Use ZFS_MODULE_PARAM for cross-platform tunables in spa_stats.c, and
add update tunables.cfg in tests for the newly supported ones.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10858
Moving spa_stats added the additional burden of supporting
KSTAT_TYPE_IO.
spa_state_addr will always return a valid value regardless of
the value of 'n'. On FreeBSD this will cause an infinite loop
as it relies on the raw ops addr routine to indicate that there
is no more data.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10860
Allow to rename file systems without remounting if it is possible.
It is possible for file systems with 'mountpoint' property set to
'legacy' or 'none' - we don't have to change mount directory for them.
Currently such file systems are unmounted on rename and not even
mounted back.
This introduces layering violation, as we need to update
'f_mntfromname' field in statfs structure related to mountpoint (for
the dataset we are renaming and all its children).
In my opinion it is worth it, as it allow to update FreeBSD in even
cleaner way - in ZFS-only configuration root file system is ZFS file
system with 'mountpoint' property set to 'legacy'. If root dataset is
named system/rootfs, we can snapshot it (system/rootfs@upgrade), clone
it (system/oldrootfs), update FreeBSD and if it doesn't boot we can
boot back from system/oldrootfs and rename it back to system/rootfs
while it is mounted as /. Before it was not possible, because
unmounting / was not possible.
Authored by: Pawel Jakub Dawidek <pjd@FreeBSD.org>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: Matt Macy <mmacy@freebsd.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10839
SECLABEL is undefined on FreeBSD and should be pruned.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Closes#10847
FreeBSD's previous ZFS implemented INGLOBALZONE(thread) as
(!jailed((thread)->td_ucred)) and passed curthread to INGLOBALZONE.
We pass curproc instead of curthread, so we can achieve the same effect
with (!jailed((proc)->p_ucred)). The implementation is trivial enough
to fit on a single line in a define. We don't really need a whole
separate function for something that's already macros all the way down.
Eliminate in_globalzone.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Closes#10851
use (void) to silence analyzers.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes#10857
Initially it was considered simplest to stub out all
of the functions on FreeBSD. Now that FreeBSD supports
KSTAT_TYPE_RAW at least some of the functionality should
be made available.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10842
In zvol_geom_open on first open we need to guarantee
that the namespace lock is held to avoid spurious
failures in zvol_first_open.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10841
A few kstats use KSTAT_TYPE_RAW to provide a string generated on
demand. Implementing these as sysctls was punted until now.
Reviewed by: Toomas Soome <tsoome@me.com>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10836
Commit dcdc12e added compatibility code to treat NR_SLAB_RECLAIMABLE_B
as if it were the same as NR_SLAB_RECLAIMABLE. However, the new value
is in bytes while the old value was in pages which means they are not
interchangeable.
The only place the reclaimable slab size is used is as a component of
the calculation done by arc_free_memory(). This function returns the
amount of memory the ARC considers to be free or reclaimable at little
cost. Rather than switch to a new interface to get this value it has
been removed it from the calculation. It is normally a minor component
compared to the number of inactive or free pages, and removing it
aligns the behavior with the FreeBSD version of arc_free_memory().
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Coleman Kane <ckane@colemankane.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10834
If kernel is compiled with -march=znver1 or -march=znver2 zstd module
compilation will fail due to SSE register return with SSE disabled.
What's interesting, is that -march=skylake also implies -mbmi which
defines __BMI__ but compilation succeeds. It is probably due to
different BMI implementations on AMD and INTEL processors and the
way compiler uses instructions.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Georgy Yakovlev <gyakovlev@gentoo.org>
Closes#10758Closes#10829
Because dnode_sync_free_range() must drop dn_mtx during its processing,
using it as a callback to range_tree_vacate() is not safe. No other
operations (besides destroy) are allowed once range_tree_vacate() has
begun, and dropping dn_mtx would leave a window open for another thread
to observe that invalid (and unsafe) state via dnode_block_freed().
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Patrick Mooney <pmooney@oxide.computer>
Closes#10708Closes#10823
The zfs/sa.c source file accidentally includes sys/dnode.h twice.
Remove the second occurrence.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10816Closes#10819
The root cause of the issue is that we only occasionally do as the
comments in the code suggest and actually ignore the %recv dataset when
it comes to filesystem limit tracking. Specifically, the only time we
ignore it is when initializing the filesystem and snapshot limit values;
when creating a new %recv dataset or deleting one, we always update
the bookkeeping. This causes a problem if you init the fs count on a
filesystem that already has a %recv dataset, since the bookmarking
will be decremented but not incremented. This is resolved in this
patch by simply always tracking the %recv dataset as a child.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#10791
The #pragma ident is a historical relic and not needed any more, this
pragma is actually unknown for common compilers and is only causing
trouble.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes#10810
The neon support code does not build on FreeBSD,
ifdef out references to fix linker issues on arm64.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10809
Since L2ARC buffers are not evicted on memory pressure, too large
amount of headers on system with irrationally large L2ARC can render
it slow or even unusable. This change limits L2ARC writes and
rebuild if unevictable L2ARC-only headers reach dangerous level.
While there, call arc_adapt() on L2ARC rebuild, so that it could
properly grow arc_c, reflecting potentially significant ARC size
increase and avoiding slow growth with hopeless eviction attempts
later when "overflow" is detected.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reported-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#10765
Linux already defines setjmp/longjmp for powerpc, which leads to
duplicate symbols in a statically linked build.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sterlng Jensen <sterlingjensen@users.noreply.github.com>
Closes#10795
Export the dmu_offset_next() symbol for use by Lustre.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10796
The cache of struct svc_export and struct svc_expkey by nfsd and
rpc.mountd for the snapshot holds references to the mount point.
We need to flush them out before unmounting, otherwise umount
would fail with EBUSY.
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Youzhong Yang <yyang@mathworks.com>
Closes#6000Closes#10783
For Linux, when zfs is compiled as an in kernel static variant
and the in kernel zstd library is compiled statically into the kernel
a symbol collision will occur. This wrapper header renames all
of the relevant zstd functions to avoid this problem.
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Closes#10775
In absence of inheriting entry for owner@, group@, or everyone@,
zfs_acl_chmod() is called to set these. This can cause confusion for Samba
admins who do not expect these entries to appear on newly created files and
directories once they have been stripped from from the parent directory.
When aclmode is set to "restricted", chmod is prevented on non-trivial ACLs.
It is not a stretch to assume that in this case the administrator does not want
ZFS to add the missing special entries. Add check for this aclmode, and if an
inherited entry is present skip zfs_acl_chmod().
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrew Walker <awalker@ixsystems.com>
Closes#10748
All other prop values return options separated by ` | `,
dedup values do not, they are separated by `, `. This change
makes the dedup value formatting consistent with other properties.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Clint Armstrong <clint@clintarmstrong.net>
Closes#10761
Many modern devices use physical allocation units that are much
larger than the minimum logical allocation size accessible by
external commands. Two prevalent examples of this are 512e disk
drives (512b logical sector, 4K physical sector) and flash devices
(512b logical sector, 4K or larger allocation block size, and 128k
or larger erase block size). Operations that modify less than the
physical sector size result in a costly read-modify-write or garbage
collection sequence on these devices.
Simply exporting the true physical sector of the device to ZFS would
yield optimal performance, but has two serious drawbacks:
1. Existing pools created with devices that have different logical
and physical block sizes, but were configured to use the logical
block size (e.g. because the OS version used for pool construction
reported the logical block size instead of the physical block
size) will suddenly find that the vdev allocation size has
increased. This can be easily tolerated for active members of
the array, but ZFS would prevent replacement of a vdev with
another identical device because it now appears that the smaller
allocation size required by the pool is not supported by the new
device.
2. The device's physical block size may be too large to be supported
by ZFS. The optimal allocation size for the vdev may be quite
large. For example, a RAID controller may export a vdev that
requires read-modify-write cycles unless accessed using 64k
aligned/sized requests. ZFS currently has an 8k minimum block
size limit.
Reporting both the logical and physical allocation sizes for vdevs
solves these problems. A device may be used so long as the logical
block size is compatible with the configuration. By comparing the
logical and physical block sizes, new configurations can be optimized
and administrators can be notified of any existing pools that are
sub-optimal.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Matthew Macy <mmacy@freebsd.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10619
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10744
Removing other_size from arc_stats breaks top in 11.x jails
running on HEAD.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10745
This PR adds two new compression types, based on ZStandard:
- zstd: A basic ZStandard compression algorithm Available compression.
Levels for zstd are zstd-1 through zstd-19, where the compression
increases with every level, but speed decreases.
- zstd-fast: A faster version of the ZStandard compression algorithm
zstd-fast is basically a "negative" level of zstd. The compression
decreases with every level, but speed increases.
Available compression levels for zstd-fast:
- zstd-fast-1 through zstd-fast-10
- zstd-fast-20 through zstd-fast-100 (in increments of 10)
- zstd-fast-500 and zstd-fast-1000
For more information check the man page.
Implementation details:
Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.
The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers). The upper bits are used to store the compression level.
It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.
All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables. Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).
The userspace tools all use the combined/bit-shifted value.
Additional notes:
zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.
ZSTD is included with all current tests and new tests are added
as-needed.
Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born. This is currently only used by zstd but can be
extended as needed.
Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes#6247Closes#9024Closes#10277Closes#10278
ZStandard is a modern, high performance, general compression algorithm.
It provides similar or better compression levels to GZIP, but with much
better performance. ZStandard provides a large selection of compression
levels to allow a storage administrator to select the preferred
performance/compression trade-off.
This commit imports the unmodified ZStandard single-file library which
will be used by ZFS.
The implementation of this new library is done with future updates of
zstd in mind. For this reason we integrated the code in a way, that does
not require modifications to the library. For more details, see
`module/zstd/README.md`.
The library is excluded from codecov calculation and cppcheck as
unaltered dependencies do not need full codecov or cppcheck.
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
This option is used by FreeBSD boot loader.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Mariusz Zaborski <oshogbo@vexillium.org>
Closes#10738
Commit 85ec5cbae updated abd_update_scatter_stats() such that it
calls arc_space_consume() and arc_space_return() when updating the
scatter stats. This requires that the global aggsum value for the
ARC be initialized. Normally this is not an issue, however during
module unload the l2arc_do_free_on_write() function was called in
l2arc_cleanup() after arc_state_fini() destroyed the aggsum values.
We can resolve this issue by performing l2arc_do_free_on_write()
slightly earlier in arc_fini().
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10739
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10727
In FreeBSD trim has defaulted to on for several
years. In order to minimize POLA violations on
import it's important to maintain this default
when importing vendored openzfs in to FreeBSD
base.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10719
We limit the size of nvlists passed to the kernel so a user cannot make
the kernel do an unreasonably large allocation. On FreeBSD this limit
was 128 kiB, which turns out to be a bit too small when doing some
operations involving a large number of datasets or snapshots, for
example replication.
Make this limit tunable, with a platform-specific auto default.
Linux keeps its limit at KMALLOC_MAX_SIZE. FreeBSD uses 1/4 of the
system limit on user wired memory, which allows it to scale depending
on system configuration.
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Issue #6572Closes#10706
The GRUB restrictions are based around the pool's bootfs property.
Given the current situation where GRUB is not staying current with
OpenZFS pool features, having either a non-ZFS /boot or a separate
pool with limited features are pretty much the only long-term answers
for GRUB support. Only the second case matters in this context. For
the restrictions to be useful, the bootfs property would have to be set
on the boot pool, because that is where we need the restrictions, as
that is the pool that GRUB reads from. The documentation for bootfs
describes it as pointing to the root pool. That's also how it's used in
the initramfs. ZFS does not allow setting bootfs to point to a dataset
in another pool. (If it did, it'd be difficult-to-impossible to enforce
these restrictions cross-pool). Accordingly, bootfs is pretty much
useless for GRUB scenarios moving forward.
Even for users who have only one pool, the existing restrictions for
GRUB are incomplete. They don't prevent you from enabling the
unsupported checksums, for example. For that reason, I have ripped out
all the GRUB restrictions.
A little longer-term, I think extending the proposed features=portable
system to define a features=grub is a much more useful approach. The
user could set that on the boot pool at creation, and things would
Just Work.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8627
The ARC caches data in scatter ABD's, which are collections of pages,
which are typically 4K. Therefore, the space used to cache each block
is rounded up to a multiple of 4K. The ABD subsystem tracks this wasted
memory in the `scatter_chunk_waste` kstat. However, the ARC's `size` is
not aware of the memory used by this round-up, it only accounts for the
size that it requested from the ABD subsystem.
Therefore, the ARC is effectively using more memory than it is aware of,
due to the `scatter_chunk_waste`. This impacts observability, e.g.
`arcstat` will show that the ARC is using less memory than it
effectively is. It also impacts how the ARC responds to memory
pressure. As the amount of `scatter_chunk_waste` changes, it appears to
the ARC as memory pressure, so it needs to resize `arc_c`.
If the sector size (`1<<ashift`) is the same as the page size (or
larger), there won't be any waste. If the (compressed) block size is
relatively large compared to the page size, the amount of
`scatter_chunk_waste` will be small, so the problematic effects are
minimal.
However, if using 512B sectors (`ashift=9`), and the (compressed) block
size is small (e.g. `compression=on` with the default `volblocksize=8k`
or a decreased `recordsize`), the amount of `scatter_chunk_waste` can be
very large. On a production system, with `arc_size` at a constant 50%
of memory, `scatter_chunk_waste` has been been observed to be 10-30% of
memory.
This commit adds `scatter_chunk_waste` to `arc_size`, and adds a new
`waste` field to `arcstat`. As a result, the ARC's memory usage is more
observable, and `arc_c` does not need to be adjusted as frequently.
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10701
`KMC_KMEM` and `KMC_VMEM` are now unused since all SPL-implemented
caches are `KMC_KVMEM`.
KMC_KMEM: Given the default value of `spl_kmem_cache_kmem_limit`, we
don't use kmalloc to back the SPL caches, instead we use kvmalloc
(KMC_KVMEM). The flag, module parameter, /proc entries, and associated
code are removed.
KMC_VMEM: This flag is not used, and kvmalloc() is always preferable to
vmalloc(). The flag, /proc entries, and associated code are removed.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10673
* Cast void * to uintptr_t before casting to boolean_t.
* Avoid clashing definition of __asm when not on Linux to
prevent duplicate __volatile__. This was already done in
some places but not all.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Closes#10723
Up until now zpool.cache has always lived in /boot on FreeBSD.
For the sake of compatibility fallback to /boot if zpool.cache
isn't found in /etc/zfs.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10720
`thread_create` on FreeBSD stringifies the argument passed as the
thread function to create a name for the thread. The thread name for
`l2arc_dev_rebuild_start` ended up with `(void (*)(void *))` in it.
Change the type signature so the function does not need to be cast
when creating the thread. Rename the function to
`l2arc_dev_rebuild_thread` for clarity and consistency, as well.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Amanakis <gamanakis@gmail.com>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10716
Stepping stone toward re-enabling spa_thread on FreeBSD.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10715
When reading compressed blocks from the L2ARC, with
compressed ARC disabled, arc_hdr_size() returns
LSIZE rather than PSIZE, but the actual read is PSIZE.
This causes l2arc_read_done() to compare the checksum
against the wrong size, resulting in checksum failure.
This manifests as an increase in the kstat l2_cksum_bad
and the read being retried from the main pool, making the
L2ARC ineffective.
Add new L2ARC tests with Compressed ARC enabled/disabled
Blocks are handled differently depending on the state of the
zfs_compressed_arc_enabled tunable.
If a block is compressed on-disk, and compressed_arc is enabled:
- the block is read from disk
- It is NOT decompressed
- It is added to the ARC in its compressed form
- l2arc_write_buffers() may write it to the L2ARC (as is)
- l2arc_read_done() compares the checksum to the BP (compressed)
However, if compressed_arc is disabled:
- the block is read from disk
- It is decompressed
- It is added to the ARC (uncompressed)
- l2arc_write_buffers() will use l2arc_apply_transforms() to
recompress the block, before writing it to the L2ARC
- l2arc_read_done() compares the checksum to the BP (compressed)
- l2arc_read_done() will use l2arc_untransform() to uncompress it
This test writes out a test file to a pool consisting of one disk
and one cache device, then randomly reads from it. Since the arc_max
in the tests is low, this will feed the L2ARC, and result in reads
from the L2ARC.
We compare the value of the kstat l2_cksum_bad before and after
to determine if any blocks failed to survive the trip through the
L2ARC.
Sponsored-by: The FreeBSD Foundation
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Closes#10693
Linux and FreeBSD will most likely never see this issue.
On macOS when kext is unloaded, but zed is still connected, zed
will be issued ENODEV. As the cdevsw is released, the kernel
will not have zfsdev_release() called to release minor/onexit/events,
and it "leaks". This ensures it is cleaned up before unload.
Changed the for loop from zsprev, to zsnext style, for less
code duplication.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes#10700
Metaslabs are now (usually) loaded and unloaded infrequently, but when
that is not the case, it is useful to have a log of when and why these
events happened.
This commit enables the zfs_dbgmsg() in metaslab_load(), and adds a
zfs_dbgmsg() in metaslab_unload().
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10683
The arc_adapt() function tunes LRU/MLU balance according to 4 types of
cache hits (which is passed as state agrument): ghost LRU, LRU, MRU,
ghost MRU. If this function is called with wrong cache hit (state),
adaptation will be sub-optimal and performance will suffer.
Some time ago upstream received this commit:
6950 ARC should cache compressed data) in arc_read() do next
sequence (access to ghost buffer)
Before this commit, hit to any ghost list was passed arc_adapt() before
call to arc_access() which revive element in cache and change state from
ghost to real hit.
After this commit, the order of calls was reverted and arc_adapt() is
now called only with «real» hits even if hit was in one of two ghost
lists, which renders ghost lists useless and breaks the ARC algorithm.
FreeBSD fixed this problem locally in Change D19094 / Commit r348772.
This change is an adaptation of the above commit to the current arc
code.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10548Closes#10618
The make_request_fn and associated API was replaced recently in a
Linux 5.9 merge, to replace its functionality with a new submit_bio
member in struct block_device_operations.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Coleman Kane <ckane@colemankane.org>
Closes#10696
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Closes#10694
This was previously moved because nothing else in-tree uses it, but
evidently DilOS uses it out of tree.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Ryan Moeller <freqlabs@freebsd.org>
Closes#10361Closes#10685
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10682
In various other pieces of logic have resulted in situations where
we double-free space in ZFS. This in turn results in a double-add
to the range trees. These issues have been much more difficult to
diagnose than they should have been, because the error handling
around this case is much weaker than around the double remove case.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#10654
Remove dead code to make the implementation easier to understand.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Ahrens <matt@delphix.com>
Closes#10650
Remove dead code to make the implementation easier to understand.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Ahrens <matt@delphix.com>
Closes#10650
Remove dead code to make the implementation easier to understand.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Ahrens <matt@delphix.com>
Closes#10650
Remove dead code to make the implementation easier to understand.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Ahrens <matt@delphix.com>
Closes#10650
Remove dead code to make the implementation easier to understand.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Ahrens <matt@delphix.com>
Closes#10650
Remove dead code to make the implementation easier to understand.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Ahrens <matt@delphix.com>
Closes#10650
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10643
In case the L2ARC rebuild was canceled, do not log to spa history
log as the pool may be in the process of being removed and a panic
may occur:
BUG: kernel NULL pointer dereference, address: 0000000000000018
RIP: 0010:spa_history_log_internal+0xb1/0x120 [zfs]
Call Trace:
l2arc_rebuild+0x464/0x7c0 [zfs]
l2arc_dev_rebuild_start+0x2d/0x130 [zfs]
? l2arc_rebuild+0x7c0/0x7c0 [zfs]
thread_generic_wrapper+0x78/0xb0 [spl]
kthread+0xfb/0x130
? IS_ERR+0x10/0x10 [spl]
? kthread_park+0x90/0x90
ret_from_fork+0x35/0x40
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10659
Must acquire the z_teardown_lock before accessing the zfsvfs_t object.
I can't reproduce this panic on demand, but this looks like the
correct solution.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Authored-by: asomers <asomers@FreeBSD.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10656
ZFS recv should return a useful error message when an invalid index
property value is provided in the send stream properties nvlist
With a compression= property outside of the understood range:
Before:
```
receiving full stream of zof/zstd_send@send2 into testpool/recv@send2
internal error: Invalid argument
Aborted (core dumped)
```
Note: the recv completes successfully, the abort() is likely just to
make it easier to track the unexpected error code.
After:
```
receiving full stream of zof/zstd_send@send2 into testpool/recv@send2
cannot receive compression property on testpool/recv: invalid property
value received 28.9M stream in 1 seconds (28.9M/sec)
```
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Closes#10631
A collection of header changes to enable FreeBSD to build
with vendored OpenZFS.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10635
Change some comments copied from the Linux code to describe
the appropriate methods on FreeBSD.
Convert some tunables to ZFS_MODULE_PARAM so they get created
on FreeBSD.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10647
The ARC shrinker callback `arc_shrinker_count/_scan()` is invoked by the
kernel's shrinker mechanism when the system is running low on free
pages. This happens via 2 code paths:
1. "direct reclaim": The system is attempting to allocate a page, but we
are low on memory. The ARC shrinker callback is invoked from the
page-allocation code path.
2. "indirect reclaim": kswapd notices that there aren't many free pages,
so it invokes the ARC shrinker callback.
In both cases, the kernel's shrinker code requests that the ARC shrinker
callback release some of its cache, and then it measures how many pages
were released. However, it's measurement of released pages does not
include pages that are freed via `__free_pages()`, which is how the ARC
releases memory (via `abd_free_chunks()`). Rather, the kernel shrinker
code is looking for pages to be placed on the lists of reclaimable pages
(which is separate from actually-free pages).
Because the kernel shrinker code doesn't detect that the ARC has
released pages, it may call the ARC shrinker callback many times,
resulting in the ARC "collapsing" down to `arc_c_min`. This has several
negative impacts:
1. ZFS doesn't use RAM to cache data effectively.
2. In the direct reclaim case, a single page allocation may wait a long
time (e.g. more than a minute) while we evict the entire ARC.
3. Even with the improvements made in 67c0f0dedc ("ARC shrinking blocks
reads/writes"), occasionally `arc_size` may stay above `arc_c` for the
entire time of the ARC collapse, thus blocking ZFS read/write operations
in `arc_get_data_impl()`.
To address these issues, this commit limits the ways that the ARC
shrinker callback can be used by the kernel shrinker code, and mitigates
the impact of arc_is_overflowing() on ZFS read/write operations.
With this commit:
1. We limit the amount of data that can be reclaimed from the ARC via
the "direct reclaim" shrinker. This limits the amount of time it takes
to allocate a single page.
2. We do not allow the ARC to shrink via kswapd (indirect reclaim).
Instead we rely on `arc_evict_zthr` to monitor free memory and reduce
the ARC target size to keep sufficient free memory in the system. Note
that we can't simply rely on limiting the amount that we reclaim at once
(as for the direct reclaim case), because kswapd's "boosted" logic can
invoke the callback an unlimited number of times (see
`balance_pgdat()`).
3. When `arc_is_overflowing()` and we want to allocate memory,
`arc_get_data_impl()` will wait only for a multiple of the requested
amount of data to be evicted, rather than waiting for the ARC to no
longer be overflowing. This allows ZFS reads/writes to make progress
even while the ARC is overflowing, while also ensuring that the eviction
thread makes progress towards reducing the total amount of memory used
by the ARC.
4. The amount of memory that the ARC always tries to keep free for the
rest of the system, `arc_sys_free` is increased.
5. Now that the shrinker callback is able to provide feedback to the
kernel's shrinker code about our progress, we can safely enable
the kswapd hook. This will allow the arc to receive notifications
when memory pressure is first detected by the kernel. We also
re-enable the appropriate kstats to track these callbacks.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10600
FreeBSD uses more stack space in debug configurations and can overflow
the stack while formatting the error message when the call depth limit
of 20 frames is reached. This is readily reproduced by running the
gsub recursion test with increased kstack size. I hit the panic with
16 pages per kstack, and noticed it go away when bumped to 17.
Reserve an additional 64 bytes on the stack when building for FreeBSD.
This is enough to avoid the panic with a deep stack while not wasting
too much space when the default stack size is used.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10634
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Closes#10636
When a clone is promoted, its livelist is no longer accurate, so it is
discarded. If the clone's origin is also a clone (i.e. we are promoting
a clone of a clone), then the origin's livelist is also no longer
accurate, so it should be discarded, but the code doesn't actually do
that.
Consider a pool with:
* Filesystem A
* Clone B, a clone of A
* Clone C, a clone of B
If we promote C, it discards C's livelist. It should discard B's
livelist, but that is not happening. The impact is that when B is
destroyed, we use the livelist to find the blocks to free, but the
livelist is no longer correct so we end up freeing blocks that are still
in use by C. The incorrectly-freed blocks can be reallocated causing
checksum errors. And when C is destroyed it can double-free the
incorrectly-freed blocks.
The problem is that we remove the livelist of `origin_ds->ds_dir`, but
the origin snapshot has already been moved to the promoted dsl_dir. So
this is actually trying to remove the livelist of the promoted dsl_dir,
which was already removed. As explained in a comment in the beginning
of `dsl_dataset_promote_sync()`, we need to use the saved `odd` for the
origin's dsl_dir.
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10652
In `vdev_load()`, we look up several entries in the `vdev_top_zap`
object. In most cases, if we encounter an i/o error, it will be
returned to the caller. However, when handling
`VDEV_TOP_ZAP_ALLOCATION_BIAS`, if we get an i/o error, we may continue
on, which in theory could cause us to not realize that a vdev should be
used only for `special` allocations.
In practice, if we encountered an i/o error while looking for
`VDEV_TOP_ZAP_ALLOCATION_BIAS` in the `vdev_top_zap`, we'd also get an
i/o error while looking for other entries in the same object, and thus
the zpool open/import would fail. Therefore the impact of this problem
is negligible.
This commit adds error handling for i/o errors while accessing the
`vdev_top_zap`, so that we aren't relying on unrelated code to fail for
us.
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10637
Renamed to avoid conflicting with refcount.h when a different
implementation is already provided by the platform.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10620
When debugging issues or generally analyzing the runtime of
a system it would be nice to be able to tell the different
ZTHRs running by name rather than having to analyze their
stack.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#10630
FreeBSD defines _BIG_ENDIAN BIG_ENDIAN _LITTLE_ENDIAN
LITTLE_ENDIAN on every architecture. Trying to do
cross builds whilst hiding this from ZFS has proven
extremely cumbersome.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10621
The `zfs program` subcommand invokes a LUA interpreter to run ZFS
"channel programs". This interpreter runs in a constrained environment,
with defined memory limits. The LUA stack (used for LUA functions that
call each other) is allocated in the kernel's heap, and is limited by
the `-m MEMORY-LIMIT` flag and the `zfs_lua_max_memlimit` module
parameter. The C stack is used by certain LUA features that are
implemented in C. The C stack is limited by `LUAI_MAXCCALLS=20`, which
limits call depth.
Some LUA C calls use more stack space than others, and `gsub()` uses an
unusually large amount. With a programming trick, it can be invoked
recursively using the C stack (rather than the LUA stack). This
overflows the 16KB Linux kernel stack after about 11 iterations, less
than the limit of 20.
One solution would be to decrease `LUAI_MAXCCALLS`. This could be made
to work, but it has a few drawbacks:
1. The existing test suite does not pass with `LUAI_MAXCCALLS=10`.
2. There may be other LUA functions that use a lot of stack space, and
the stack space may change depending on compiler version and options.
This commit addresses the problem by adding a new limit on the amount of
free space (in bytes) remaining on the C stack while running the LUA
interpreter: `LUAI_MINCSTACK=4096`. If there is less than this amount
of stack space remaining, a LUA runtime error is generated.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10611Closes#10613
This is a step toward being able to vendor the OpenZFS code in FreeBSD.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10625
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10623
i386 has some additional memory reservation logic that limits the size
of the reported available memory. This was accidentally being used on
all arches due to a missing header.
Include machine/vmparam.h in freebsd/zfs/arc_os.c to pull in the
missing UMA_MD_SMALL_ALLOC definition.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10616
This is only used for the kstat, but something other than 0 is nice.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10626
By design a gang ABD can not have another gang ABD as a child. This is
to make sure the logical offset in a gang ABD is consistent with the
individual ABDS it contains as children. If a gang ABD is added as a
child of a gang ABD we will add the individual children of the gang ABD
to the parent gang ABD. This allows for a consistent view of offsets
within the parent gang ABD.
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes#10430
Set the initial max sizes to ULONG_MAX to allow the caches to grow
with the ARC.
Recalculate the metadata cache size on demand so it can adapt, too.
Update descriptions in zfs-module-parameters(5).
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10563Closes#10610
By default, `spl_kmem_cache_expire` is `KMC_EXPIRE_MEM`, meaning that
objects will be removed from kmem cache magazines by
`spl_kmem_cache_reap_now()`.
There is also a module parameter to change this to `KMC_EXPIRE_AGE`,
which establishes a maximum lifetime for objects to stay in the
magazine. This setting has rarely, if ever, been used, and is not
regularly tested.
This commit removes the code for `KMC_EXPIRE_AGE`, and associated module
parameters.
Additionally, the unused module parameter
`spl_kmem_cache_obj_per_slab_min` is removed.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10608
Drop unnecessary redefinition's of several arcstat values.
Put missing extern declaration of arc_no_grow_shift in arc_impl.h.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10609
The process of evicting data from the ARC is referred to as
`arc_adjust`.
This commit changes the term to `arc_evict`, which is more specific.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10592
These tunables were renamed from vfs.zfs.arc_min and
vfs.zfs.arc_max to vfs.zfs.arc.min and vfs.zfs.arc.max.
Add legacy compat tunables for the old names.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10579
The SPL kmem_cache implementation provides a mechanism, `skc_reclaim`,
whereby individual caches can register a callback to be invoked when
there is memory pressure. This mechanism is used in only one place: the
ARC registers the `hdr_recl()` reclaim function. This function wakes up
the `arc_reap_zthr`, whose job is to call `kmem_cache_reap()` and
`arc_reduce_target_size()`.
The `skc_reclaim` callbacks are invoked only by shrinker callbacks and
`arc_reap_zthr`, and only callback only wakes up `arc_reap_zthr`. When
called from `arc_reap_zthr`, waking `arc_reap_zthr` is a no-op. When
called from shrinker callbacks, we are already aware of memory pressure
and responding to it. Therefore there is little benefit to ever calling
the `hdr_recl()` `skc_reclaim` callback.
The `arc_reap_zthr` also wakes once a second, and if memory is low when
allocating an ARC buffer. Therefore, additionally waking it from the
shrinker calbacks has little benefit.
The shrinker callbacks can be invoked very frequently, e.g. 10,000 times
per second. Additionally, for invocation of the shrinker callback,
skc_reclaim is invoked many times. Therefore, this mechanism consumes
significant amounts of CPU time.
The kmem_cache shrinker calls `spl_kmem_cache_reap_now()`, which,
in addition to invoking `skc_reclaim()`, does two things to attempt to
free pages for use by the system:
1. Return free objects from the magazine layer to the slab layer
2. Return entirely-free slabs to the page layer (i.e. free pages)
These actions apply only to caches implemented by the SPL, not those
that use the underlying kernel SLAB/SLUB caches. The SPL caches are
used for objects >=32KB, which are primarily linear ABD's cached in the
DBUF cache.
These actions (freeing objects from the magazine layer and returning
entirely-free slabs) are also taken whenever a `kmem_cache_free()` call
finds a full magazine. So there would typically be zero entirely-free
slabs, and the number of objects in magazines is limited (typically no
more than 64 objects per magazine, and there's one magazine per CPU).
Therefore the benefit of `spl_kmem_cache_reap_now()`, while nonzero, is
modest.
We also call `spl_kmem_cache_reap_now()` from the `arc_reap_zthr`, when
memory pressure is detected. Therefore, calling
`spl_kmem_cache_reap_now()` from the kmem_cache shrinker is not needed.
This commit removes the `skc_reclaim` mechanism, its only callback
`hdr_recl()`, and the kmem_cache shrinker callback.
Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10576
Stock kernels older than 4.10 do not export the has_capability()
function which is required by commit e59a377. To avoid breaking
the build on older kernels revert to the safe legacy behavior and
return EACCES when privileges cannot be checked.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10565Closes#10573
`arc_free_memory()` returns the amount of memory that the ARC considers
to be free. This includes pages that are not actually free, but can be
evicted with essentially zero cost (without doing any i/o), for example
the page cache. The ARC can "squeeze out" any pages included in this
calculation, leaving only `arc_sys_free` (1/64th of RAM) for these
free/evictable pages.
Included in the count of free/evictable pages is
`nr_inactive_anon_pages()`, which is described as "Anonymous memory that
has not been used recently and can be swapped out". These pages would
have to be written out to disk (swap) in order to evict them, and they
are not included in `/proc/meminfo`'s `MemAvailable`.
Therefore it is not appropriate for `nr_inactive_anon_pages()` to be
included in the free/evictable memory returned by `arc_free_memory()`,
because the ARC shouldn't (intentionally) make the system swap.
This commit removes `nr_inactive_anon_pages()` from the memory returned
by `arc_free_memory()`. This is a step towards enabling the ARC to
manage free memory by monitoring it and reducing the ARC size as we
notice that there is insufficient free memory (in the `arc_reap_zthr`),
rather than the current method of relying on the `arc_shrinker`
callback.
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10575
Update the zfs commands such that they're backwards compatible with
the version of ZFS is the base FreeBSD.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10542
Move/add include of <linux/percpu_compat.h> to satisfy missing
requirements.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain@dolbeau.org>
Closes#10568Closes#10569
Livelists and spacemaps are data structures that are logs of allocations
and frees. Livelists entries are block pointers (blkptr_t). Spacemaps
entries are ranges of numbers, most often used as to track
allocated/freed regions of metaslabs/vdevs.
These data structures can become self-inconsistent, for example if a
block or range can be "double allocated" (two allocation records without
an intervening free) or "double freed" (two free records without an
intervening allocation).
ZDB (as well as zfs running in the kernel) can detect these
inconsistencies when loading livelists and metaslab. However, it
generally halts processing when the error is detected.
When analyzing an on-disk problem, we often want to know the entire set
of inconsistencies, which is not possible with the current behavior.
This commit adds a new flag, `zdb -y`, which analyzes the livelist and
metaslab data structures and displays all of their inconsistencies.
Note that this is different from the leak detection performed by
`zdb -b`, which checks for inconsistencies between the spacemaps and the
tree of block pointers, but assumes the spacemaps are self-consistent.
The specific checks added are:
Verify livelists by iterating through each sublivelists and:
- report leftover FREEs
- report double ALLOCs and double FREEs
- record leftover ALLOCs together with their TXG [see Cross Check]
Verify spacemaps by iterating over each metaslab and:
- iterate over spacemap and then the metaslab's entries in the
spacemap log, then report any double FREEs and double ALLOCs
Verify that livelists are consistenet with spacemaps. The space
referenced by livelists (after using the FREE's to cancel out
corresponding ALLOCs) should be allocated, according to the spacemaps.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-66031
Closes#10515
Our QE team during automated API testing hit deadlock in ZFS, caused
by lock order reversal. From one side dsl_sync_task_sync() locks
dp_config_rwlock as writer and calls spa_sync_props(), which waits
for spa_props_lock. From another spa_prop_get() locks spa_props_lock
and then calls dsl_pool_config_enter(), trying to lock dp_config_rwlock
as reader.
This patch makes spa_prop_get() lock dp_config_rwlock before
spa_props_lock, making the order consistent.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#10553
On linux the list debug code has been setting off a failure when
checking that the node->next->prev value is pointing back at the node.
At times this check evaluates to 0xdead. When removing a child from a
gang ABD we must acquire the child's abd_mtx to make sure that the
same ABD is not being added to another gang ABD while it is being
removed from a gang ABD. This fixes a race condition when checking
if an ABDs link is already active and part of another gang ABD before
adding it to a gang.
Added additional debug code for the gang ABD in abd_verify() to make
sure each child ABD has active links. Also check to make sure another
gang ABD is not added to a gang ABD.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes#10511
The filesystem_limit and snapshot_limit properties limit the number of
filesystems or snapshots that can be created below this dataset.
According to the manpage, "The limit is not enforced if the user is
allowed to change the limit." Two types of users are allowed to change
the limit:
1. Those that have been delegated the `filesystem_limit` or
`snapshot_limit` permission, e.g. with
`zfs allow USER filesystem_limit DATASET`. This works properly.
2. A user with elevated system privileges (e.g. root). This does not
work - the root user will incorrectly get an error when trying to create
a snapshot/filesystem, if it exceeds the `_limit` property.
The problem is that `priv_policy_ns()` does not work if the `cred_t` is
not that of the current process. This happens when
`dsl_enforce_ds_ss_limits()` is called in syncing context (as part of a
sync task's check func) to determine the permissions of the
corresponding user process.
This commit fixes the issue by passing the `task_struct` (typedef'ed as
a `proc_t`) to syncing context, and then using `has_capability()` to
determine if that process is privileged. Note that we still need to
pass the `cred_t` to syncing context so that we can check if the user
was delegated this permission with `zfs allow`.
This problem only impacts Linux. Wrappers are added to FreeBSD but it
continues to use `priv_check_cred()`, which works on arbitrary `cred_t`.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8226Closes#10545
Previously a tqent could be recycled prematurely, update the
code to use a hash table for lookups to resolve this.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10529
In case l2arc_write_done() handles a zio that was not successful check
that the list of log block pointers is not empty when restoring them
in the device header. Otherwise zero them out. In any case perform the
actual write updating the device header after the zio of
l2arc_write_buffers() completes as l2arc_write_done() may have touched
the memory holding the log block pointers in the device header.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10540Closes#10543
FreeBSD has a per-page "busy" lock which is held when handling a page
fault on a mapped file. This lock is also acquired when copying data
from the DMU to the page cache in zfs_write(). File range locks are
also acquired in both of these paths, in the opposite order with respect
to the busy lock.
In the getpages VOP, the range lock is only used to determine the extent
of optional read-ahead and read-behind operations. To resolve the lock
order reversal, modify the getpages VOP to avoid blocking on the range
lock.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Mark Johnston <markj@FreeBSD.org>
Closes#10519
zfs_rangelock_tryenter() bails immediately instead of waiting for the
lock to become available. This will be used to resolve a deadlock in
the FreeBSD page-in code. No functional change intended.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Mark Johnston <markj@FreeBSD.org>
Closes#10519
`zfs_freebsd_need_inactive` appears to been based on an unfinished
version of https://reviews.freebsd.org/D22130 which had a bug where
files written via mmap wouldn't actually persist.
Update the function to match the final version committed to FreeBSD.
Authored-by: Mateusz Guzik <mjg@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10527Closes#10528