Due to limited stack space recursive functions are frowned upon in
the Linux kernel. However, they often are the most elegant solution
to a problem. The following code preserves the recursive function
traverse_visitbp() but moves the local variables AND function
arguments to the heap to minimize the stack frame size. Enough
space is initially allocated on the stack for 20 levels of recursion.
This change does ugly-up-the-code but it reduces the worst case
usage from roughly 4160 bytes to 960 bytes on x86_64 archs.
These changes are now taken care of by the fix-stack-traverse_impl
topic branch which not only solves the uninit problem but also
moves these locals off the stack and on to the heap.
Move dsl_dataset_t local variable from the stack to the heap.
This reduces the stack usage of this function from 2048 bytes
to 176 bytes for x84_64 arches.
Much to my surprise bcopy() under Linux appears to copy the data in
word sized chunks. It does the right thing but if you buffer is not
a multiple of the word size you will be reading past the end of your
buffer. Or at least that is what valgrind is reporting. We should
be using mempcy() anyway on Linux so replace bcopy() with memcpy()
to resolve the issue.
==305== Thread 211:
==305== Invalid read of size 8
==305== at 0x3BCD28357D: _wordcopy_fwd_dest_aligned (in /lib64/libc-2.11.1.so)
==305== by 0x3BCD282B05: bcopy (in /lib64/libc-2.11.1.so)
==305== by 0x58D7FEF: dmu_write (dmu.c:730)
==305== by 0x591C942: spa_history_write (spa_history.c:165)
==305== by 0x591D255: spa_history_log_sync (spa_history.c:277)
==305== by 0x591D545: log_internal (spa_history.c:450)
==305== by 0x591D5EC: spa_history_log_internal (spa_history.c:475)
==305== by 0x5902319: dsl_prop_set_sync (dsl_prop.c:707)
==305== by 0x5906A7D: dsl_sync_task_group_sync (dsl_synctask.c:199)
==305== by 0x58FF4EC: dsl_pool_sync (dsl_pool.c:376)
==305== by 0x591744C: spa_sync (spa.c:5365)
==305== by 0x5922C85: txg_sync_thread (txg.c:414)
On a Linux system simply use the native aprintf and vasprintf
functions respectively. Also update the call points to correctly
use va_copy() or va_start() as appropriate.
This may not strictly be needed but it does keep gcc happy. We
should keep our eye on this though if the extra bcopy significantly
impacts performance. It may.
The following are 3 cases where move than 2 pages are allocated
with a kmem_alloc()... but not a lot more. For now we just disable
the warning with KM_NODEBUG and this can be revisted latter to
see if it's worth shrinking the allocation or perhaps moving it
to a slab.
The following cleanup was missed in the first pass when the ZVOL
implementation was updated. An extra instance of a zvol_state_t
was removed from the stack and the error handling was simplified.
There are cases where under Linux it is not safe to sleep in
taskq_dispatch(). Rather than adding Linux specific code to
detect these cases I opted to keep it simple and just never
allow a sleep here. The impact of this should be minimal.
I missed a instanse of removing the & operator when reducing the
stack usage in this function. This unfortunately doesn't cause
a compile warning but it is does cause ztest failures. Anyway,
update the topic branch to correct this mistake.
Certain function must never be automatically inlined by gcc because
they are stack heavy or called recursively. This patch flags all
such functions I have found as 'noinline' to prevent gcc from making
the optimization.
Reduce stack usage in dsl_deleg_get, gcc flagged it as consuming a
whopping 1040 bytes or potentially 1/4 of a 4K stack. This patch
moves all the large structures and buffer off the stack and on to
the heap. This includes 2 zap_cursor_t structs each 52 bytes in
size, 2 zap_attribute_t structs each 280 bytes in size, and 1
256 byte char array. The total saves on the stack is 880 bytes
after you account for the 5 new pointers added.
Also the source buffer length has been increased from MAXNAMELEN
to MAXNAMELEN+strlen(MOS_DIR_NAME)+1 as described by the comment in
dsl_dir_name(). A buffer overrun may have been possible with the
slightly smaller buffer.