Original Log Size Limit implementation blocked all writes in case of
limit reached until the TXG is committed and the log is freed. It
caused huge delays and following speed spikes in application writes.
This implementation instead smoothly throttles writes, using exactly
the same mechanism as used for dirty data.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: jxdking <lostking2008@hotmail.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Issue #12284Closes#13476
I see a few issues in the issue tracker that might be aided by being
able to turn this on. We have no module parameter for it, so I would
like to add one.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#13874
When iterating through children physical ashifts for vdev, prefer
ones above the maximum logical ashift, that we can actually use,
but within the administrator defined maximum.
When selecting top-level vdev ashift, do not set it to the defined
maximum in case physical ashift is even higher, but just ignore one.
Using the maximum does not prevent misaligned writes, but reduces
space efficiency. Since ZFS tries to write data sequentially and
aggregates the writes, in many cases large misanigned writes may be
not as bad as the space penalty otherwise.
Allow internal physical ashifts for vdevs higher than SHIFT_MAX.
May be one day allocator or aggregation could benefit from that.
Reduce zfs_vdev_max_auto_ashift default from 16 (64KB) to 14 (16KB),
so that ZFS may still use bigger ashifts up to SHIFT_MAX (64KB),
but only if it really has to or explicitly told to, but not as an
"optimization".
There are some read-intensive NVMe SSDs that report Preferred Write
Alignment of 64KB, and attempt to build RAIDZ2 of those leads to a
space inefficiency that can't be justified. Instead these changes
make ZFS fall back to logical ashift of 12 (4KB) by default and
only warn user that it may be suboptimal for performance.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#13798
zfs_wrlog_data_max
The upper limit of TX_WRITE log data. Once it is reached,
write operation is blocked, until log data is cleared out
after txg sync. It only counts TX_WRITE log with WR_COPIED
or WR_NEED_COPY.
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: jxdking <lostking2008@hotmail.com>
Closes#12284
Special allocation class or dedup vdevs may have roughly the same
performance as L2ARC vdevs. Introduce a new tunable to exclude those
buffers from being cacheable on L2ARC.
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#11761Closes#12285
- Make prefetch distance adaptive: up to 4MB prefetch doubles for
every, hit same as before, but after that it grows by 1/8 every time
the prefetch read does not complete in time to satisfy the demand.
My tests show that 4MB is sufficient for wide NVMe pool to saturate
single reader thread at 2.5GB/s, while new 64MB maximum allows the
same thread to reach 1.5GB/s on wide HDD pool. Further distance
increase may increase speed even more, but less dramatic and with
higher latency.
- Allow early reuse of inactive prefetch streams: streams that never
saw hits can be reused immediately if there is a demand, while others
can be reused after 1s of inactivity, starting with the oldest. After
2s of inactivity streams are deleted to free resources same as before.
This allows by several times increase strided read performance on HDD
pool in presence of simultaneous random reads, previously filling the
zfetch_max_streams limit for seconds and so blocking most of prefetch.
- Always issue intermediate indirect block reads with SYNC priority.
Each of those reads if delayed for longer may delay up to 1024 other
block prefetches, that may be not good for wide pools.
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#13452
When calculating mg_aliquot alike to #12046 use number of unique data
disks in the vdev, not the total number of children vdev. Increase
default value of the tunable from 512KB to 1MB to compensate.
Before this change each disk in striped pool was getting 512KB of
sequential data, in 2-wide mirror -- 1MB, in 3-wide RAIDZ1 -- 768KB.
After this change in all the cases each disk should get 1MB.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#13388
Previous flushing algorithm limited only total number of log blocks to
the minimum of 256K and 4x number of metaslabs in the pool. As result,
system with 1500 disks with 1000 metaslabs each, touching several new
metaslabs each TXG could grow spacemap log to huge size without much
benefits. We've observed one of such systems importing pool for about
45 minutes.
This patch improves the situation from five sides:
- By limiting maximum period for each metaslab to be flushed to 1000
TXGs, that effectively limits maximum number of per-TXG spacemap logs
to load to the same number.
- By making flushing more smooth via accounting number of metaslabs
that were touched after the last flush and actually need another flush,
not just ms_unflushed_txg bump.
- By applying zfs_unflushed_log_block_pct to the number of metaslabs
that were touched after the last flush, not all metaslabs in the pool.
- By aggressively prefetching per-TXG spacemap logs up to 16 TXGs in
advance, making log spacemap load process for wide HDD pool CPU-bound,
accelerating it by many times.
- By reducing zfs_unflushed_log_block_max from 256K to 128K, reducing
single-threaded by nature log processing time from ~10 to ~5 minutes.
As further optimization we could skip bumping ms_unflushed_txg for
metaslabs not touched since the last flush, but that would be an
incompatible change, requiring new pool feature.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#12789
Strict hole reporting was previously disabled by default as a
performance optimization. However, this has lead to confusion
over the expected behavior and a variety of workarounds being
adopted by consumers of ZFS. Change the default behavior to
always report holes and force the TXG sync.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Upstream-commit: 05b3eb6d23
Ref: #13261Closes#12746
On FreeBSD vnode reclamation is single-threaded, protected by single
global lock. Linux seems to be able to use a thread per mount point,
but at this time it creates more harm than good.
Reduce number of threads to 1, adding tunable in case somebody wants
to try more.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#12896
Issue #9966
When using lseek(2) to report data/holes memory mapped regions of
the file were ignored. This could result in incorrect results.
To handle this zfs_holey_common() was updated to asynchronously
writeback any dirty mmap(2) regions prior to reporting holes.
Additionally, while not strictly required, the dn_struct_rwlock is
now held over the dirty check to prevent the dnode structure from
changing. This ensures that a clean dnode can't be dirtied before
the data/hole is located. The range lock is now also taken to
ensure the call cannot race with zfs_write().
Furthermore, the code was refactored to provide a dnode_is_dirty()
helper function which checks the dnode for any dirty records to
determine its dirtiness.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #11900Closes#12724
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Signed-off-by: Gordon Bergling <gbergling@googlemail.com>
Closes#12464
arc_evict_hdr() returns number of evicted bytes in scope of specific
state. For ghost states it does not mean the amount of really freed
memory, but the logical buffer size. It is correct for the eviction
process, but not for waking up threads waiting for ARC size reduction,
as added in "Revise ARC shrinker algorithm" commit, causing premature
wakeups while ARC is still overflowed, allowing even bigger overflow,
plus processing overhead when next allocation will also get blocked,
probably also for too short time.
To fix that make arc_evict_hdr() also return the amount of really
freed memory, which for the ghost states is only the header, and use
it to update arc_evict_count instead. Originally I was thinking to
not return it at all, since arc_get_data_impl() does not account for
the headers, but decided that some slow allocation progress is better
than long waits, reaching on my tests up to 100ms.
To reduce negative latency effects of long time periods when reclaim
thread can free little real memory, start reclamation process earlier,
before we actually reached the overflow threshold, when we have to
throttle new allocations. We can also do it without taking global
arc_evict_lock, reducing the contention.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#12279