - Panic the system
* Added a new `zfs_deadman_ziotime_ms` module option which is
analogous to `zfs_deadman_synctime_ms` except instead of
applying to a pool TXG sync it applies to zio_wait(). A
default value of 300s is used to define a "hung" zio.
* The ztest deadman thread has been re-enabled by default,
aligned with the upstream OpenZFS code, and then extended
to terminate the process when it takes significantly longer
to complete than expected.
* The -G option was added to ztest to print the internal debug
log when a fatal error is encountered. This same option was
previously added to zdb in commit fa603f82. Update zloop.sh
to unconditionally pass -G to obtain additional debugging.
* The FM_EREPORT_ZFS_DELAY event which was previously posted
when the deadman detect a "hung" pool has been replaced by
a new dedicated FM_EREPORT_ZFS_DEADMAN event.
* The proposed recovery logic attempts to restart a "hung"
zio by calling zio_interrupt() on any outstanding leaf zios.
We may want to further restrict this to zios in either the
ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages.
Calling zio_interrupt() is expected to only be useful for
cases when an IO has been submitted to the physical device
but for some reasonable the completion callback hasn't been
called by the lower layers. This shouldn't be possible but
has been observed and may be caused by kernel/driver bugs.
* The 'zfs_deadman_synctime_ms' default value was reduced from
1000s to 600s.
* Depending on how ztest fails there may be no cache file to
move. This should not be considered fatal, collect the logs
which are available and carry on.
* Add deadman test cases for spa_deadman() and zio_wait().
* Increase default zfs_deadman_checktime_ms to 60s.
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#6999
With PR 5756 the zfs module now supports c99 and the
remaining past c89 workarounds can be undone.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#6816
History commands and events were being suppressed for the
'zpool create' command since the history object did not
yet exist. Create the object earlier so this history
doesn't get lost.
Split the pool_destroy event in to pool_destroy and
pool_export so they may be distinguished.
Updated events_001_pos and events_002_pos test cases. They
now check for the expected history events and were reworked
to be more reliable.
Reviewed-by: Nathaniel Clark <nathaniel.l.clark@intel.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#6712Closes#6486
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#494Closes#5769
Add multihost=on|off pool property to control MMP. When enabled
a new thread writes uberblocks to the last slot in each label, at a
set frequency, to indicate to other hosts the pool is actively imported.
These uberblocks are the last synced uberblock with an updated
timestamp. Property defaults to off.
During tryimport, find the "best" uberblock (newest txg and timestamp)
repeatedly, checking for change in the found uberblock. Include the
results of the activity test in the config returned by tryimport.
These results are reported to user in "zpool import".
Allow the user to control the period between MMP writes, and the
duration of the activity test on import, via a new module parameter
zfs_multihost_interval. The period is specified in milliseconds. The
activity test duration is calculated from this value, and from the
mmp_delay in the "best" uberblock found initially.
Add a kstat interface to export statistics about Multiple Modifier
Protection (MMP) updates. Include the last synced txg number, the
timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV
label that received the last MMP update, and the VDEV path. Abbreviated
output below.
$ cat /proc/spl/kstat/zfs/mypool/multihost
31 0 0x01 10 880 105092382393521 105144180101111
txg timestamp mmp_delay vdev_guid vdev_label vdev_path
20468 261337 250274925 68396651780 3 /dev/sda
20468 261339 252023374 6267402363293 1 /dev/sdc
20468 261340 252000858 6698080955233 1 /dev/sdx
20468 261341 251980635 783892869810 2 /dev/sdy
20468 261342 253385953 8923255792467 3 /dev/sdd
20468 261344 253336622 042125143176 0 /dev/sdab
20468 261345 253310522 1200778101278 2 /dev/sde
20468 261346 253286429 0950576198362 2 /dev/sdt
20468 261347 253261545 96209817917 3 /dev/sds
20468 261349 253238188 8555725937673 3 /dev/sdb
Add a new tunable zfs_multihost_history to specify the number of MMP
updates to store history for. By default it is set to zero meaning that
no MMP statistics are stored.
When using ztest to generate activity, for automated tests of the MMP
function, some test functions interfere with the test. For example, the
pool is exported to run zdb and then imported again. Add a new ztest
function, "-M", to alter ztest behavior to prevent this.
Add new tests to verify the new functionality. Tests provided by
Giuseppe Di Natale.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#745Closes#6279
Authored by: Dave Eddy <dave@daveeddy.com>
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
Reviewed by: Joshua M. Clulow <jmc@joyent.com>
Reviewed by: Josh Wilsdon <jwilsdon@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed by: Alan Somers <asomers@gmail.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/6939
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ce1577bCloses#6328
Authored by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Approved by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Porting Notes:
* All hunks unrelated to ZFS were dropped.
OpenZFS-issue: https://www.illumos.org/issues/5428
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4585130Closes#6326
Currently, there is no way to pause a scrub. Pausing may
be useful when the pool is busy with other I/O to preserve
bandwidth.
This patch adds the ability to pause and resume scrubbing.
This is achieved by maintaining a persistent on-disk scrub state.
While the state is 'paused' we do not scrub any more blocks.
We do however perform regular scan housekeeping such as
freeing async destroyed and deadlist blocks while paused.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed-by: Serapheim Dimitropoulos <serapheimd@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
Closes#6167
This commit allow higher ashift values (up to 16) in 'zpool create'
The ashift value was previously limited to 13 (8K block) in b41c990
because the limited number of uberblocks we could fit in the
statically sized (128K) vdev label ring buffer could prevent the
ability the safely roll back a pool to recover it.
Since b02fe35 the largest uberblock size we support is 8K: this
allow us to store a minimum number of 16 uberblocks in the vdev
label, even with higher ashift values.
Additionally change 'ashift' pool property behaviour: if set it will
be used as the default hint value in subsequent vdev operations
('zpool add', 'attach' and 'replace'). A custom ashift value can still
be specified from the command line, if desired.
Finally, fix a bug in add-o_ashift.ksh caused by a missing variable.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#2024Closes#4205Closes#4740Closes#5763
Authored by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
We don't want to dirty any data when we're in the final txgs of the pool
export logic. This change introduces checks to make sure that no data is
dirtied after a certain point. It also addresses the culprit of this
specific bug – the space map cannot be upgraded when we're in final
stages of pool export. If we encounter a space map that wants to be
upgraded in this phase, then we simply ignore the request as it will get
retried the next time we set the fragmentation metric on that metaslab.
OpenZFS-issue: https://www.illumos.org/issues/8023
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/2ef00f5Closes#5991
df83110 added the ability to specify a custom "ashift" value from the command
line in 'zpool add' and 'zpool attach'. This commit adds additional checks to
the provided ashift to prevent invalid values from being used, which could
result in disastrous consequences for the whole pool.
Additionally provide ASHIFT_MAX and ASHIFT_MIN definitions in spa.h.
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#5878
Reviewed by: Steve Gonczi <steve.gonczi@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Background information: This assertion about tx_space_* verifies that we
are not dirtying more stuff than we thought we would. We “need” to know
how much we will dirty so that we can check if we should fail this
transaction with ENOSPC/EDQUOT, in dmu_tx_assign(). While the
transaction is open (i.e. between dmu_tx_assign() and dmu_tx_commit() —
typically less than a millisecond), we call dbuf_dirty() on the exact
blocks that will be modified. Once this happens, the temporary
accounting in tx_space_* is unnecessary, because we know exactly what
blocks are newly dirtied; we call dnode_willuse_space() to track this
more exact accounting.
The fundamental problem causing this bug is that dmu_tx_hold_*() relies
on the current state in the DMU (e.g. dn_nlevels) to predict how much
will be dirtied by this transaction, but this state can change before we
actually perform the transaction (i.e. call dbuf_dirty()).
This bug will be fixed by removing the assertion that the tx_space_*
accounting is perfectly accurate (i.e. we never dirty more than was
predicted by dmu_tx_hold_*()). By removing the requirement that this
accounting be perfectly accurate, we can also vastly simplify it, e.g.
removing most of the logic in dmu_tx_count_*().
The new tx space accounting will be very approximate, and may be more or
less than what is actually dirtied. It will still be used to determine
if this transaction will put us over quota. Transactions that are marked
by dmu_tx_mark_netfree() will be excepted from this check. We won’t make
an attempt to determine how much space will be freed by the transaction
— this was rarely accurate enough to determine if a transaction should
be permitted when we are over quota, which is why dmu_tx_mark_netfree()
was introduced in 2014.
We also won’t attempt to give “credit” when overwriting existing blocks,
if those blocks may be freed. This allows us to remove the
do_free_accounting logic in dbuf_dirty(), and associated routines. This
logic attempted to predict what will be on disk when this txg syncs, to
know if the overwritten block will be freed (i.e. exists, and has no
snapshots).
OpenZFS-issue: https://www.illumos.org/issues/7793
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3704e0a
Upstream bugs: DLPX-32883a
Closes#5804
Porting notes:
- DNODE_SIZE replaced with DNODE_MIN_SIZE in dmu_tx_count_dnode(),
Using the default dnode size would be slightly better.
- DEBUG_DMU_TX wrappers and configure option removed.
- Resolved _by_dnode() conflicts these changes have not yet been
applied to OpenZFS.
It was observed that even when the txg history is disabled by
setting `zfs_txg_history=0` the txg_sync thread still fetches
the vdev stats unnecessarily.
This patch refactors the code such that vdev_get_stats() is no
longer called when `zfs_txg_history=0`. And it further reduces
the differences between upstream and the ZoL txg_sync_thread()
function.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#5412
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported by: Tony Hutter <hutter2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/4185
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee
Porting Notes:
This code is ported on top of the Illumos Crypto Framework code:
b5e030c8db
The list of porting changes includes:
- Copied module/icp/include/sha2/sha2.h directly from illumos
- Removed from module/icp/algs/sha2/sha2.c:
#pragma inline(SHA256Init, SHA384Init, SHA512Init)
- Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since
it now takes in an extra parameter.
- Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c
- Added skein & edonr to libicp/Makefile.am
- Added sha512.S. It was generated from sha512-x86_64.pl in Illumos.
- Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument.
- In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section
to not #include the non-existant endian.h.
- In skein_test.c, renane NULL to 0 in "no test vector" array entries to get
around a compiler warning.
- Fixup test files:
- Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>,
- Remove <note.h> and define NOTE() as NOP.
- Define u_longlong_t
- Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p"
- Rename NULL to 0 in "no test vector" array entries to get around a
compiler warning.
- Remove "for isa in $($ISAINFO); do" stuff
- Add/update Makefiles
- Add some userspace headers like stdio.h/stdlib.h in places of
sys/types.h.
- EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules.
- Update scripts/zfs2zol-patch.sed
- include <sys/sha2.h> in sha2_impl.h
- Add sha2.h to include/sys/Makefile.am
- Add skein and edonr dirs to icp Makefile
- Add new checksums to zpool_get.cfg
- Move checksum switch block from zfs_secpolicy_setprop() to
zfs_check_settable()
- Fix -Wuninitialized error in edonr_byteorder.h on PPC
- Fix stack frame size errors on ARM32
- Don't unroll loops in Skein on 32-bit to save stack space
- Add memory barriers in sha2.c on 32-bit to save stack space
- Add filetest_001_pos.ksh checksum sanity test
- Add option to write psudorandom data in file_write utility
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: David Quigley <david.quigley@intel.com>
This review covers the reading and writing of compressed arc headers, sharing
data between the arc_hdr_t and the arc_buf_t, and the implementation of a new
dbuf cache to keep frequently access data uncompressed.
I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs
off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block
for that DVA. The physical block may or may not be compressed. If compressed
arc is enabled and the block on-disk is compressed, then the b_pdata will match
the block on-disk and remain compressed in memory. If the block on disk is not
compressed, then neither will the b_pdata. Lastly, if compressed arc is
disabled, then b_pdata will always be an uncompressed version of the on-disk
block.
Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict
any arc_buf_t's that are no longer referenced. This means that the arc will
primarily have compressed blocks as the arc_buf_t's are considered overhead and
are always uncompressed. When a consumer reads a block we first look to see if
the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new
arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If
the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t
and bcopy the uncompressed contents from the first arc_buf_t to the new one.
Writing to the compressed arc requires that we first discard the b_pdata since
the physical block is about to be rewritten. The new data contents will be
passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we
will copy the physical block contents to a newly allocated b_pdata.
When an l2arc is inuse it will also take advantage of the b_pdata. Now the
l2arc will always write the contents of b_pdata to the l2arc. This means that
when compressed arc is enabled that the l2arc blocks are identical to those
stored in the main data pool. This provides a significant advantage since we
can leverage the bp's checksum when reading from the l2arc to determine if the
contents are valid. If the compressed arc is disabled, then we must first
transform the read block to look like the physical block in the main data pool
before comparing the checksum and determining it's valid.
OpenZFS-issue: https://www.illumos.org/issues/6950
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0
Issue #5078
This first phase brings over the ZFS SLM module, zfs_mod.c, to handle
auto operations in response to disk events. Disk event monitoring is
provided from libudev and generates the expected payload schema for
zfs_mod. This work leverages the recently added devid and phys_path
strings in the vdev label.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@intel.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#4673
Authored by: Hans Rosenfeld <hans.rosenfeld@nexenta.com>
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Josef Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Signed-off-by: Don Brady <don.brady@intel.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/5997
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/1437283
Porting Notes:
In addition to the OpenZFS changes this patch realigns the events
with those found in OpenZFS.
Events which would be logged as sysevents on illumos have been
been mapped to the 'sysevent' class for Linux. In addition, several
subclass names have been changed to match what is used in OpenZFS.
In all cases this means a '.' was changed to an '_' in the subclass.
The scripts provided by ZoL have been updated, however users which
provide scripts for any of the following events will need to rename
them based on the new subclass names.
ereport.fs.zfs.config.sync sysevent.fs.zfs.config_sync
ereport.fs.zfs.zpool.destroy sysevent.fs.zfs.pool_destroy
ereport.fs.zfs.zpool.reguid sysevent.fs.zfs.pool_reguid
ereport.fs.zfs.vdev.remove sysevent.fs.zfs.vdev_remove
ereport.fs.zfs.vdev.clear sysevent.fs.zfs.vdev_clear
ereport.fs.zfs.vdev.check sysevent.fs.zfs.vdev_check
ereport.fs.zfs.vdev.spare sysevent.fs.zfs.vdev_spare
ereport.fs.zfs.vdev.autoexpand sysevent.fs.zfs.vdev_autoexpand
ereport.fs.zfs.resilver.start sysevent.fs.zfs.resilver_start
ereport.fs.zfs.resilver.finish sysevent.fs.zfs.resilver_finish
ereport.fs.zfs.scrub.start sysevent.fs.zfs.scrub_start
ereport.fs.zfs.scrub.finish sysevent.fs.zfs.scrub_finish
ereport.fs.zfs.bootfs.vdev.attach sysevent.fs.zfs.bootfs_vdev_attach
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3542
New functionality:
- Preserves existing scalar implementation.
- Adds AVX2 optimized Fletcher-4 computation.
- Fastest routines selected on module load (benchmark).
- Test case for Fletcher-4 added to ztest.
New zcommon module parameters:
- zfs_fletcher_4_impl (str): selects the implementation to use.
"fastest" - use the fastest version available
"cycle" - cycle trough all available impl for ztest
"scalar" - use the original version
"avx2" - new AVX2 implementation if available
Performance comparison (Intel i7 CPU, 1MB data buffers):
- Scalar: 4216 MB/s
- AVX2: 14499 MB/s
See contents of `/sys/module/zcommon/parameters/zfs_fletcher_4_impl`
to get list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Andreas Dilger <andreas.dilger@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4330
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5027https://github.com/illumos/illumos-gate/commit/b515258
Porting Notes:
* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.
* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes. Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.
* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize. This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.
* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX. This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M.
* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space. We should be able to relax
this one the ABD patches are merged.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#354
5349 verify that block pointer is plausible before reading
Reviewed by: Alex Reece <alex.reece@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Xin Li <delphij@FreeBSD.org>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Approved by: Gordon Ross <gwr@nexenta.com>
References:
https://www.illumos.org/issues/5349https://github.com/illumos/illumos-gate/commit/f63ab3d5
Porting notes:
* Several variable declarations were moved due to C style needs
Ported-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3373
5056 ZFS deadlock on db_mtx and dn_holds
Author: Justin Gibbs <justing@spectralogic.com>
Reviewed by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5056https://github.com/illumos/illumos-gate/commit/bc9014e
Porting Notes:
sa_handle_get_from_db():
- the original patch includes an otherwise unmentioned fix for a
possible usage of an uninitialised variable
dmu_objset_open_impl():
- Under Illumos list_link_init() is the same as filling a list_node_t
with NULLs, so they don't notice if they miss doing list_link_init()
on a zero'd containing structure (e.g. allocated with kmem_zalloc as
here). Under Linux, not so much: an uninitialised list_node_t goes
"Boom!" some time later when it's used or destroyed.
dmu_objset_evict_dbufs():
- reduce stack usage using kmem_alloc()
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This isn't required for the Linux port because the kernel tracks
if a module is busy. The prototype for spa_busy() is also removed
since its definition was already removed.
Signed-off-by: Isaac Huang <he.huang@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3262
5695 dmu_sync'ed holes do not retain birth time
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Bayard Bell <buffer.g.overflow@gmail.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5695https://github.com/illumos/illumos-gate/commit/70163ac
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3229
By marking DMU transaction processing contexts with PF_FSTRANS
we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings
us back in line with upstream. In some cases this means simply
swapping the flags back. For others fnvlist_alloc() was replaced
by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to
fnvlist_alloc() which assumes KM_SLEEP.
The one place KM_PUSHPAGE is kept is when allocating ARC buffers
which allows us to dip in to reserved memory. This is again the
same as upstream.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Callers of kmem_alloc() which passed the KM_NODEBUG flag to suppress
the large allocation warning have been replaced by vmem_alloc() as
appropriate. The updated vmem_alloc() call will not print a warning
regardless of the size of the allocation.
A careful reader will notice that not all callers have been changed
to vmem_alloc(). Some have only had the KM_NODEBUG flag removed.
This was possible because the default warning threshold has been
increased to 32k. This is desirable because it minimizes the need
for Linux specific code changes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
https://www.illumos.org/issues/4753https://github.com/illumos/illumos-gate/commit/73527f4
Comments by Matt Ahrens from the issue tracker:
When a sync task is waiting for a txg to complete, we should hurry
it along by increasing the number of outstanding async writes
(i.e. make vdev_queue_max_async_writes() return a larger number).
Initially we might just have a tunable for "minimum async writes
while a synctask is waiting" and set it to 3.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2716
4914 zfs on-disk bookmark structure should be named *_phys_t
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
https://www.illumos.org/issues/4914https://github.com/illumos/illumos-gate/commit/7802d7b
Porting notes:
There were a number of zfsonlinux-specific uses of zbookmark_t which
needed to be updated. This should reduce the likelihood of further
problems like issue #2094 from occurring.
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2558
4757 ZFS embedded-data block pointers ("zero block compression")
4913 zfs release should not be subject to space checks
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/4757https://www.illumos.org/issues/4913https://github.com/illumos/illumos-gate/commit/5d7b4d4
Porting notes:
For compatibility with the fastpath code the zio_done() function
needed to be updated. Because embedded-data block pointers do
not require DVAs to be allocated the associated vdevs will not
be marked and therefore should not be unmarked.
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2544
4370 avoid transmitting holes during zfs send
4371 DMU code clean up
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
Approved by: Garrett D'Amore <garrett@damore.org>a
References:
https://www.illumos.org/issues/4370https://www.illumos.org/issues/4371https://github.com/illumos/illumos-gate/commit/43466aa
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2529
The nreserved column in the txgs kstat file always contains 0
following the write throttle restructuring of commit
e8b96c6007.
Prior to that commit, the nreserved column showed the number of bytes
temporarily reserved in the pool by a transaction group at sync time.
The new write throttle did away with temporary reservations and uses
the amount of dirty data instead. To approximate the old output of
the txgs kstat, the number of dirty bytes per-txg was passed in as
the nreserved value to spa_txg_history_set_io(). This approach did
not work as intended, because the per-txg dirty value is decremented
as data is written out to disk, so it is zero by the time we call
spa_txg_history_set_io(). To fix this, save the number of dirty
bytes before calling spa_sync(), and pass this value in to
spa_txg_history_set_io().
Also, since the name "nreserved" is now a misnomer, the column
heading is now labeled "ndirty".
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1696
When transitioning current open TXG into QUIESCE state and opening
a new one txg_quiesce() calls gethrtime():
- to mark the birth time of the new TXG
- to record the SPA txg history kstat
- implicitely inside spa_txg_history_add()
These timestamps are practically the same, so that the first one
can be used instead of the other two. The only visible difference
is that inside spa_txg_history_add() the time spent in kmem_zalloc()
will be counted towards the opened TXG.
Since at this point the new TXG already exists (tx->tx_open_txg
has been already incremented) it is actually a correct accounting.
In any case this extra work is only happening when spa_txg_history
kstat is activated (i.e. zfs_txg_history > 0) and doesn't affect
the normal processing in any way.
Signed-off-by: Cyril Plisko <cyril.plisko@mountall.com>
Issue #2075
In several cases when digging into kstats we can found two txgs
in SYNC state, e.g.
txg birth state nreserved nread nwritten ...
985452 258127184872561 C 0 373948416 2376272384 ...
985453 258129016180616 C 0 378173440 28793344 ...
985454 258129016271523 S 0 0 0 ...
985455 258130864245986 S 0 0 0 ...
985456 258130867458851 O 0 0 0 ...
However only first txg (985454) is really syncing at this moment.
The other one (985455) marked as SYNCED is actually in a post-QUIESCED
state and waiting to start sync. So, the new TXG_STATE_WAIT_FOR_SYNC
state between TXG_STATE_QUIESCED and TXG_STATE_SYNCED was added to
reveal this situation.
txg birth state nreserved nread nwritten ...
1086896 235261068743969 C 0 163577856 8437248 ...
1086897 235262870830801 C 0 280625152 822594048 ...
1086898 235264172219064 S 0 0 0 ...
1086899 235264936134407 W 0 0 0 ...
1086900 235264936296156 O 0 0 0 ...
Signed-off-by: Igor Lvovsky <ilvovsky@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #2075
3537 want pool io kstats
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Sa?o Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Gordon Ross <gwr@nexenta.com>
References:
http://www.illumos.org/issues/3537illumos/illumos-gate@c3a6601
Ported by: Cyril Plisko <cyril.plisko@mountall.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Porting Notes:
1. The patch was restructured to take advantage of the existing
spa statistics infrastructure. To accomplish this the kstat
was moved in to spa->io_stats and the init/destroy code moved
to spa_stats.c.
2. The I/O kstat was simply named <pool> which conflicted with the
pool directory we had already created. Therefore it was renamed
to <pool>/io
3. An update handler was added to allow the kstat to be zeroed.
This change adds a new kstat to gain some visibility into the
amount of time spent in each call to dmu_tx_assign. A histogram
is exported via the new dmu_tx_assign file. The information
contained in this histogram is the frequency dmu_tx_assign
took to complete given an interval range.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This change is an attempt to add visibility in to how txgs are being
formed on a system, in real time. To do this, a list was added to the
in memory SPA data structure for a pool, with each element on the list
corresponding to txg. These entries are then exported through the kstat
interface, which can then be interpreted in userspace.
For each txg, the following information is exported:
* Unique txg number (uint64_t)
* The time the txd was born (hrtime_t)
(*not* wall clock time; relative to the other entries on the list)
* The current txg state ((O)pen/(Q)uiescing/(S)yncing/(C)ommitted)
* The number of reserved bytes for the txg (uint64_t)
* The number of bytes read during the txg (uint64_t)
* The number of bytes written during the txg (uint64_t)
* The number of read operations during the txg (uint64_t)
* The number of write operations during the txg (uint64_t)
* The time the txg was closed (hrtime_t)
* The time the txg was quiesced (hrtime_t)
* The time the txg was synced (hrtime_t)
Note that while the raw kstat now stores relative hrtimes for the
open, quiesce, and sync times. Those relative times are used to
calculate how long each state took and these deltas and printed by
output handlers.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This change is an attempt to add visibility into the arc_read calls
occurring on a system, in real time. To do this, a list was added to the
in memory SPA data structure for a pool, with each element on the list
corresponding to a call to arc_read. These entries are then exported
through the kstat interface, which can then be interpreted in userspace.
For each arc_read call, the following information is exported:
* A unique identifier (uint64_t)
* The time the entry was added to the list (hrtime_t)
(*not* wall clock time; relative to the other entries on the list)
* The objset ID (uint64_t)
* The object number (uint64_t)
* The indirection level (uint64_t)
* The block ID (uint64_t)
* The name of the function originating the arc_read call (char[24])
* The arc_flags from the arc_read call (uint32_t)
* The PID of the reading thread (pid_t)
* The command or name of thread originating read (char[16])
From this exported information one can see, in real time, exactly what
is being read, what function is generating the read, and whether or not
the read was found to be already cached.
There is still some work to be done, but this should serve as a good
starting point.
Specifically, dbuf_read's are not accounted for in the currently
exported information. Thus, a follow up patch should probably be added
to export these calls that never call into arc_read (they only hit the
dbuf hash table). In addition, it might be nice to create a utility
similar to "arcstat.py" to digest the exported information and display
it in a more readable format. Or perhaps, log the information and allow
for it to be "replayed" at a later time.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2882 implement libzfs_core
2883 changing "canmount" property to "on" should not always remount dataset
2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Chris Siden <christopher.siden@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Bill Pijewski <wdp@joyent.com>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Approved by: Eric Schrock <Eric.Schrock@delphix.com>
References:
https://www.illumos.org/issues/2882https://www.illumos.org/issues/2883https://www.illumos.org/issues/2900illumos/illumos-gate@4445fffbbb
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1293
Porting notes:
WARNING: This patch changes the user/kernel ABI. That means that
the zfs/zpool utilities built from master are NOT compatible with
the 0.6.2 kernel modules. Ensure you load the matching kernel
modules from master after updating the utilities. Otherwise the
zfs/zpool commands will be unable to interact with your pool and
you will see errors similar to the following:
$ zpool list
failed to read pool configuration: bad address
no pools available
$ zfs list
no datasets available
Add zvol minor device creation to the new zfs_snapshot_nvl function.
Remove the logging of the "release" operation in
dsl_dataset_user_release_sync(). The logging caused a null dereference
because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the
logging functions try to get the ds name via the dsl_dataset_name()
function. I've got no idea why this particular code would have worked
in Illumos. This code has subsequently been completely reworked in
Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring).
Squash some "may be used uninitialized" warning/erorrs.
Fix some printf format warnings for %lld and %llu.
Apply a few spa_writeable() changes that were made to Illumos in
illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and
3115 fixes.
Add a missing call to fnvlist_free(nvl) in log_internal() that was added
in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time
(zfsonlinux/zfs@9e11c73) because it depended on future work.
3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()
3330 space_seg_t should have its own kmem_cache
3331 deferred frees should happen after sync_pass 1
3335 make SYNC_PASS_* constants tunable
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Approved by: Eric Schrock <eric.schrock@delphix.com>
References:
illumos/illumos-gate@01f55e48fbhttps://www.illumos.org/issues/3329https://www.illumos.org/issues/3330https://www.illumos.org/issues/3331https://www.illumos.org/issues/3335
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
NOTES: This patch has been reworked from the original in the
following ways to accomidate Linux ZFS implementation
*) Usage of the cyclic interface was replaced by the delayed taskq
interface. This avoids the need to implement new compatibility
code and allows us to rely on the existing taskq implementation.
*) An extern for zfs_txg_synctime_ms was added to sys/dsl_pool.h
because declaring externs in source files as was done in the
original patch is just plain wrong.
*) Instead of panicing the system when the deadman triggers a
zevent describing the blocked vdev and the first pending I/O
is posted. If the panic behavior is desired Linux provides
other generic methods to panic the system when threads are
observed to hang.
*) For reference, to delay zios by 30 seconds for testing you can
use zinject as follows: 'zinject -d <vdev> -D30 <pool>'
References:
illumos/illumos-gate@283b84606bhttps://www.illumos.org/issues/3246
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1396
2619 asynchronous destruction of ZFS file systems
2747 SPA versioning with zfs feature flags
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <gwilson@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Approved by: Eric Schrock <Eric.Schrock@delphix.com>
References:
illumos/illumos-gate@53089ab7c8illumos/illumos-gate@ad135b5d64
illumos changeset: 13700:2889e2596bd6
https://www.illumos.org/issues/2619https://www.illumos.org/issues/2747
NOTE: The grub specific changes were not ported. This change
must be made to the Linux grub packages.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.
* The txg_sync thread
* The zvol write/discard threads
* The zpl_putpage() VFS callback
This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages. If a lock is held over this operation the potential exists to
deadlock the system. To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.
Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread. However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA. This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.
This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:
21ade34 Disable direct reclaim for z_wr_* threads
cfc9a5c Fix zpl_writepage() deadlock
eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com>
Reviewed by: Alexander Eremin <alexander.eremin@nexenta.com>
Reviewed by: Alexander Stetsenko <ams@nexenta.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
References:
https://www.illumos.org/issues/1748
This commit modifies the user to kernel space ioctl ABI. Extra
care should be taken when updating to ensure both the kernel
modules and utilities are updated. If only the user space
component is updated both the 'zpool events' command and the
'zpool reguid' command will not work until the kernel modules
are updated.
Ported by: Martin Matuska <martin@matuska.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#665
Today zfs tries to allocate blocks evenly across all devices.
This means when devices are imbalanced zfs will use lots of
CPU searching for space on devices which tend to be pretty
full. It should instead fail quickly on the full LUNs and
move onto devices which have more availability.
Reviewed by: Eric Schrock <Eric.Schrock@delphix.com>
Reviewed by: Matt Ahrens <Matt.Ahrens@delphix.com>
Reviewed by: Adam Leventhal <Adam.Leventhal@delphix.com>
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Gordon Ross <gwr@nexenta.com>
Approved by: Garrett D'Amore <garrett@nexenta.com>
References to Illumos issue and patch:
- https://www.illumos.org/issues/510
- https://github.com/illumos/illumos-gate/commit/5ead3ed965
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory. This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.