An incomplete guid_to_ds_map would cause restore_write_byref() to fail
while receiving a de-duplicated backup stream.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Garrett D`Amore <garrett@nexenta.com>
Reviewed by: Gordon Ross <gwr@nexenta.com>
Approved by: Gordon Ross <gwr@nexenta.com>
References to Illumos issue and patch:
- https://www.illumos.org/issues/755
- https://github.com/illumos/illumos-gate/commit/ec5cf9d53a
Signed-off-by: Gunnar Beutner <gunnar@beutner.name>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#372
Export all symbols already marked extern in the zfs_vfsops.h
header. Several non-static symbols have also been added to
the header and exportewd. This allows external modules to
more easily create and manipulate properly created ZFS
filesystem type datasets.
Rename zfsvfs_teardown() to zfs_sb_teardown and export it.
This is done simply for consistency with the rest of the code
base. All other zfsvfs_* functions have already been renamed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Export all the symbols for the system attribute (SA) API. This
allows external module to cleanly manipulate the SAs associated
with a dnode. Documention for the SA API can be found in the
module/zfs/sa.c source.
This change also removes the zfs_sa_uprade_pre, and
zfs_sa_uprade_post prototypes. The functions themselves were
dropped some time ago.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Due to the confusion in Linux statfs between f_frsize and f_bsize
the blocks counts were changed to be in units of z_max_blksize
instead of SPA_MINBLOCKSIZE as it is on other platforms.
However, the free files calculation in zfs_statvfs() is limited by
the free blocks count, since each dnode consumes one block/sector.
This provided a reasonable estimate of free inodes, but on Linux
this meant that the free inodes count was underestimated by a large
amount, since 256 512-byte dnodes can fit into a 128kB block, and
more if the max blocksize is increased to 1MB or larger.
Also, the use of SPA_MINBLOCKSIZE is semantically incorrect since
DNODE_SIZE may change to a value other than SPA_MINBLOCKSIZE and
may even change per dataset, and devices with large sectors setting
ashift will also use a larger blocksize.
Correct the f_ffree calculation to use (availbytes >> DNODE_SHIFT)
to more accurately compute the maximum number of dnodes that can
be created.
Signed-off-by: Andreas Dilger <adilger@whamcloud.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#413Closes#400
Export all the symbols for the ZAP API. This allows external modules
to cleanly interface with ZAP type objects. Previously only a subset
of the functionality was exposed. Documention for the ZAP API can be
found in the sys/zap.h header.
This change also removes a duplicate zap_increment_int() prototype.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Suppress the warning for this large kmem_alloc() because it is not
that far over the warning threshhold (8k) and it is short lived.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Caught by code inspection, the variable zsb was referenced after
being freed. Move the kmem_free() to the end of the function.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This warning was accidentally introduced by commit
f3ab88d646 which updated the
.readpages() implementation. The fix is to simply cast
the helper function to the appropriate type when passed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Unlike the .readpage() callback which is passed a single locked page
to be populated. The .readpages() callback is passed a list of unlocked
pages which are all marked for read-ahead (PG_readahead set). It is
the responsibly of .readpages() to ensure to pages are properly locked
before being populated.
Prior to this change the requested read-ahead pages would be updated
outside of the page lock which is unsafe. The unlocked pages would then
be unlocked again which is harmless but should have been immediately
detected as bug. Unfortunately, newer kernels failed detect this issue
because the check is done with a VM_BUG_ON which is disabled by default.
Luckily, the old Debian Lenny 2.6.26 kernel caught this because it
simply uses a BUG_ON.
The straight forward fix for this is to update the .readpages() callback
to use the read_cache_pages() helper function. The helper function will
ensure that each page in the list is properly locked before it is passed
to the .readpage() callback. In addition resolving the bug, this results
in a nice simplification of the existing code.
The downside to this change is that instead of passing one large read
request to the dmu multiple smaller ones are submitted. All of these
requests however are marked for readahead so the lower layers should
issue a large I/O regardless. Thus most of the request should hit the
ARC cache.
Futher optimization of this code can be done in the future is a perform
analysis determines it to be worthwhile. But for the moment, it is
preferable that code be correct and understandable.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#355
For a long time now the kernel has been moving away from using the
pdflush daemon to write 'old' dirty pages to disk. The primary reason
for this is because the pdflush daemon is single threaded and can be
a limiting factor for performance. Since pdflush sequentially walks
the dirty inode list for each super block any delay in processing can
slow down dirty page writeback for all filesystems.
The replacement for pdflush is called bdi (backing device info). The
bdi system involves creating a per-filesystem control structure each
with its own private sets of queues to manage writeback. The advantage
is greater parallelism which improves performance and prevents a single
filesystem from slowing writeback to the others.
For a long time both systems co-existed in the kernel so it wasn't
strictly required to implement the bdi scheme. However, as of
Linux 2.6.36 kernels the pdflush functionality has been retired.
Since ZFS already bypasses the page cache for most I/O this is only
an issue for mmap(2) writes which must go through the page cache.
Even then adding this missing support for newer kernels was overlooked
because there are other mechanisms which can trigger writeback.
However, there is one critical case where not implementing the bdi
functionality can cause problems. If an application handles a page
fault it can enter the balance_dirty_pages() callpath. This will
result in the application hanging until the number of dirty pages in
the system drops below the dirty ratio.
Without a registered backing_device_info for the filesystem the
dirty pages will not get written out. Thus the application will hang.
As mentioned above this was less of an issue with older kernels because
pdflush would eventually write out the dirty pages.
This change adds a backing_device_info structure to the zfs_sb_t
which is already allocated per-super block. It is then registered
when the filesystem mounted and unregistered on unmount. It will
not be registered for mounted snapshots which are read-only. This
change will result in flush-<pool> thread being dynamically created
and destroyed per-mounted filesystem for writeback.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#174
While the existing implementation of .writepage()/zpl_putpage() was
functional it was not entirely correct. In particular, it would move
dirty pages in to a clean state simply after copying them in to the
ARC cache. This would result in the pages being lost if the system
were to crash enough though the Linux VFS believed them to be safe on
stable storage.
Since at the moment virtually all I/O, except mmap(2), bypasses the
page cache this isn't as bad as it sounds. However, as hopefully
start using the page cache more getting this right becomes more
important so it's good to improve this now.
This patch takes a big step in that direction by updating the code
to correctly move dirty pages through a writeback phase before they
are marked clean. When a dirty page is copied in to the ARC it will
now be set in writeback and a completion callback is registered with
the transaction. The page will stay in writeback until the dmu runs
the completion callback indicating the page is on stable storage.
At this point the page can be safely marked clean.
This process is normally entirely asynchronous and will be repeated
for every dirty page. This may initially sound inefficient but most
of these pages will end up in a few txgs. That means when they are
eventually written to disk they should be nicely batched. However,
there is room for improvement. It may still be desirable to batch
up the pages in to larger writes for the dmu. This would reduce
the number of callbacks and small 4k buffer required by the ARC.
Finally, if the caller requires that the I/O be done synchronously
by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O
will trigger a zil_commit() to flush the data to stable storage.
At which point the registered callbacks will be run leaving the
date safe of disk and marked clean before returning from .writepage.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The function txg_delay() is used to delay txg (transaction group)
threads in ZFS. The timeout value for this function is calculated
using:
int timeout = ddi_get_lbolt() + ticks;
Later, the actual wait is performed:
while (ddi_get_lbolt() < timeout &&
tx->tx_syncing_txg < txg-1 && !txg_stalled(dp))
(void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock,
timeout - ddi_get_lbolt());
The ddi_get_lbolt() function returns current uptime in clock ticks
and is typed as clock_t. The clock_t type on 64-bit architectures
is int64_t.
The "timeout" variable will overflow depending on the tick frequency
(e.g. for 1000 it will overflow in 28.855 days). This will make the
expression "ddi_get_lbolt() < timeout" always false - txg threads will
not be delayed anymore at all. This leads to a slowdown in ZFS writes.
The attached patch initializes timeout as clock_t to match the return
value of ddi_get_lbolt().
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #352
Prior to revision 11314 if a user was recursively destroying
snapshots of a dataset the target dataset was not required to
exist. The zfs_secpolicy_destroy_snaps() function introduced
the security check on the target dataset, so since then if the
target dataset does not exist, the recursive destroy is not
performed. Before 11314, only a delete permission check on
the snapshot's master dataset was performed.
Steps to reproduce:
zfs create pool/a
zfs snapshot pool/a@s1
zfs destroy -r pool@s1
Therefore I suggest to fallback to the old security check, if
the target snapshot does not exist and continue with the destroy.
References to Illumos issue and patch:
- https://www.illumos.org/issues/1043
- https://www.illumos.org/attachments/217/recursive_dataset_destroy.patch
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
Moving the zil_free() cleanup to zil_close() prevents this
problem from occurring in the first place. There is a very
good description of the issue and fix in Illumus #883.
Reviewed by: Matt Ahrens <Matt.Ahrens@delphix.com>
Reviewed by: Adam Leventhal <Adam.Leventhal@delphix.com>
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Gordon Ross <gwr@nexenta.com>
Reviewed by: Garrett D'Amore <garrett@nexenta.com>
Reivewed by: Dan McDonald <danmcd@nexenta.com>
Approved by: Gordon Ross <gwr@nexenta.com>
References to Illumos issue and patch:
- https://www.illumos.org/issues/883
- https://github.com/illumos/illumos-gate/commit/c9ba2a43cb
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
Add a "REFRATIO" property, which is the compression ratio based on
data referenced. For snapshots, this is the same as COMPRESSRATIO,
but for filesystems/volumes, the COMPRESSRATIO is based on the
data "USED" (ie, includes blocks in children, but not blocks
shared with the origin).
This is needed to figure out how much space a filesystem would
use if it were not compressed (ignoring snapshots).
Reviewed by: George Wilson <George.Wilson@delphix.com>
Reviewed by: Adam Leventhal <Adam.Leventhal@delphix.com>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Mark Musante <Mark.Musante@oracle.com>
Reviewed by: Garrett D'Amore <garrett@nexenta.com>
Approved by: Garrett D'Amore <garrett@nexenta.com>
References to Illumos issue and patch:
- https://www.illumos.org/issues/1092
- https://github.com/illumos/illumos-gate/commit/187d6ac08a
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
Today zfs tries to allocate blocks evenly across all devices.
This means when devices are imbalanced zfs will use lots of
CPU searching for space on devices which tend to be pretty
full. It should instead fail quickly on the full LUNs and
move onto devices which have more availability.
Reviewed by: Eric Schrock <Eric.Schrock@delphix.com>
Reviewed by: Matt Ahrens <Matt.Ahrens@delphix.com>
Reviewed by: Adam Leventhal <Adam.Leventhal@delphix.com>
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Gordon Ross <gwr@nexenta.com>
Approved by: Garrett D'Amore <garrett@nexenta.com>
References to Illumos issue and patch:
- https://www.illumos.org/issues/510
- https://github.com/illumos/illumos-gate/commit/5ead3ed965
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
Note that with the current ZFS code, it turns out that the vdev
cache is not helpful, and in some cases actually harmful. It
is better if we disable this. Once some time has passed, we
should actually remove this to simplify the code. For now we
just disable it by setting the zfs_vdev_cache_size to zero.
Note that Solaris 11 has made these same changes.
References to Illumos issue and patch:
- https://www.illumos.org/issues/175
- https://github.com/illumos/illumos-gate/commit/b68a40a845
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
Hypothesis about what's going on here.
At some time in the past, something, i.e. dnode_reallocate()
calls one of:
dbuf_rm_spill(dn, tx);
These will do:
dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx)
dbuf_undirty(db, tx)
Currently dbuf_undirty can leave a spill block in dn_dirty_records[],
(it having been put there previously by dbuf_dirty) and free it.
Sometime later, dbuf_sync_list trips over this reference to free'd
(and typically reused) memory.
Also, dbuf_undirty can call dnode_clear_range with a bogus
block ID. It needs to test for DMU_SPILL_BLKID, similar to
how dnode_clear_range is called in dbuf_dirty().
References to Illumos issue and patch:
- https://www.illumos.org/issues/764
- https://github.com/illumos/illumos-gate/commit/3f2366c2bb
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Mark.Maybe@oracle.com
Reviewed by: Albert Lee <trisk@nexenta.com
Approved by: Garrett D'Amore <garrett@nexenta.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
Update two kmem_alloc()'s in dbuf_dirty() to use KM_PUSHPAGE.
Because these functions are called from txg_sync_thread we
must ensure they don't reenter the zfs filesystem code via
the .writepage callback. This would result in a deadlock.
This deadlock is rare and has only been observed once under
an abusive mmap() write workload.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Long, long, long ago when the effort to port ZFS was begun
the zfs_create_fs() function was heavily modified to remove
all of its VFS dependencies. This allowed Lustre to use
the dataset without us having to spend the time porting all
the required VFS code.
Fast-forward several years and we now have all the VFS code
in place but are still relying on the modified zfs_create_fs().
This isn't required anymore and we can now use zfs_mknode()
to create the root znode for the filesystem.
This commit reverts the contents of zfs_create_fs() to largely
match the upstream OpenSolaris code. There have been minor
modifications to accomidate the Linux VFS but that is all.
This code fixes issue #116 by bootstraping enough of the VFS
data structures so we can rely on zfs_mknode() to create the
root directory. This ensures it is created properly with
support for system attributes. Previously it wasn't which
is why it behaved differently that all other directories
when modified.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#116
Newly created files were always being created with the fsuid/fsgid
in the current users credentials. This is correct except in the
case when the parent directory sets the 'setgit' bit. In this
case according to posix the newly created file/directory should
inherit the gid of the parent directory. Additionally, in the
case of a subdirectory it should also inherit the 'setgit' bit.
Finally, this commit performs a little cleanup of the vattr_t
initialization by moving it to a common helper function.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#262
When running 'make install' without DESTDIR set the module install
rules would mistakenly destroy the 'modules.*' files for ALL of
your installed kernels. This could lead to a non-functional system
for the alternate kernels because 'depmod -a' will only be run for
the kernel which was compiled against. This issue would not impact
anyone using the 'make <deb|rpm|pkg>' build targets to build and
install packages.
The fix for this issue is to only remove extraneous build products
when DESTDIR is set. This almost exclusively indicates we are
building packages and installed the build products in to a temporary
staging location. Additionally, limit the removal the unneeded
build products to the target kernel version.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#328
Disable the normal reclaim path for zpl_putpage(). This ensures that
all memory allocations under this call path will never enter direct
reclaim. If this were to happen the VM might try to write out
additional pages by calling zpl_putpage() again resulting in a
deadlock.
This sitution is typically handled in Linux by marking each offending
allocation GFP_NOFS. However, since much of the code used is common
it makes more sense to use PF_MEMALLOC to flag the entire call tree.
Alternately, the code could be updated to pass the needed allocation
flags but that's a more invasive change.
The following example of the above described deadlock was triggered
by test 074 in the xfstest suite.
Call Trace:
[<ffffffff814dcdb2>] down_write+0x32/0x40
[<ffffffffa05af6e4>] dnode_new_blkid+0x94/0x2d0 [zfs]
[<ffffffffa0597d66>] dbuf_dirty+0x556/0x750 [zfs]
[<ffffffffa05987d1>] dmu_buf_will_dirty+0x81/0xd0 [zfs]
[<ffffffffa059ee70>] dmu_write+0x90/0x170 [zfs]
[<ffffffffa0611afe>] zfs_putpage+0x2ce/0x360 [zfs]
[<ffffffffa062875e>] zpl_putpage+0x1e/0x60 [zfs]
[<ffffffffa06287b2>] zpl_writepage+0x12/0x20 [zfs]
[<ffffffff8115f907>] writeout+0xa7/0xd0
[<ffffffff8115fa6b>] move_to_new_page+0x13b/0x170
[<ffffffff8115fed4>] migrate_pages+0x434/0x4c0
[<ffffffff811559ab>] compact_zone+0x4fb/0x780
[<ffffffff81155ed1>] compact_zone_order+0xa1/0xe0
[<ffffffff8115602c>] try_to_compact_pages+0x11c/0x190
[<ffffffff811200bb>] __alloc_pages_nodemask+0x5eb/0x8b0
[<ffffffff8115464a>] alloc_pages_current+0xaa/0x110
[<ffffffff8111e36e>] __get_free_pages+0xe/0x50
[<ffffffffa03f0e2f>] kv_alloc+0x3f/0xb0 [spl]
[<ffffffffa03f11d9>] spl_kmem_cache_alloc+0x339/0x660 [spl]
[<ffffffffa05950b3>] dbuf_create+0x43/0x370 [zfs]
[<ffffffffa0596fb1>] __dbuf_hold_impl+0x241/0x480 [zfs]
[<ffffffffa0597276>] dbuf_hold_impl+0x86/0xc0 [zfs]
[<ffffffffa05977ff>] dbuf_hold_level+0x1f/0x30 [zfs]
[<ffffffffa05a9dde>] dmu_tx_check_ioerr+0x4e/0x110 [zfs]
[<ffffffffa05aa1f9>] dmu_tx_count_write+0x359/0x6f0 [zfs]
[<ffffffffa05aa5df>] dmu_tx_hold_write+0x4f/0x70 [zfs]
[<ffffffffa0611a6d>] zfs_putpage+0x23d/0x360 [zfs]
[<ffffffffa062875e>] zpl_putpage+0x1e/0x60 [zfs]
[<ffffffff811221f9>] write_cache_pages+0x1c9/0x4a0
[<ffffffffa0628738>] zpl_writepages+0x18/0x20 [zfs]
[<ffffffff81122521>] do_writepages+0x21/0x40
[<ffffffff8119bbbd>] writeback_single_inode+0xdd/0x2c0
[<ffffffff8119bfbe>] writeback_sb_inodes+0xce/0x180
[<ffffffff8119c11b>] writeback_inodes_wb+0xab/0x1b0
[<ffffffff8119c4bb>] wb_writeback+0x29b/0x3f0
[<ffffffff8119c6cb>] wb_do_writeback+0xbb/0x240
[<ffffffff811308ea>] bdi_forker_task+0x6a/0x310
[<ffffffff8108ddf6>] kthread+0x96/0xa0
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#327
When modifing overlapping regions of a file using mmap(2) and
write(2)/read(2) it is possible to deadlock due to a lock inversion.
The zfs_write() and zfs_read() hooks first take the zfs range lock
and then lock the individual pages. Conversely, when using mmap'ed
I/O the zpl_writepage() hook is called with the individual page
locks already taken and then zfs_putpage() takes the zfs range lock.
The most straight forward fix is to simply not take the zfs range
lock in the mmap(2) case. The individual pages will still be locked
thus serializing access. Updating the same region of a file with
write(2) and mmap(2) has always been a dodgy thing to do. This change
at a minimum ensures we don't deadlock and is consistent with the
existing Linux semantics enforced by the VFS.
This isn't an issue under Solaris because the only range locking
performed will be with the zfs range locks. It's up to each filesystem
to perform its own file locking. Under Linux the VFS provides many
of these services.
It may be possible/desirable at a latter date to entirely dump the
existing zfs range locking and rely on the Linux VFS page locks.
However, for now its safest to perform both layers of locking until
zfs is more tightly integrated with the page cache.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #302
This commit fixes a regression which was accidentally introduced by
the Linux 2.6.39 compatibility chanages. As part of these changes
instead of holding an active reference on the namepsace (which is
no longer posible) a reference is taken on the super block. This
reference ensures the super block remains valid while it is in use.
To handle the unlikely race condition of the filesystem being
unmounted concurrently with the start of a 'zfs send/recv' the
code was updated to only take the super block reference when there
was an existing reference. This indicates that the filesystem is
active and in use.
Unfortunately, in the 'zfs recv' case this is not the case. The
newly created dataset will not have a super block without an
active reference which results in the 'dataset is busy' error.
The most straight forward fix for this is to simply update the
code to always take the reference even when it's zero. This
may expose us to very very unlikely concurrent umount/send/recv
case but the consequences of that are minor.
Closes#319
There is at most a factor of 3x performance improvement to be
had by using the Linux generic_fillattr() helper. However, to
use it safely we need to ensure the values in a cached inode
are kept rigerously up to date. Unfortunately, this isn't
the case for the blksize, blocks, and atime fields. At the
moment the authoritative values are still stored in the znode.
This patch introduces an optimized zfs_getattr_fast() call.
The idea is to use the up to date values from the inode and
the blksize, block, and atime fields from the znode. At some
latter date we should be able to strictly use the inode values
and further improve performance.
The remaining overhead in the zfs_getattr_fast() call can be
attributed to having to take the znode mutex. This overhead is
unavoidable until the inode is kept strictly up to date. The
the careful reader will notice the we do not use the customary
ZFS_ENTER()/ZFS_EXIT() macros. These macro's are designed to
ensure the filesystem is not torn down in the middle of an
operation. However, in this case the VFS is holding a
reference on the active inode so we know this is impossible.
=================== Performance Tests ========================
This test calls the fstat(2) system call 10,000,000 times on
an open file description in a tight loop. The test results
show the zfs stat(2) performance is now only 22% slower than
ext4. This is a 2.5x improvement and there is a clear long
term plan to get to parity with ext4.
filesystem | test-1 test-2 test-3 | average | times-ext4
--------------+-------------------------+---------+-----------
ext4 | 7.785s 7.899s 7.284s | 7.656s | 1.000x
zfs-0.6.0-rc4 | 24.052s 22.531s 23.857s | 23.480s | 3.066x
zfs-faststat | 9.224s 9.398s 9.485s | 9.369s | 1.223x
The second test is to run 'du' of a copy of the /usr tree
which contains 110514 files. The test is run multiple times
both using both a cold cache (/proc/sys/vm/drop_caches) and
a hot cache. As expected this change signigicantly improved
the zfs hot cache performance and doesn't quite bring zfs to
parity with ext4.
A little surprisingly the zfs cold cache performance is better
than ext4. This can probably be attributed to the zfs allocation
policy of co-locating all the meta data on disk which minimizes
seek times. By default the ext4 allocator will spread the data
over the entire disk only co-locating each directory.
filesystem | cold | hot
--------------+---------+--------
ext4 | 13.318s | 1.040s
zfs-0.6.0-rc4 | 4.982s | 1.762s
zfs-faststat | 4.933s | 1.345s
The performance of the L2ARC can be tweaked by a number of tunables, which
may be necessary for different workloads:
l2arc_write_max max write bytes per interval
l2arc_write_boost extra write bytes during device warmup
l2arc_noprefetch skip caching prefetched buffers
l2arc_headroom number of max device writes to precache
l2arc_feed_secs seconds between L2ARC writing
l2arc_feed_min_ms min feed interval in milliseconds
l2arc_feed_again turbo L2ARC warmup
l2arc_norw no reads during writes
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#316
The remaining code that is guarded by HAVE_SHARE ifdefs is related to the
.zfs/shares functionality which is currently not available on Linux.
On Solaris the .zfs/shares directory can be used to set permissions for
SMB shares.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The sharenfs and sharesmb properties depend on the libshare library
to export datasets via NFS and SMB. This commit implements the base
libshare functionality as well as support for managing NFS shares.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Under Linux you may only disable USER xattrs. The SECURITY,
SYSTEM, and TRUSTED xattr namespaces must always be available
if xattrs are supported by the filesystem. The enforcement
of USER xattrs is performed in the zpl_xattr_user_* handlers.
Under Solaris there is only a single xattr namespace which
is managed globally.
The Linux kernel already has support for mandatory locking. This
change just replaces the Solaris mandatory locking calls with the
Linux equivilants. In fact, it looks like this code could be
removed entirely because this checking is already done generically
in the Linux VFS. However, for now we'll leave it in place even
if it is redundant just in case we missed something.
The original patch to update the code to support mandatory locking
was done by Rohan Puri. This patch is an updated version which is
compatible with the previous mount option handling changes.
Original-Patch-by: Rohan Puri <rohan.puri15@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#222Closes#253
The .get_sb callback has been replaced by a .mount callback
in the file_system_type structure. When using the new
interface the caller must now use the mount_nodev() helper.
Unfortunately, the new interface no longer passes the vfsmount
down to the zfs layers. This poses a problem for the existing
implementation because we currently save this pointer in the
super block for latter use. It provides our only entry point
in to the namespace layer for manipulating certain mount options.
This needed to be done originally to allow commands like
'zfs set atime=off tank' to work properly. It also allowed me
to keep more of the original Solaris code unmodified. Under
Solaris there is a 1-to-1 mapping between a mount point and a
file system so this is a fairly natural thing to do. However,
under Linux they many be multiple entries in the namespace
which reference the same filesystem. Thus keeping a back
reference from the filesystem to the namespace is complicated.
Rather than introduce some ugly hack to get the vfsmount and
continue as before. I'm leveraging this API change to update
the ZFS code to do things in a more natural way for Linux.
This has the upside that is resolves the compatibility issue
for the long term and fixes several other minor bugs which
have been reported.
This commit updates the code to remove this vfsmount back
reference entirely. All modifications to filesystem mount
options are now passed in to the kernel via a '-o remount'.
This is the expected Linux mechanism and allows the namespace
to properly handle any options which apply to it before passing
them on to the file system itself.
Aside from fixing the compatibility issue, removing the
vfsmount has had the benefit of simplifying the code. This
change which fairly involved has turned out nicely.
Closes#246Closes#217Closes#187Closes#248Closes#231
The security_inode_init_security() function now takes an additional
qstr argument which must be passed in from the dentry if available.
Passing a NULL is safe when no qstr is available the relevant
security checks will just be skipped.
Closes#246Closes#217Closes#187
Under Linux the VFS handles virtually all of the mmap() access
checks. Filesystem specific checks are left to be handled in
the .mmap() hook and normally there arn't any.
However, ZFS provides a few attributes which can influence the
mmap behavior and should be honored. Note, currently the code
to modify these attributes has not been implemented under Linux.
* ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY: when any of these
attributes are set a file may not be mmaped with write access.
* ZFS_AV_QUARANTINED: when set a file file may not be mmaped with
read or exec access.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The following functions were required for the OpenSolaris mmap
implementation. Because the Linux VFS does most the most heavy
lifting for us they are not required and are being removed to
keep the code clean and easy to understand.
* zfs_null_putapage()
* zfs_frlock()
* zfs_no_putpage()
Signed-off-by: Brian Behlendorf <behlendorf@llnl.gov>
Enable zfs_getpage, zfs_fillpage, zfs_putpage, zfs_putapage functions.
The functions have been modified to make them Linux friendly.
ZFS uses these functions to read/write the mmapped pages. Using them
from readpage/writepage results in clear code. The patch also adds
readpages and writepages interface functions to read/write list of
pages in one function call.
The code change handles the first mmap optimization mentioned on
https://github.com/behlendorf/zfs/issues/225
Signed-off-by: Prasad Joshi <pjoshi@stec-inc.com>
Signed-off-by: Brian Behlendorf <behlendorf@llnl.gov>
Issue #255
According to Linux kernel commit 2c27c65e, using truncate_setsize in
setattr simplifies the code. Therefore, the patch replaces the call
to vmtruncate() with truncate_setsize().
zfs_setattr uses zfs_freesp to free the disk space belonging to the
file. As truncate_setsize may release the page cache and flushing
the dirty data to disk, it must be called before the zfs_freesp.
Suggested-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Prasad Joshi <pjoshi@stec-inc.com>
Closes#255
The inode eviction should unmap the pages associated with the inode.
These pages should also be flushed to disk to avoid the data loss.
Therefore, use truncate_setsize() in evict_inode() to release the
pagecache.
The API truncate_setsize() was added in 2.6.35 kernel. To ensure
compatibility with the old kernel, the patch defines its own
truncate_setsize function.
Signed-off-by: Prasad Joshi <pjoshi@stec-inc.com>
Closes#255
To accomindate the updated Linux 3.0 shrinker API the spl
shrinker compatibility code was updated. Unfortunately, this
couldn't be done cleanly without slightly adjusting the comapt
API. See spl commit a55bcaad18.
This commit updates the ZFS code to use the slightly modified
API. You must use the latest SPL if your building ZFS.
The problem here is that prune_icache() tries to evict/delete
both the xattr directory inode as well as at least one xattr
inode contained in that directory. Here's what happens:
1. File is created.
2. xattr is created for that file (behind the scenes a xattr
directory and a file in that xattr directory are created)
3. File is deleted.
4. Both the xattr directory inode and at least one xattr
inode from that directory are evicted by prune_icache();
prune_icache() acquires a lock on both inodes before it
calls ->evict() on the inodes
When the xattr directory inode is evicted zfs_zinactive attempts
to delete the xattr files contained in that directory. While
enumerating these files zfs_zget() is called to obtain a reference
to the xattr file znode - which tries to lock the xattr inode.
However that very same xattr inode was already locked by
prune_icache() further up the call stack, thus leading to a
deadlock.
This can be reliably reproduced like this:
$ touch test
$ attr -s a -V b test
$ rm test
$ echo 3 > /proc/sys/vm/drop_caches
This patch fixes the deadlock by moving the zfs_purgedir() call to
zfs_unlinked_drain(). Instead zfs_rmnode() now checks whether the
xattr dir is empty and leaves the xattr dir in the unlinked set if
it finds any xattrs.
To ensure zfs_unlinked_drain() never accesses a stale super block
zfsvfs_teardown() has been update to block until the iput taskq
has been drained. This avoids a potential race where a file with
an xattr directory is removed and the file system is immediately
unmounted.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#266
iput_final() already calls zpl_inode_destroy() -> zfs_inode_destroy()
for us after zfs_zinactive(), thus making sure that the inode is
properly cleaned up.
The zfs_inode_destroy() calls in zfs_rmnode() would lead to a
double-free.
Fixes#282
Some disks with internal sectors larger than 512 bytes (e.g., 4k) can
suffer from bad write performance when ashift is not configured
correctly. This is caused by the disk not reporting its actual sector
size, but a sector size of 512 bytes. The drive may behave this way
for compatibility reasons. For example, the WDC WD20EARS disks are
known to exhibit this behavior.
When creating a zpool, ZFS takes that wrong sector size and sets the
"ashift" property accordingly (to 9: 1<<9=512), whereas it should be
set to 12 for 4k sectors (1<<12=4096).
This patch allows an adminstrator to manual specify the known correct
ashift size at 'zpool create' time. This can significantly improve
performance in certain cases. However, it will have an impact on your
total pool capacity. See the updated ashift property description
in the zpool.8 man page for additional details.
Valid values for the ashift property range from 9 to 17 (512B-128KB).
Additionally, you may set the ashift to 0 if you wish to auto-detect
the sector size based on what the disk reports, this is the default
behavior. The most common ashift values are 9 and 12.
Example:
zpool create -o ashift=12 tank raidz2 sda sdb sdc sdd
Closes#280
Original-patch-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The WRITE_FLUSH, WRITE_FUA, and WRITE_FLUSH_FUA flags have been
introduced as a replacement for WRITE_BARRIER. This was done
to allow richer semantics to be expressed to the block layer.
It is the block layers responsibility to choose the correct way
to implement these semantics.
This change simply updates the bio's to use the new kernel API
which should be absolutely safe. However, since ZFS depends
entirely on this working as designed for correctness we do
want to be careful.
Closes#281
Stack usage for ddt_class_contains() reduced from 524 bytes to 68
bytes. This large stack allocation significantly contributed to
the likelyhood of a stack overflow when scrubbing/resilvering
dedup pools.
Stack usage for ddt_zap_lookup() reduced from 368 bytes to 120
bytes. This large stack allocation significantly contributed to
the likelyhood of a stack overflow when scrubbing/resilvering
dedup pools.
This abomination is no longer required because the zio's issued
during this recursive call path will now be handled asynchronously
by the taskq thread pool.
This reverts commit 6656bf5621.
The majority of the recursive operations performed by the dsl
are done either in the context of the tgx_sync_thread or during
pool import. It is these recursive operations which contribute
greatly to the stack depth. When this recursion is coupled with
a synchronous I/O in the same context overflow becomes possible.
Previously to handle this case I have focused on keeping the
individual stack frames as light as possible. This is a good
idea as long as it can be done in a way which doesn't overly
complicate the code. However, there is a better solution.
If we treat all zio's issued by the tgx_sync_thread as async then
we can use the tgx_sync_thread stack for the recursive parts, and
the zio_* threads for the I/O parts. This effectively doubles our
available stack space with the only drawback being a small delay
to schedule the I/O. However, in practice the scheduling time
is so much smaller than the actual I/O time this isn't an issue.
Another benefit of making the zio async is that the zio pipeline
is now parallel. That should mean for CPU intensive pipelines
such as compression or dedup performance may be improved.
With this change in place the worst case stack usage observed so
far is 6902 bytes. This is still higher than I'd like but
significantly improved. Additional changes to specific functions
should improve this further. This change allows us to revent
commit 6656bf5 which did some horrible things to the recursive
traverse_visitbp() callpath in the name of saving stack.
Yesterday I ran across a 3TB drive which exposed 4K sectors to
Linux. While I thought I had gotten this support correct it
turns out there were 2 subtle bugs which prevented it from
working.
sudo ./cmd/zpool/zpool create -f large-sector /dev/sda
cannot create 'large-sector': one or more devices is currently unavailable
1) The first issue was that it was possible that bdev_capacity()
would return the number of 512 byte sectors rather than the number
of 4096 sectors. Internally, certain Linux functions only operate
with 512 byte sectors so you need to be careful. To avoid any
confusion in the future I've updated bdev_capacity() to simply
return the device (or partition) capacity in bytes. The higher
levels of ZFS want the value in bytes anyway so this is cleaner.
2) When creating a bio the ->bi_sector count must always be
expressed in 512 byte sectors. The existing code would scale
the byte offset by the logical sector size. Until now this was
always 512 so it never caused problems. Trying a 4K sector drive
clearly exposed the issue. The problem has been fixed by
hard coding the 512 byte sector which is exactly what the bio
code does internally.
With these changes I'm now able to create ZFS pools using 4K
sector drives. No issues were observed during fairly extensive
testing. This is also a low risk change if your using 512b
sectors devices because none of the logic changes.
Closes#256
The default buffer size when requesting multiple quota entries
is 100 times the zfs_useracct_t size. In practice this works out
to exactly 27200 bytes. Since this will be a short lived buffer
in a non-performance critical path it is preferable to vmem_alloc()
the needed memory.
Initially when zfsdev_ioctl() was ported to Linux we didn't have
any credential support implemented. So at the time we simply
passed NULL which wasn't much of a problem since most of the
secpolicy code was disabled.
However, one exception is quota handling which does require the
credential. Now that proper credentials are supported we can
safely start passing the callers credential. This is also an
initial step towards fully implemented the zfs secpolicy.
Normally when the arc_shrinker_func() function is called the return
value should be:
>=0 - To indicate the number of freeable objects in the cache, or
-1 - To indicate this cache should be skipped
However, when the shrinker callback is called with 'nr_to_scan' equal
to zero. The caller simply wants the number of freeable objects in
the cache and we must never return -1. This patch reorders the
first two conditionals in arc_shrinker_func() to ensure this behavior.
This patch also now explictly casts arc_size and arc_c_min to signed
int64_t types so MAX(x, 0) works as expected. As unsigned types
we would never see an negative value which defeated the purpose of
the MAX() lower bound and broke the shrinker logic.
Finally, when nr_to_scan is non-zero we explictly prevent all reclaim
below arc_c_min. This is done to prevent the Linux page cache from
completely crowding out the ARC. This limit is tunable and some
experimentation is likely going to be required to set it exactly right.
For now we're sticking with the OpenSolaris defaults.
Closes#218Closes#243
The comment in zfs_close() pertaining to decrementing the synchronous
open count needs to be updated for Linux. The code was already
updated to be correct, but the comment was missed and is now misleading.
Under Linux the zfs_close() hook is only called once when the final
reference is dropped. This differs from Solaris where zfs_close()
is called for each close.
Closes#237
Update the handling of named pipes and sockets to be consistent with
other platforms with regard to the rdev attribute. While all ZFS
ipmlementations store the rdev for device files in a system attribute
(SA), this is not the case for FIFOs and sockets. Indeed, Linux always
passes rdev=0 to mknod() for FIFOs and sockets, so the value is not
needed. Add an ASSERT that rdev==0 for FIFOs and sockets to detect if
the expected behavior ever changes.
Closes#216
The direct reclaim path in the z_wr_* threads must be disabled
to ensure forward progress is always maintained for txg processing.
This ensures that a txg will never get stuck waiting on itself
because it entered the following memory reclaim callpath.
->prune_icache()->dispose_list()->zpl_clear_inode()->zfs_inactive()
->dmu_tx_assign()->dmu_tx_wait()->tgx_wait_open()
It would be preferable to target this exact code path but the
kernel offers no way to do this without custom patches. To avoid
this we are forced to disable all reclaim for these threads. It
should not be necessary to do this for other other z_* threads
because they will not hold a txg open.
Closes#232
How nfsd handles .fsync() has been changed a couple of times in the
recent kernels. But basically there are three cases we need to
consider.
Linux 2.6.12 - 2.6.33
* The .fsync() hook takes 3 arguments
* The nfsd will call .fsync() with a NULL file struct pointer.
Linux 2.6.34
* The .fsync() hook takes 3 arguments
* The nfsd no longer calls .fsync() but instead used sync_inode()
Linux 2.6.35 - 2.6.x
* The .fsync() hook takes 2 arguments
* The nfsd no longer calls .fsync() but instead used sync_inode()
For once it looks like we've gotten lucky. The first two cases can
actually be collased in to one if we stop using the file struct
pointer entirely. Since the dentry is still passed in both cases
this is possible. The last case can then be safely handled by
unconditionally using the dentry in the file struct pointer now
that we know the nfsd caller has been removed.
Closes#230
The default buffer size when requesting history is 128k. This
is far to large for a kmem_alloc() so instead use the slower
vmem_alloc(). This path has no performance concerns and the
buffer is immediately free'd after its contents are copied to
the user space buffer.
This commit adds module options for all existing zfs tunables.
Ideally the average user should never need to modify any of these
values. However, in practice sometimes you do need to tweak these
values for one reason or another. In those cases it's nice not to
have to resort to rebuilding from source. All tunables are visable
to modinfo and the list is as follows:
$ modinfo module/zfs/zfs.ko
filename: module/zfs/zfs.ko
license: CDDL
author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory
description: ZFS
srcversion: 8EAB1D71DACE05B5AA61567
depends: spl,znvpair,zcommon,zunicode,zavl
vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions
parm: zvol_major:Major number for zvol device (uint)
parm: zvol_threads:Number of threads for zvol device (uint)
parm: zio_injection_enabled:Enable fault injection (int)
parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int)
parm: zio_delay_max:Max zio millisec delay before posting event (int)
parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool)
parm: zil_replay_disable:Disable intent logging replay (int)
parm: zfs_nocacheflush:Disable cache flushes (bool)
parm: zfs_read_chunk_size:Bytes to read per chunk (long)
parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int)
parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int)
parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int)
parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int)
parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int)
parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int)
parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int)
parm: zfs_vdev_scheduler:I/O scheduler (charp)
parm: zfs_vdev_cache_max:Inflate reads small than max (int)
parm: zfs_vdev_cache_size:Total size of the per-disk cache (int)
parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int)
parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int)
parm: zfs_recover:Set to attempt to recover from fatal errors (int)
parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp)
parm: zfs_zevent_len_max:Max event queue length (int)
parm: zfs_zevent_cols:Max event column width (int)
parm: zfs_zevent_console:Log events to the console (int)
parm: zfs_top_maxinflight:Max I/Os per top-level (int)
parm: zfs_resilver_delay:Number of ticks to delay resilver (int)
parm: zfs_scrub_delay:Number of ticks to delay scrub (int)
parm: zfs_scan_idle:Idle window in clock ticks (int)
parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int)
parm: zfs_free_min_time_ms:Min millisecs to free per txg (int)
parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int)
parm: zfs_no_scrub_io:Set to disable scrub I/O (bool)
parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool)
parm: zfs_txg_timeout:Max seconds worth of delta per txg (int)
parm: zfs_no_write_throttle:Disable write throttling (int)
parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int)
parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int)
parm: zfs_write_limit_min:Min tgx write limit (ulong)
parm: zfs_write_limit_max:Max tgx write limit (ulong)
parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong)
parm: zfs_write_limit_override:Override tgx write limit (ulong)
parm: zfs_prefetch_disable:Disable all ZFS prefetching (int)
parm: zfetch_max_streams:Max number of streams per zfetch (uint)
parm: zfetch_min_sec_reap:Min time before stream reclaim (uint)
parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint)
parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong)
parm: zfs_pd_blks_max:Max number of blocks to prefetch (int)
parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int)
parm: zfs_arc_min:Min arc size (ulong)
parm: zfs_arc_max:Max arc size (ulong)
parm: zfs_arc_meta_limit:Meta limit for arc size (ulong)
parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int)
parm: zfs_arc_grow_retry:Seconds before growing arc size (int)
parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int)
parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
When a new znode/inode pair is created both the znode and the inode
should be immediately updated to the correct values. This was done
for the znode and for most of the values in the inode, but not all
of them. This normally wasn't a problem because most subsequent
operations would cause the inode to be immediately updated. This
change ensures the inode is now fully updated before it is inserted
in to the inode hash.
Closes#116Closes#146Closes#164
This change fixes a kernel panic which would occur when resizing
a dataset which was not open. The objset_t stored in the
zvol_state_t will be set to NULL when the block device is closed.
To avoid this issue we pass the correct objset_t as the third arg.
The code has also been updated to correctly notify the kernel
when the block device capacity changes. For 2.6.28 and newer
kernels the capacity change will be immediately detected. For
earlier kernels the capacity change will be detected when the
device is next opened. This is a known limitation of older
kernels.
Online ext3 resize test case passes on 2.6.28+ kernels:
$ dd if=/dev/zero of=/tmp/zvol bs=1M count=1 seek=1023
$ zpool create tank /tmp/zvol
$ zfs create -V 500M tank/zd0
$ mkfs.ext3 /dev/zd0
$ mkdir /mnt/zd0
$ mount /dev/zd0 /mnt/zd0
$ df -h /mnt/zd0
$ zfs set volsize=800M tank/zd0
$ resize2fs /dev/zd0
$ df -h /mnt/zd0
Original-patch-by: Fajar A. Nugraha <github@fajar.net>
Closes#68Closes#84
The vdev_metaslab_init() function has been observed to allocate
larger than 8k chunks. However, they are not much larger than 8k
and it does this infrequently so it is allowed and the warning is
supressed.
The dsl_scan_visit() function is a little heavy weight taking 464
bytes on the stack. This can be easily reduced for little cost by
moving zap_cursor_t and zap_attribute_t off the stack and on to the
heap. After this change dsl_scan_visit() has been reduced in size
by 320 bytes.
This change was made to reduce stack usage in the dsl_scan_sync()
callpath which is recursive and has been observed to overflow the
stack.
Issue #174
This function is called recursively so everything possible must be
done to limit its stack consumption. The dprintf_bp() debugging
function adds 30 bytes of local variables to the function we cannot
afford. By commenting out this debugging we save 30 bytes per
recursion and depths of 13 are not uncommon. This yeilds a total
stack saving of 390 bytes on our 8k stack.
Issue #174
The recursive call chain dsl_scan_visitbp() -> dsl_scan_recurse() ->
dsl_scan_visitdnode() -> dsl_scan_visitbp has been observed to consume
considerable stack resulting in a stack overflow (>8k). The cleanest
way I see to fix this with minimal impact to the existing flow of
code, and with the fewest performance concerns, is to always inline
dsl_scan_recurse() and dsl_scan_visitdnode(). While this will increase
the function size of dsl_scan_visitbp(), by 4660 bytes, it also reduces
the stack requirements by removing the function call overhead.
Issue #174
It's possible for a zvol_write thread to enter direct memory reclaim
while holding open a transaction group. This results in the system
attempting to write out data to the disk to free memory. Unfortunately,
this can't succeed because the the thread doing reclaim is holding open
the txg which must be closed to be synced to disk. To prevent this
the offending allocation is marked KM_PUSHPAGE which will prevent it
from attempting writeback.
Closes#191
Occasionally we would see an -EFAULT returned when setting the
I/O scheduler on a vdev. This was caused an improperly formatted
user mode helper command.
This commit restructures the command to something simpler, allocates
space for it dynamically to save stack, and removes the retry logic
which is no longer needed.
Closes#169
This change ensures the ARC meta-data limits are enforced. Without
this enforcement meta-data can grow to consume all of the ARC cache
pushing out data and hurting performance. The cache is aggressively
reclaimed but this is a soft and not a hard limit. The cache may
exceed the set limit briefly before being brought under control.
By default 25% of the ARC capacity can be used for meta-data. This
limit can be tuned by setting the 'zfs_arc_meta_limit' module option.
Once this limit is exceeded meta-data reclaim will occur in 3 percent
chunks, or may be tuned using 'arc_reduce_dnlc_percent'.
Closes#193
Fixed a bug where zfs_zget could access a stale znode pointer when
the inode had already been removed from the inode cache via iput ->
iput_final -> ... -> zfs_zinactive but the corresponding SA handle
was still alive.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#180
As part of zfs_ioc_recv() a zfs_cmd_t is allocated in the kernel
which is 17808 bytes in size. This sort of thing in general should
be avoided. However, since this should be an infrequent event for
now we allow it and simply suppress the warning with the KM_NODEBUG
flag. This can be revisited latter if/when it becomes an issue.
Closes#178
If the attribute's new value was shorter than the old one the old
code would leave parts of the old value in the xattr znode.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#203
Without this we may mistakenly believe we have a dentry and try to
d_instantiate() it. This will result in the following BUG. It's
important to note that while the xattr directory has an inode
assoicated with it we never create a dentry for it.
kernel BUG at fs/dcache.c:1418!
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#202
When compiling ZFS in user space gcc-4.6.0 correctly identifies
the variable 'os' as being set but never used. This generates a
warning and a build failure when using --enable-debug. However,
the code is correct we only want to use 'os' for the kernel space
builds. To suppress the warning the call was wrapped with a
VERIFY() which has the nice side effect of ensuring the 'os'
actually never is NULL. This was observed under Fedora 15.
module/zfs/dsl_pool.c: In function ‘dsl_pool_create’:
module/zfs/dsl_pool.c:229:12: error: variable ‘os’ set but not used
[-Werror=unused-but-set-variable]
Update code to use the spl_invalidate_inodes() wrapper. This hides
some of the complexity of determining if invalidate_inodes() was
exported, and if so what is its prototype. The second argument
of spl_invalidate_inodes() determined the behavior of how dirty
inodes are handled. By passing a zero we are indicated that we
want those inodes to be treated as busy and skipped.
The .sync_fs fix as applied did not use the updated SPL credential
API. This broke builds on Debian Lenny, this change applies the
needed fix to use the portable API. The original credential changes
are part of commit 81e97e2187.
Disable the normal reclaim path for the txg_sync thread. This
ensures the thread will never enter dmu_tx_assign() which can
otherwise occur due to direct reclaim. If this is allowed to
happen the system can deadlock. Direct reclaim call path:
->shrink_icache_memory->prune_icache->dispose_list->
clear_inode->zpl_clear_inode->zfs_inactive->dmu_tx_assign
Under OpenSolaris all memory reclaim is done asyncronously. Under
Linux memory reclaim is done asynchronously _and_ synchronously.
When a process allocates memory with GFP_KERNEL it explicitly allows
the kernel to do reclaim on its behalf to satify the allocation.
If that GFP_KERNEL allocation fails the kernel may take more drastic
measures to reclaim the memory such as killing user space processes.
This was observed to happen with ZFS because the ARC could consume
a large fraction of the system memory but no synchronous reclaim
could be performed on it. The result was GFP_KERNEL allocations
could fail resulting in OOM events, and only moments latter the
arc_reclaim thread would free unused memory from the ARC.
This change leaves the arc_thread in place to manage the fundamental
ARC behavior. But it adds a synchronous (direct) reclaim path for
the ARC which can be called when memory is badly needed. It also
adds an asynchronous (indirect) reclaim path which is called
much more frequently to prune the ARC slab caches.
The following useful values were missing the arcstats. This change
adds them in to provide greater visibility in to the arcs behavior.
arc_no_grow 4 0
arc_tempreserve 4 0
arc_loaned_bytes 4 0
arc_meta_used 4 624774592
arc_meta_limit 4 400785408
arc_meta_max 4 625594176
Under Linux a dentry referencing an inode must be instantiated before
the inode is unlocked. To accomplish this without overly modifing
the core ZFS code the dentry it passed via the vattr_t. There are
cases such as replay when a dentry is not available. In which case
it is obviously not initialized at inode creation time, if a dentry
is needed it will be spliced as when required via d_lookup().
Making distclean in module
make[1]: Entering directory `/zfs/module'
make -C SUBDIRS=`pwd` clean
make: Entering an unknown directory
make: *** SUBDIRS=/zfs/module: No such file or directory. Stop.
When using --with-config=user the 'distclean' target would fail
because it assumes the kernel configuration infrastrure is set up.
This is not the case, nor does it need to be, because the
'--with-config=user' option will prune the entire ./module subtree
from SUBDIRS. This prevents most build rules from operating in the
./module directory.
However, the 'dist*' rules will still traverse this directory
because it is listed in DIST_SUBDIRS. This is correct because we
need to ensure the dist rules package the directory contents
regardless of the configuration for the 'dist' rule. The correct
way to handle this is to only invoke the kernel build system as
part of the 'clean' rule when CONFIG_KERNEL_TRUE is set.
Initial fix provided by Darik Horn <dajhorn@vanadac.com>.
This commit is a slightly refined form of the original.
Kernel threads which sleep uninterruptibly on Linux are marked in the (D)
state. These threads are usually in the process of performing IO and are
thus counted against the load average. The txg_quiesce and txg_sync threads
were always sleeping uninterruptibly and thus inflating the load average.
This change makes them sleep interruptibly. Some care is required however
because these threads may now be woken early by signals. In this case the
callers are all careful to check that the required conditions are met after
waking up. If we're woken early due to a signal they will simply go back
to sleep. In this case these changes are safe.
Closes#175
The .freeze_fs/.unfreeze_fs hooks were not added until Linux 2.6.29
Since these hooks are currently unused they are being removed to
allow support of older kernels.
As of Linux 2.6.29 a clean credential API was added to the Linux kernel.
Previously the credential was embedded in the task_struct. Because the
SPL already has considerable support for handling this API change the
ZPL code has been updated to use the Solaris credential API.
Now that KM_SLEEP is not defined as GFP_NOFS there is the possibility
of synchronous reclaim deadlocks. These deadlocks never existed in the
original OpenSolaris code because all memory reclaim on Solaris is done
asyncronously. Linux does both synchronous (direct) and asynchronous
(indirect) reclaim.
This commit addresses a deadlock caused by inode eviction. A KM_SLEEP
allocation may trigger direct memory reclaim and shrink the inode cache.
This can occur while a mutex in the array of ZFS_OBJ_HOLD mutexes is
held. Through the ->shrink_icache_memory()->evict()->zfs_inactive()->
zfs_zinactive() call path the same mutex may be reacquired resulting
in a deadlock. To avoid this deadlock the process must not reacquire
the mutex when it is already holding it.
This is a reasonable fix for now but longer term the ZFS_OBJ_HOLD
mutex locking should be reevaluated. This infrastructure already
prevents us from ever using the Linux lock dependency analysis tools,
and it may limit scalability.
It used to be the case that all KM_SLEEP allocations were GFS_NOFS.
Unfortunately this often resulted in the kernel being unable to
reclaim the ARC, inode, and dentry caches in a timely manor.
The fix was to make KM_SLEEP a GFP_KERNEL allocation in the SPL.
However, this increases the posibility of deadlocking the system
on a zfs write thread. If a zfs write thread attempts to perform
an allocation it may trigger synchronous reclaim. This reclaim
may attempt to flush dirty data/inode to disk to free memory.
Unforunately, this write cannot finish because the write thread
which would handle it is holding the previous transaction open.
Deadlock.
To avoid this all allocations in the zfs write thread path must
use KM_PUSHPAGE which prohibits synchronous reclaim for that
thread. In this way forward progress in ensured. The risk
with this change is I missed updating an allocation for the
write threads leaving an increased posibility of deadlock. If
any deadlocks remain they will be unlikely but we'll have to
make sure they all get fixed.
Register the missing .remount_fs handler. This handler isn't strictly
required because the VFS does a pretty good job updating most of the
MS_* flags. However, there's no harm in using the hook to call the
registered zpl callback for various MS_* flags. Additionaly, this
allows us to lay the ground work for more complicated argument parsing
in the future.
Register the missing .sync_fs handler. This is a noop in most cases
because the usual requirement is that sync just be initiated. As part
of the DMU's normal transaction processing txgs will be frequently
synced. However, when the 'wait' flag is set the requirement is that
.sync_fs must not return until the data is safe on disk. With the
addition of the .sync_fs handler this is now properly implemented.
ZFS should only change the i/o scheduler for a disk when it has
ownership of the whole disk. This is basically the same logic as
adjusting the write cache behavior on a disk. This change updates
the vdev disk code to skip partitions when setting the i/o scheduler.
Closes#152
Due to an uninitialized variable files opened with O_APPEND may
overwrite the start of the file rather than append to it. This
was introduced accidentally when I removed the Solaris vnodes.
The zfs_range_lock_writer() function used to key off zf->z_vnode
to determine if a znode_t was for a zvol of zpl object. With
the removal of vnodes this was replaced by the flag zp->z_is_zvol.
This flag was used to control the append behavior for range locks.
Unfortunately, this value was never properly initialized after
the vnode removal. However, because most of memory is usually
zeros it happened to be set correctly most of the time making
the bug appear racy. Properly initializing zp->z_is_zvol to
zero completely resolves the problem with O_APPEND.
Closes#126
Move 'bulk' and 'xattr_bulk' from the stack to the heap to minimize
stack space usage. These two arrays consumed 448 bytes on the stack
and have been replaced by two 8 byte points for a total stack space
saving of 432 bytes. The zfs_setattr() path had been previously
observed to overrun the stack in certain circumstances.
The original range lock implementation had to be modified by commit
8926ab7 because it was unsafe on Linux. In particular, calling
cv_destroy() immediately after cv_broadcast() is dangerous because
the waiters may still be asleep. Thus the following cv_destroy()
will free memory which may still be in use.
This was fixed by updating cv_destroy() to block on waiters but
this in turn introduced a deadlock. The deadlock was resolved
with the use of a taskq to move the offending free outside the
range lock. This worked well but using the taskq for the free
resulted in a serious performace hit. This is somewhat ironic
because at the time I felt using the taskq might improve things
by making the free asynchronous.
This patch refines the original fix and moves the free from the
taskq to a private free list. Then items which must be free'd
are simply inserted in to the list. When the range lock is dropped
it's safe to free the items. The list is walked and all rl_t
entries are freed.
This change improves small cached read performance by 26x. This
was expected because for small reads the number of locking calls
goes up significantly. More surprisingly this change significantly
improves large cache read performance. This probably attributable
to better cpu/memory locality. Very likely the same processor
which allocated the memory is now freeing it.
bs ext3 zfs zfs+fix faster
----------------------------------------------
512 435 3 79 26x
1k 820 7 160 22x
2k 1536 14 305 21x
4k 2764 28 572 20x
8k 3788 50 1024 20x
16k 4300 86 1843 21x
32k 4505 138 2560 18x
64k 5324 252 3891 15x
128k 5427 276 4710 17x
256k 5427 413 5017 12x
512k 5427 497 5324 10x
1m 5427 521 5632 10x
Closes#142
In the original implementation the zfs_open()/zfs_close() hooks
were dropped for simplicity. This was functional but not 100%
correct with the expected ZFS sematics. Updating and re-adding the
zfs_open()/zfs_close() hooks resolves the following issues.
1) The ZFS_APPENDONLY file attribute is once again honored. While
there are still no Linux tools to set/clear these attributes once
there are it should behave correctly.
2) Minimal virus scan file attribute hooks were added. Once again
this support in disabled but the infrastructure is back in place.
3) Most importantly correctly handle assigning files which were
opened syncronously to the intent log. Without this change O_SYNC
modifications could be lost during a system crash even though they
were marked synchronous.
Filesystems like ZFS must use what the kernel calls an anonymous super
block. Basically, this is just a filesystem which is not backed by a
single block device. Normally this block device's dev_t is stored in
the super block. For anonymous super blocks a unique reserved dev_t
is assigned as part of get_sb().
This sb->s_dev must then be set in the returned stat structures as
stat->st_dev. This allows userspace utilities to easily detect the
boundries of a specific filesystem. Tools such as 'du' depend on this
for proper accounting.
Additionally, under OpenSolaris the statfs->f_fsid is set to the device
id. To preserve consistency with OpenSolaris we also set the fsid to
the device id. Other Linux filesystem (ext) set the fsid to a unique
value determined by the filesystems uuid. This value is unique but
maintains no relationship to the device id. This may be desirable
when exporting NFS filesystem because it minimizes to chance of a
client observing the same fsid from two different servers.
Closes#140
The AT_ versions of these macros are used on Solaris and while they
map to their Linux equivilants the code has been updated to use the
ATTR_ versions.
Move 'tmpxvattr' from the stack to the heap to minimize stack
space usage. This is enough to get us below the 1024 byte stack
frame warning. That however is still a large stack frame and it
should be further reduced by moving the 'bulk' and 'xattr_bulk'
sa_bulk_attr_t variables to the heap in a future patch.
When I began work on the Posix layer it immediately became clear to
me that to integrate cleanly with the Linux VFS certain Solaris
specific things would have to go. One of these things was to elimate
as many Solaris specific types from the ZPL layer as possible. They
would be replaced with their Linux equivalents. This would not only
be good for performance, but for the general readability and health of
the code. The Solaris and Linux VFS are different beasts and should
be treated as such. Most of the code remains common for constructing
transactions and such, but there are subtle and important differenced
which need to be repsected.
This policy went quite for for certain types such as the vnode_t,
and it initially seemed to be working out well for the vattr_t. There
was a relatively small amount of related xvattr_t code I was forced to
comment out with HAVE_XVATTR. But it didn't look that hard to come
back soon and replace it all with a native Linux type.
However, after going doing this path with xvattr some distance it
clear that this code was woven in the ZPL more deeply than I thought.
In particular its hooks went very deep in to the ZPL replay code
and replacing it would not be as easy as I originally thought.
Rather than continue persuing replacing and removing this code I've
taken a step back and reevaluted things. This commit reverts many of
my previous commits which removed xvattr related code. It restores
much of the code to its original upstream state and now relies on
improved xvattr_t support in the zfs package itself.
The result of this is that much of the code which I had commented
out, which accidentally broke things like replay, is now back in
place and working. However, there may be a small performance
impact for getattr/setattr operations because they now require
a translation from native Linux to Solaris types. For now that's
a price I'm willing to pay. Once everything is completely functional
we can revisting the issue of removing the vattr_t/xvattr_t types.
Closes#111