Commit Graph

7 Commits

Author SHA1 Message Date
Brian Behlendorf a032ac4b38 OpenZFS 8558, 8602 - lwp_create() returns EAGAIN
8558 lwp_create() returns EAGAIN on system with more than 80K ZFS filesystems

On a system with more than 80K ZFS filesystems, we've seen cases
where lwp_create() will start to fail by returning EAGAIN. The
problem being, for each of those 80K ZFS filesystems, a taskq will
be created for each dataset as part of the ZIL for each dataset.

Porting Notes:
- The new nomem taskq kstat was dropped.
- Added module options and documentation for new tunings
  zfs_zil_clean_taskq_nthr_pct, zfs_zil_clean_taskq_minalloc,
  zfs_zil_clean_taskq_maxalloc, and zfs_sync_taskq_batch_pct.

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/8558
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/216d772

8602 remove unused "dp_early_sync_tasks" field from "dsl_pool" structure

Reviewed by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/8602
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/2bcb545
Closes #6779
2017-10-26 12:57:53 -07:00
Giuseppe Di Natale 1b7c1e5ce9 OpenZFS 7578 - Fix/improve some aspects of ZIL writing
- After some ZIL changes 6 years ago zil_slog_limit got partially broken
due to zl_itx_list_sz not updated when async itx'es upgraded to sync.
Actually because of other changes about that time zl_itx_list_sz is not
really required to implement the functionality, so this patch removes
some unneeded broken code and variables.

 - Original idea of zil_slog_limit was to reduce chance of SLOG abuse by
single heavy logger, that increased latency for other (more latency critical)
loggers, by pushing heavy log out into the main pool instead of SLOG.  Beside
huge latency increase for heavy writers, this implementation caused double
write of all data, since the log records were explicitly prepared for SLOG.
Since we now have I/O scheduler, I've found it can be much more efficient
to reduce priority of heavy logger SLOG writes from ZIO_PRIORITY_SYNC_WRITE
to ZIO_PRIORITY_ASYNC_WRITE, while still leave them on SLOG.

 - Existing ZIL implementation had problem with space efficiency when it
has to write large chunks of data into log blocks of limited size.  In some
cases efficiency stopped to almost as low as 50%.  In case of ZIL stored on
spinning rust, that also reduced log write speed in half, since head had to
uselessly fly over allocated but not written areas.  This change improves
the situation by offloading problematic operations from z*_log_write() to
zil_lwb_commit(), which knows real situation of log blocks allocation and
can split large requests into pieces much more efficiently.  Also as side
effect it removes one of two data copy operations done by ZIL code WR_COPIED
case.

 - While there, untangle and unify code of z*_log_write() functions.
Also zfs_log_write() alike to zvol_log_write() can now handle writes crossing
block boundary, that may also improve efficiency if ZPL is made to do that.

Sponsored by:   iXsystems, Inc.

Authored by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Steven Hartland <steven.hartland@multiplay.co.uk>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/7578
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/aeb13ac
Closes #6191
2017-06-09 09:15:37 -07:00
Matthew Ahrens f1512ee61e Illumos 5027 - zfs large block support
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>

References:
  https://www.illumos.org/issues/5027
  https://github.com/illumos/illumos-gate/commit/b515258

Porting Notes:

* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.

* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes.  Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.

* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize.  This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.

* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX.  This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing.  Therefore, we've set DMU_MAX_ACCESS to 64M.

* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space.  We should be able to relax
this one the ABD patches are merged.

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #354
2015-05-11 12:23:16 -07:00
Michael Kjorling d1d7e2689d cstyle: Resolve C style issues
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written.  Others were
caused when the common code was slightly adjusted for Linux.

This patch contains no functional changes.  It only refreshes
the code to conform to style guide.

Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request.  The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1821
2013-12-18 16:46:35 -08:00
Matthew Ahrens 29809a6cba Illumos #3086: unnecessarily setting DS_FLAG_INCONSISTENT on async
3086 unnecessarily setting DS_FLAG_INCONSISTENT on async
destroyed datasets
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Approved by: Eric Schrock <Eric.Schrock@delphix.com>

References:
  illumos/illumos-gate@ce636f8b38
  illumos changeset: 13776:cd512c80fd75
  https://www.illumos.org/issues/3086

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-01-08 10:35:43 -08:00
Etienne Dechamps 920dd524fb Add FASTWRITE algorithm for synchronous writes.
Currently, ZIL blocks are spread over vdevs using hint block pointers
managed by the ZIL commit code and passed to metaslab_alloc(). Spreading
log blocks accross vdevs is important for performance: indeed, using
mutliple disks in parallel decreases the ZIL commit latency, which is
the main performance metric for synchronous writes. However, the current
implementation suffers from the following issues:

1) It would be best if the ZIL module was not aware of such low-level
details. They should be handled by the ZIO and metaslab modules;

2) Because the hint block pointer is managed per log, simultaneous
commits from multiple logs might use the same vdevs at the same time,
which is inefficient;

3) Because dmu_write() does not honor the block pointer hint, indirect
writes are not spread.

The naive solution of rotating the metaslab rotor each time a block is
allocated for the ZIL or dmu_sync() doesn't work in practice because the
first ZIL block to be written is actually allocated during the previous
commit. Consequently, when metaslab_alloc() decides the vdev for this
block, it will do so while a bunch of other allocations are happening at
the same time (from dmu_sync() and other ZILs). This means the vdev for
this block is chosen more or less at random. When the next commit
happens, there is a high chance (especially when the number of blocks
per commit is slightly less than the number of the disks) that one disk
will have to write two blocks (with a potential seek) while other disks
are sitting idle, which defeats spreading and increases the commit
latency.

This commit introduces a new concept in the metaslab allocator:
fastwrites. Basically, each top-level vdev maintains a counter
indicating the number of synchronous writes (from dmu_sync() and the
ZIL) which have been allocated but not yet completed. When the metaslab
is called with the FASTWRITE flag, it will choose the vdev with the
least amount of pending synchronous writes. If there are multiple vdevs
with the same value, the first matching vdev (starting from the rotor)
is used. Once metaslab_alloc() has decided which vdev the block is
allocated to, it updates the fastwrite counter for this vdev.

The rationale goes like this: when an allocation is done with
FASTWRITE, it "reserves" the vdev until the data is written. Until then,
all future allocations will naturally avoid this vdev, even after a full
rotation of the rotor. As a result, pending synchronous writes at a
given point in time will be nicely spread over all vdevs. This contrasts
with the previous algorithm, which is based on the implicit assumption
that blocks are written instantaneously after they're allocated.

metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to
manually increase or decrease fastwrite counters, respectively. They
should be used with caution, as there is no per-BP tracking of fastwrite
information, so leaks and "double-unmarks" are possible. There is,
however, an assert in the vdev teardown code which will fire if the
fastwrite counters are not zero when the pool is exported or the vdev
removed. Note that as stated above, marking is also done implictly by
metaslab_alloc().

ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to
the metaslab when allocating (assuming ZIO does the allocation, which is
only true in the case of dmu_sync). This flag will also trigger an
unmark when zio_done() fires.

A side-effect of the new algorithm is that when a ZIL stops being used,
its last block can stay in the pending state (allocated but not yet
written) for a long time, polluting the fastwrite counters. To avoid
that, I've implemented a somewhat crude but working solution which
unmarks these pending blocks in zil_sync(), thus guaranteeing that
linguering fastwrites will get pruned at each sync event.

The best performance improvements are observed with pools using a large
number of top-level vdevs and heavy synchronous write workflows
(especially indirect writes and concurrent writes from multiple ZILs).
Real-life testing shows a 200% to 300% performance increase with
indirect writes and various commit sizes.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1013
2012-10-17 08:56:41 -07:00
Brian Behlendorf 6283f55ea1 Support custom build directories and move includes
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory.  The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.

For example, this project is designed to work on various different
Linux distributions each of which work slightly differently.  This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.

Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution.  When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.

wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z

------------------------- run concurrently ----------------------
<ubuntu system>  <fedora system>  <debian system>  <rhel6 system>
mkdir ubuntu     mkdir fedora     mkdir debian     mkdir rhel6
cd ubuntu        cd fedora        cd debian        cd rhel6
../configure     ../configure     ../configure     ../configure
make             make             make             make
make check       make check       make check       make check

This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory.  This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.
2010-09-08 12:38:56 -07:00