udev support from sunddi implementation because it uses GPL-only
symbols. This support is optionally available for SPL consumers
if they define HAVE_GPL_ONLY_SYMBOLS and license their module as
GPL using the MODULE_LICENSE("GPL") macro.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@179 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
created. Instead of asserting we simply abort the test, wait for
any tasks we created to finish, and return -ESRCH back to the user
space component.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@175 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
we might end up with a non-NULL terminated buffer if the
test name or desc is too long. Only copy N-1 bytes.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@173 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
a known max length. Additionally the function return value is cast
to void to make it explicit that the value is not needed.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@172 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
This fixes an oops when unloading the modules, in the case where memory
tracking was enabled and there were memory leaks. The comment in the
code explains what was the problem.
* spl-10-fix-assert-verify-ndebug.patch
This fixes ASSERT*() and VERIFY*() macros in non-debug builds. VERIFY*()
macros are supposed to check the condition and panic even in production
builds, and ASSERT*() macros don't need to evaluate the arguments.
Also some 32-bit fixes.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@165 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
already supprt atomic64_t types.
* spl-07-kmem-cleanup.patch
This moves all the debugging code from sys/kmem.h to spl-kmem.c, because
the huge macros were hard to debug and were bloating functions that
allocated memory. I also fixed some other minor problems, including
32-bit fixes and a reported memory leak which was just due to using the
wrong free function.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@163 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
spl-05-div64.patch
This is a much less intrusive fix for undefined 64-bit division symbols
when compiling the DMU in 32-bit kernels.
* spl-06-atomic64.patch
This is a workaround for 32-bit kernels that don't have atomic64_t.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@162 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
* spl-04-fix-taskq-spinlock-lockup.patch
Fixes a deadlock in the BIO completion handler, due to the taskq code
prematurely re-enabling interrupts when another spinlock had disabled
them in the IDE IRQ handler.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@161 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
from Ricardo which removes a dependency on the GPL-only symbol
set_cpus_allowed(). Using this symbol is simpler but in the name
of portability we are adopting a spinlock based solution here
to remove this dependency.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@160 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
from Ricardo which removes a dependency on the GPL-only symbol
needed for a panic time notifier. This funcationality was never
used and this improves our portability.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@159 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
were added to cover the 3 possible APIs from 2.6.9 to
2.6.26. We attempt to use the newest interfaces and if
not available fallback to the oldest. This a rework of
some changes proposed by Ricardo for RHEL4.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@150 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
at a time as I audit it. This chunk finishes moving the SPL entirely
off the linux slab on to the SPL implementation. It differs slightly
from the proposed version in that the spl continues to export to
all the Solaris types and functions. These do conflict with the
Linux slab so a module usings these interfaces must not include the
SPL slab if they also intend to use the linux slab. Or they must
explcitly #undef the macros which remap the functioin to their
spl_* equivilants.
A nice side of effect of dropping the entire linux slab is we
don't need to autoconf checks anymore. They kept messing with
the slab API endlessly!
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@148 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
based of the spl_kmem_obj_t tacked on the end of each object.
This actually isn't so back because we are now allocing large
chunks for the slab and partitioning it ourselves. So there's
not a ton of wasted space. We may suffer a performance hit
however due to alignment issues.
- Remove remaining depenancies on the linux slab implementation.
We're standing on our own now for better or worse.
- Rework slabs to be either kmem or vmem based. If neither
KMC_VMEM of KMC_KMEM are specified we make a decent guess
about what will work best for their based on the object
size. Additionally we provide a kmem_virt() function caller
can use to see if they have a virtual or physical address.
- Minor fixups in the test suite.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@141 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
cycle count which was costing me overhead. It was hurting
performance pretty badly for heavily used caches. I'm also
thinking the hash may be hurting me as well and it might
be worth sticking a pointer in to a little space after the
alloced object.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@140 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
based by vmalloc()'ed memory. I now alloc a slab which is
roughly 32*spl_obj_size and in this block of memory I place
the slab descriptor, slab object descriptors, and objects
themselves. This greatly reduces vmalloc lock contention.
Still some minor cleanup remains and fine tuning but
it's working pretty well.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@139 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
well for the expected workloads. Improvement in this commit include:
- Added DEBUG_KMEM_TRACKING #define which can optionally be set
when DEBUG_KMEM is defined to do per allocation tracking. This
allows us to get all the lightweight kmem debugging enabled by
default which is pretty light weight, and only when looking
for a memory leak we can briefly enable the per alloc tracking.
- Added set_normalized_timespec() in to SPL to simply using
the timespec() primatives from within a module.
- Added per-spinlock cycle counters to the slab in an attempt
to run down a lock contention issue. The contended lock
was in vmalloc() but I'm going to leave the cycle counters
in place for a little while until I'm convinced there arn't
other locking improvement possible in the slab.
- Added a proc interface to the slab to export per slab
cache statistics to /proc/spl/kmem/slab for analysis.
- Reworked spl_slab_alloc() function to allocate from kmem for
small allocation and vmem for large allocations. This improved
things considerably but futher work is needed.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@138 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
when repopulating it. Plus I fixed a few more suble races in
that part of the code which were catching me. Finally I fixed
a small race in kmem_test8.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@137 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
factor of 10x improvement on SMP system due to reduced lock contention.
This may put me in the ballpark of what is needed. We can still further
improve things on NUMA systems by creating an additional L3 cache per
memory node instead of the current global pool. With luck this won't
be needed. I should also take another look at the locking now that
everything is working. There's a good chance I can tighten it up a
little bit and improve things a little more.
kmem_lock: time (sec) slabs objs hash
kmem_lock: tot/max/calc tot/max/calc size/depth
kmem_lock: 0.000999926 6/6/1 192/192/32 32768/0
kmem_lock: 0.000999926 4/4/2 128/128/64 32768/0
kmem_lock: 0.000999926 4/4/4 128/128/128 32768/0
kmem_lock: 0.000999926 4/4/8 128/128/256 32768/0
kmem_lock: 0.000999926 4/4/16 128/128/512 32768/0
kmem_lock: 0.000999926 4/4/32 128/128/1024 32768/0
kmem_lock: 0.000999926 4/4/64 128/128/2048 32768/0
kmem_lock: 0.000999926 8/8/128 256/256/4096 32768/0
kmem_lock: 0.003999704 24/23/256 768/736/8192 32768/1
kmem_lock: 0.012999038 44/41/512 1408/1312/16384 32768/1
kmem_lock: 0.051996153 96/93/1024 3072/2976/32768 32768/2
kmem_lock: 0.181986536 187/184/2048 5984/5888/65536 32768/3
kmem_lock: 0.655951469 342/339/4096 10944/10848/131072 32768/4
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@136 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
to be overly clever and the context switch when the semaphore was busy
was destroying performance. Converting to a simple spin lock bough me
a factor of 50 or so. That said it's still not good enough. Tests
show bad performance and we are still CPU bound. The logical fix is
I need to implement per-cpu hot caches to minimize the SMP contention.
Linux and Solaris both have this, I was hoping to do without but it
looks like that's not to be.
kmem_lock: time (sec) slabs objs hash
kmem_lock: tot/max/calc tot/max/calc size/depth
kmem_lock: 0.022000000 7/6/64 224/177/2048 32768/1
kmem_lock: 0.039000000 13/13/128 416/404/4096 32768/1
kmem_lock: 0.079000000 23/21/256 736/672/8192 32768/1
kmem_lock: 0.158000000 48/47/512 1536/1504/16384 32768/1
kmem_lock: 0.345000000 105/105/1024 3360/3358/32768 32768/2
kmem_lock: 0.760000000 202/200/2048 6464/6400/65536 32768/3
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@135 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
allocator. I have serious contention issues here and I needed
a way to easily measure how much the following batch of changes
will improve things. Currently things are quite bad when the
allocator is highly contended, and interestingly it seems to
get worse in a non-linear fashion... I'm not sure why yet.
I'll figure it out tomorrow.
kmem:kmem_lock Pass
kmem_lock: time (sec) slabs objs
kmem_lock: tot/max/calc tot/max/calc
kmem_lock: 0.061000000 75/60/64 2400/1894/2048
kmem_lock: 0.157000000 134/125/128 4288/3974/4096
kmem_lock: 0.471000000 263/249/256 8416/7962/8192
kmem_lock: 2.526000000 518/499/512 16576/15957/16384
kmem_lock: 14.393000000 990/978/1024 31680/31270/32768
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@134 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
longer be based on the linux slab but to be its own complete
implementation. The new slab behaves much more like the
Solaris slab than the Linux slab.
git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@132 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c