Gang ABD Type

Adding the gang ABD type, which allows for linear and scatter ABDs to
be chained together into a single ABD.

This can be used to avoid doing memory copies to/from ABDs. An example
of this can be found in vdev_queue.c in the vdev_queue_aggregate()
function.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Brian <bwa@clemson.edu>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes #10069
This commit is contained in:
Brian Atkinson 2020-05-20 19:06:09 -06:00 committed by GitHub
parent 501a1511ae
commit fb822260b1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 629 additions and 106 deletions

View File

@ -42,6 +42,7 @@ typedef int abd_iter_func_t(void *buf, size_t len, void *private);
typedef int abd_iter_func2_t(void *bufa, void *bufb, size_t len, void *private); typedef int abd_iter_func2_t(void *bufa, void *bufb, size_t len, void *private);
extern int zfs_abd_scatter_enabled; extern int zfs_abd_scatter_enabled;
extern abd_t *abd_zero_scatter;
/* /*
* Allocations and deallocations * Allocations and deallocations
@ -49,13 +50,16 @@ extern int zfs_abd_scatter_enabled;
abd_t *abd_alloc(size_t, boolean_t); abd_t *abd_alloc(size_t, boolean_t);
abd_t *abd_alloc_linear(size_t, boolean_t); abd_t *abd_alloc_linear(size_t, boolean_t);
abd_t *abd_alloc_gang_abd(void);
abd_t *abd_alloc_for_io(size_t, boolean_t); abd_t *abd_alloc_for_io(size_t, boolean_t);
abd_t *abd_alloc_sametype(abd_t *, size_t); abd_t *abd_alloc_sametype(abd_t *, size_t);
void abd_gang_add(abd_t *, abd_t *, boolean_t);
void abd_free(abd_t *); void abd_free(abd_t *);
void abd_put(abd_t *);
abd_t *abd_get_offset(abd_t *, size_t); abd_t *abd_get_offset(abd_t *, size_t);
abd_t *abd_get_offset_size(abd_t *, size_t, size_t); abd_t *abd_get_offset_size(abd_t *, size_t, size_t);
abd_t *abd_get_zeros(size_t);
abd_t *abd_get_from_buf(void *, size_t); abd_t *abd_get_from_buf(void *, size_t);
void abd_put(abd_t *);
/* /*
* Conversion to and from a normal buffer * Conversion to and from a normal buffer
@ -132,6 +136,7 @@ abd_zero(abd_t *abd, size_t size)
* ABD type check functions * ABD type check functions
*/ */
boolean_t abd_is_linear(abd_t *); boolean_t abd_is_linear(abd_t *);
boolean_t abd_is_gang(abd_t *);
boolean_t abd_is_linear_page(abd_t *); boolean_t abd_is_linear_page(abd_t *);
/* /*
@ -146,8 +151,7 @@ void abd_fini(void);
* Linux ABD bio functions * Linux ABD bio functions
*/ */
#if defined(__linux__) && defined(_KERNEL) #if defined(__linux__) && defined(_KERNEL)
unsigned int abd_scatter_bio_map_off(struct bio *, abd_t *, unsigned int, unsigned int abd_bio_map_off(struct bio *, abd_t *, unsigned int, size_t);
size_t);
unsigned long abd_nr_pages_off(abd_t *, unsigned int, size_t); unsigned long abd_nr_pages_off(abd_t *, unsigned int, size_t);
#endif #endif

View File

@ -39,6 +39,9 @@ typedef enum abd_flags {
ABD_FLAG_MULTI_ZONE = 1 << 3, /* pages split over memory zones */ ABD_FLAG_MULTI_ZONE = 1 << 3, /* pages split over memory zones */
ABD_FLAG_MULTI_CHUNK = 1 << 4, /* pages split over multiple chunks */ ABD_FLAG_MULTI_CHUNK = 1 << 4, /* pages split over multiple chunks */
ABD_FLAG_LINEAR_PAGE = 1 << 5, /* linear but allocd from page */ ABD_FLAG_LINEAR_PAGE = 1 << 5, /* linear but allocd from page */
ABD_FLAG_GANG = 1 << 6, /* mult ABDs chained together */
ABD_FLAG_GANG_FREE = 1 << 7, /* gang ABD is responsible for mem */
ABD_FLAG_ZEROS = 1 << 8, /* ABD for zero-filled buffer */
} abd_flags_t; } abd_flags_t;
typedef enum abd_stats_op { typedef enum abd_stats_op {
@ -49,8 +52,10 @@ typedef enum abd_stats_op {
struct abd { struct abd {
abd_flags_t abd_flags; abd_flags_t abd_flags;
uint_t abd_size; /* excludes scattered abd_offset */ uint_t abd_size; /* excludes scattered abd_offset */
list_node_t abd_gang_link;
struct abd *abd_parent; struct abd *abd_parent;
zfs_refcount_t abd_children; zfs_refcount_t abd_children;
kmutex_t abd_mtx;
union { union {
struct abd_scatter { struct abd_scatter {
uint_t abd_offset; uint_t abd_offset;
@ -66,6 +71,9 @@ struct abd {
void *abd_buf; void *abd_buf;
struct scatterlist *abd_sgl; /* for LINEAR_PAGE */ struct scatterlist *abd_sgl; /* for LINEAR_PAGE */
} abd_linear; } abd_linear;
struct abd_gang {
list_t abd_gang_chain;
} abd_gang;
} abd_u; } abd_u;
}; };
@ -84,6 +92,8 @@ struct abd_iter {
struct scatterlist *iter_sg; /* current sg */ struct scatterlist *iter_sg; /* current sg */
}; };
abd_t *abd_gang_get_offset(abd_t *, size_t *);
/* /*
* OS specific functions * OS specific functions
*/ */
@ -116,6 +126,7 @@ void abd_iter_unmap(struct abd_iter *);
#define ABD_SCATTER(abd) (abd->abd_u.abd_scatter) #define ABD_SCATTER(abd) (abd->abd_u.abd_scatter)
#define ABD_LINEAR_BUF(abd) (abd->abd_u.abd_linear.abd_buf) #define ABD_LINEAR_BUF(abd) (abd->abd_u.abd_linear.abd_buf)
#define ABD_GANG(abd) (abd->abd_u.abd_gang)
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(__FreeBSD__) #if defined(__FreeBSD__)

View File

@ -90,6 +90,15 @@ SYSCTL_ULONG(_vfs_zfs, OID_AUTO, abd_chunk_size, CTLFLAG_RDTUN,
kmem_cache_t *abd_chunk_cache; kmem_cache_t *abd_chunk_cache;
static kstat_t *abd_ksp; static kstat_t *abd_ksp;
/*
* We use a scattered SPA_MAXBLOCKSIZE sized ABD whose chunks are
* just a single zero'd sized zfs_abd_chunk_size buffer. This
* allows us to conserve memory by only using a single zero buffer
* for the scatter chunks.
*/
abd_t *abd_zero_scatter = NULL;
static char *abd_zero_buf = NULL;
static void static void
abd_free_chunk(void *c) abd_free_chunk(void *c)
{ {
@ -193,6 +202,8 @@ abd_alloc_struct(size_t size)
abd_u.abd_scatter.abd_chunks[chunkcnt]); abd_u.abd_scatter.abd_chunks[chunkcnt]);
abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE); abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE);
ASSERT3P(abd, !=, NULL); ASSERT3P(abd, !=, NULL);
list_link_init(&abd->abd_gang_link);
mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
ABDSTAT_INCR(abdstat_struct_size, abd_size); ABDSTAT_INCR(abdstat_struct_size, abd_size);
return (abd); return (abd);
@ -203,10 +214,53 @@ abd_free_struct(abd_t *abd)
{ {
size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd); size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd);
int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
mutex_destroy(&abd->abd_mtx);
ASSERT(!list_link_active(&abd->abd_gang_link));
kmem_free(abd, size); kmem_free(abd, size);
ABDSTAT_INCR(abdstat_struct_size, -size); ABDSTAT_INCR(abdstat_struct_size, -size);
} }
/*
* Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where
* each chunk in the scatterlist will be set to abd_zero_buf.
*/
static void
abd_alloc_zero_scatter(void)
{
size_t n = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
abd_zero_buf = kmem_zalloc(zfs_abd_chunk_size, KM_SLEEP);
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
abd_zero_scatter->abd_flags = ABD_FLAG_OWNER | ABD_FLAG_ZEROS;
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
abd_zero_scatter->abd_parent = NULL;
zfs_refcount_create(&abd_zero_scatter->abd_children);
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
ABD_SCATTER(abd_zero_scatter).abd_chunk_size =
zfs_abd_chunk_size;
for (int i = 0; i < n; i++) {
ABD_SCATTER(abd_zero_scatter).abd_chunks[i] =
abd_zero_buf;
}
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, zfs_abd_chunk_size);
}
static void
abd_free_zero_scatter(void)
{
zfs_refcount_destroy(&abd_zero_scatter->abd_children);
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)zfs_abd_chunk_size);
abd_free_struct(abd_zero_scatter);
abd_zero_scatter = NULL;
kmem_free(abd_zero_buf, zfs_abd_chunk_size);
}
void void
abd_init(void) abd_init(void)
{ {
@ -219,11 +273,15 @@ abd_init(void)
abd_ksp->ks_data = &abd_stats; abd_ksp->ks_data = &abd_stats;
kstat_install(abd_ksp); kstat_install(abd_ksp);
} }
abd_alloc_zero_scatter();
} }
void void
abd_fini(void) abd_fini(void)
{ {
abd_free_zero_scatter();
if (abd_ksp != NULL) { if (abd_ksp != NULL) {
kstat_delete(abd_ksp); kstat_delete(abd_ksp);
abd_ksp = NULL; abd_ksp = NULL;
@ -271,12 +329,13 @@ abd_alloc_scatter_offset_chunkcnt(size_t chunkcnt)
abd_u.abd_scatter.abd_chunks[chunkcnt]); abd_u.abd_scatter.abd_chunks[chunkcnt]);
abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE); abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE);
ASSERT3P(abd, !=, NULL); ASSERT3P(abd, !=, NULL);
list_link_init(&abd->abd_gang_link);
mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
ABDSTAT_INCR(abdstat_struct_size, abd_size); ABDSTAT_INCR(abdstat_struct_size, abd_size);
return (abd); return (abd);
} }
abd_t * abd_t *
abd_get_offset_scatter(abd_t *sabd, size_t off) abd_get_offset_scatter(abd_t *sabd, size_t off)
{ {
@ -332,6 +391,7 @@ abd_iter_scatter_chunk_index(struct abd_iter *aiter)
void void
abd_iter_init(struct abd_iter *aiter, abd_t *abd) abd_iter_init(struct abd_iter *aiter, abd_t *abd)
{ {
ASSERT(!abd_is_gang(abd));
abd_verify(abd); abd_verify(abd);
aiter->iter_abd = abd; aiter->iter_abd = abd;
aiter->iter_pos = 0; aiter->iter_pos = 0;

View File

@ -24,7 +24,7 @@
*/ */
/* /*
* See abd.c for an general overview of the arc buffered data (ABD). * See abd.c for a general overview of the arc buffered data (ABD).
* *
* Linear buffers act exactly like normal buffers and are always mapped into the * Linear buffers act exactly like normal buffers and are always mapped into the
* kernel's virtual memory space, while scattered ABD data chunks are allocated * kernel's virtual memory space, while scattered ABD data chunks are allocated
@ -48,7 +48,7 @@
* *
* If we are not using HIGHMEM, scattered buffers which have only one chunk * If we are not using HIGHMEM, scattered buffers which have only one chunk
* can be treated as linear buffers, because they are contiguous in the * can be treated as linear buffers, because they are contiguous in the
* kernel's virtual address space. See abd_alloc_chunks() for details. * kernel's virtual address space. See abd_alloc_chunks() for details.
*/ */
#include <sys/abd_impl.h> #include <sys/abd_impl.h>
@ -160,6 +160,13 @@ unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
*/ */
int zfs_abd_scatter_min_size = 512 * 3; int zfs_abd_scatter_min_size = 512 * 3;
/*
* We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
* just a single zero'd page. This allows us to conserve memory by
* only using a single zero page for the scatterlist.
*/
abd_t *abd_zero_scatter = NULL;
static kmem_cache_t *abd_cache = NULL; static kmem_cache_t *abd_cache = NULL;
static kstat_t *abd_ksp; static kstat_t *abd_ksp;
@ -178,6 +185,8 @@ abd_alloc_struct(size_t size)
*/ */
abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
ASSERT3P(abd, !=, NULL); ASSERT3P(abd, !=, NULL);
list_link_init(&abd->abd_gang_link);
mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
return (abd); return (abd);
@ -186,6 +195,8 @@ abd_alloc_struct(size_t size)
void void
abd_free_struct(abd_t *abd) abd_free_struct(abd_t *abd)
{ {
mutex_destroy(&abd->abd_mtx);
ASSERT(!list_link_active(&abd->abd_gang_link));
kmem_cache_free(abd_cache, abd); kmem_cache_free(abd_cache, abd);
ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
} }
@ -426,14 +437,59 @@ abd_free_chunks(abd_t *abd)
abd_free_sg_table(abd); abd_free_sg_table(abd);
} }
/*
* Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
* the scatterlist will be set to ZERO_PAGE(0). ZERO_PAGE(0) returns
* a global shared page that is always zero'd out.
*/
static void
abd_alloc_zero_scatter(void)
{
struct scatterlist *sg = NULL;
struct sg_table table;
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
int i = 0;
while (sg_alloc_table(&table, nr_pages, gfp)) {
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
schedule_timeout_interruptible(1);
}
ASSERT3U(table.nents, ==, nr_pages);
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
abd_zero_scatter->abd_flags = ABD_FLAG_OWNER;
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
abd_zero_scatter->abd_parent = NULL;
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
zfs_refcount_create(&abd_zero_scatter->abd_children);
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
sg_set_page(sg, ZERO_PAGE(0), PAGESIZE, 0);
}
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}
#else /* _KERNEL */ #else /* _KERNEL */
struct page;
/*
* In user space abd_zero_page we will be an allocated zero'd PAGESIZE
* buffer, which is assigned to set each of the pages of abd_zero_scatter.
*/
static struct page *abd_zero_page = NULL;
#ifndef PAGE_SHIFT #ifndef PAGE_SHIFT
#define PAGE_SHIFT (highbit64(PAGESIZE)-1) #define PAGE_SHIFT (highbit64(PAGESIZE)-1)
#endif #endif
struct page;
#define zfs_kmap_atomic(chunk, km) ((void *)chunk) #define zfs_kmap_atomic(chunk, km) ((void *)chunk)
#define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0) #define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0)
#define local_irq_save(flags) do { (void)(flags); } while (0) #define local_irq_save(flags) do { (void)(flags); } while (0)
@ -527,6 +583,37 @@ abd_free_chunks(abd_t *abd)
abd_free_sg_table(abd); abd_free_sg_table(abd);
} }
static void
abd_alloc_zero_scatter(void)
{
unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
struct scatterlist *sg;
int i;
abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
memset(abd_zero_page, 0, PAGESIZE);
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
abd_zero_scatter->abd_flags = ABD_FLAG_OWNER;
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
abd_zero_scatter->abd_parent = NULL;
zfs_refcount_create(&abd_zero_scatter->abd_children);
ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
sizeof (struct scatterlist), KM_SLEEP);
sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
}
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}
#endif /* _KERNEL */ #endif /* _KERNEL */
boolean_t boolean_t
@ -582,6 +669,22 @@ abd_verify_scatter(abd_t *abd)
} }
} }
static void
abd_free_zero_scatter(void)
{
zfs_refcount_destroy(&abd_zero_scatter->abd_children);
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
abd_free_sg_table(abd_zero_scatter);
abd_free_struct(abd_zero_scatter);
abd_zero_scatter = NULL;
#if !defined(_KERNEL)
umem_free(abd_zero_page, PAGESIZE);
#endif /* _KERNEL */
}
void void
abd_init(void) abd_init(void)
{ {
@ -602,11 +705,15 @@ abd_init(void)
abd_ksp->ks_data = &abd_stats; abd_ksp->ks_data = &abd_stats;
kstat_install(abd_ksp); kstat_install(abd_ksp);
} }
abd_alloc_zero_scatter();
} }
void void
abd_fini(void) abd_fini(void)
{ {
abd_free_zero_scatter();
if (abd_ksp != NULL) { if (abd_ksp != NULL) {
kstat_delete(abd_ksp); kstat_delete(abd_ksp);
abd_ksp = NULL; abd_ksp = NULL;
@ -692,6 +799,7 @@ abd_get_offset_scatter(abd_t *sabd, size_t off)
void void
abd_iter_init(struct abd_iter *aiter, abd_t *abd) abd_iter_init(struct abd_iter *aiter, abd_t *abd)
{ {
ASSERT(!abd_is_gang(abd));
abd_verify(abd); abd_verify(abd);
aiter->iter_abd = abd; aiter->iter_abd = abd;
aiter->iter_mapaddr = NULL; aiter->iter_mapaddr = NULL;
@ -813,6 +921,10 @@ abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
{ {
unsigned long pos; unsigned long pos;
while (abd_is_gang(abd))
abd = abd_gang_get_offset(abd, &off);
ASSERT(!abd_is_gang(abd));
if (abd_is_linear(abd)) if (abd_is_linear(abd))
pos = (unsigned long)abd_to_buf(abd) + off; pos = (unsigned long)abd_to_buf(abd) + off;
else else
@ -822,20 +934,88 @@ abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
(pos >> PAGE_SHIFT); (pos >> PAGE_SHIFT);
} }
static unsigned int
bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
{
unsigned int offset, size, i;
struct page *page;
offset = offset_in_page(buf_ptr);
for (i = 0; i < bio->bi_max_vecs; i++) {
size = PAGE_SIZE - offset;
if (bio_size <= 0)
break;
if (size > bio_size)
size = bio_size;
if (is_vmalloc_addr(buf_ptr))
page = vmalloc_to_page(buf_ptr);
else
page = virt_to_page(buf_ptr);
/*
* Some network related block device uses tcp_sendpage, which
* doesn't behave well when using 0-count page, this is a
* safety net to catch them.
*/
ASSERT3S(page_count(page), >, 0);
if (bio_add_page(bio, page, size, offset) != size)
break;
buf_ptr += size;
bio_size -= size;
offset = 0;
}
return (bio_size);
}
/* /*
* bio_map for scatter ABD. * bio_map for gang ABD.
*/
static unsigned int
abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
unsigned int io_size, size_t off)
{
ASSERT(abd_is_gang(abd));
for (abd_t *cabd = abd_gang_get_offset(abd, &off);
cabd != NULL;
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
ASSERT3U(off, <, cabd->abd_size);
int size = MIN(io_size, cabd->abd_size - off);
int remainder = abd_bio_map_off(bio, cabd, size, off);
io_size -= (size - remainder);
if (io_size == 0 || remainder > 0)
return (io_size);
off = 0;
}
ASSERT0(io_size);
return (io_size);
}
/*
* bio_map for ABD.
* @off is the offset in @abd * @off is the offset in @abd
* Remaining IO size is returned * Remaining IO size is returned
*/ */
unsigned int unsigned int
abd_scatter_bio_map_off(struct bio *bio, abd_t *abd, abd_bio_map_off(struct bio *bio, abd_t *abd,
unsigned int io_size, size_t off) unsigned int io_size, size_t off)
{ {
int i; int i;
struct abd_iter aiter; struct abd_iter aiter;
ASSERT(!abd_is_linear(abd));
ASSERT3U(io_size, <=, abd->abd_size - off); ASSERT3U(io_size, <=, abd->abd_size - off);
if (abd_is_linear(abd))
return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
ASSERT(!abd_is_linear(abd));
if (abd_is_gang(abd))
return (abd_gang_bio_map_off(bio, abd, io_size, off));
abd_iter_init(&aiter, abd); abd_iter_init(&aiter, abd);
abd_iter_advance(&aiter, off); abd_iter_advance(&aiter, off);

View File

@ -396,54 +396,6 @@ BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
rc = vdev_disk_dio_put(dr); rc = vdev_disk_dio_put(dr);
} }
static unsigned int
bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
{
unsigned int offset, size, i;
struct page *page;
offset = offset_in_page(bio_ptr);
for (i = 0; i < bio->bi_max_vecs; i++) {
size = PAGE_SIZE - offset;
if (bio_size <= 0)
break;
if (size > bio_size)
size = bio_size;
if (is_vmalloc_addr(bio_ptr))
page = vmalloc_to_page(bio_ptr);
else
page = virt_to_page(bio_ptr);
/*
* Some network related block device uses tcp_sendpage, which
* doesn't behave well when using 0-count page, this is a
* safety net to catch them.
*/
ASSERT3S(page_count(page), >, 0);
if (bio_add_page(bio, page, size, offset) != size)
break;
bio_ptr += size;
bio_size -= size;
offset = 0;
}
return (bio_size);
}
static unsigned int
bio_map_abd_off(struct bio *bio, abd_t *abd, unsigned int size, size_t off)
{
if (abd_is_linear(abd))
return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, size));
return (abd_scatter_bio_map_off(bio, abd, size, off));
}
static inline void static inline void
vdev_submit_bio_impl(struct bio *bio) vdev_submit_bio_impl(struct bio *bio)
{ {
@ -603,7 +555,7 @@ retry:
bio_set_op_attrs(dr->dr_bio[i], rw, flags); bio_set_op_attrs(dr->dr_bio[i], rw, flags);
/* Remaining size is returned to become the new size */ /* Remaining size is returned to become the new size */
bio_size = bio_map_abd_off(dr->dr_bio[i], zio->io_abd, bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
bio_size, abd_offset); bio_size, abd_offset);
/* Advance in buffer and construct another bio if needed */ /* Advance in buffer and construct another bio if needed */

View File

@ -88,6 +88,10 @@
* function which progressively accesses the whole ABD, use the abd_iterate_* * function which progressively accesses the whole ABD, use the abd_iterate_*
* functions. * functions.
* *
* As an additional feature, linear and scatter ABD's can be stitched together
* by using the gang ABD type (abd_alloc_gang_abd()). This allows for
* multiple ABDs to be viewed as a singular ABD.
*
* It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
* B_FALSE. * B_FALSE.
*/ */
@ -114,6 +118,13 @@ abd_is_linear_page(abd_t *abd)
B_TRUE : B_FALSE); B_TRUE : B_FALSE);
} }
boolean_t
abd_is_gang(abd_t *abd)
{
return ((abd->abd_flags & ABD_FLAG_GANG) != 0 ? B_TRUE :
B_FALSE);
}
void void
abd_verify(abd_t *abd) abd_verify(abd_t *abd)
{ {
@ -121,11 +132,18 @@ abd_verify(abd_t *abd)
ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE | ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE)); ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG |
ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS));
IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
if (abd_is_linear(abd)) { if (abd_is_linear(abd)) {
ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL); ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
} else if (abd_is_gang(abd)) {
for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
cabd != NULL;
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
abd_verify(cabd);
}
} else { } else {
abd_verify_scatter(abd); abd_verify_scatter(abd);
} }
@ -177,6 +195,22 @@ abd_free_scatter(abd_t *abd)
abd_free_struct(abd); abd_free_struct(abd);
} }
static void
abd_put_gang_abd(abd_t *abd)
{
ASSERT(abd_is_gang(abd));
abd_t *cabd;
while ((cabd = list_remove_head(&ABD_GANG(abd).abd_gang_chain))
!= NULL) {
ASSERT0(cabd->abd_flags & ABD_FLAG_GANG_FREE);
abd->abd_size -= cabd->abd_size;
abd_put(cabd);
}
ASSERT0(abd->abd_size);
list_destroy(&ABD_GANG(abd).abd_gang_chain);
}
/* /*
* Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
* free the underlying scatterlist or buffer. * free the underlying scatterlist or buffer.
@ -195,6 +229,9 @@ abd_put(abd_t *abd)
abd->abd_size, abd); abd->abd_size, abd);
} }
if (abd_is_gang(abd))
abd_put_gang_abd(abd);
zfs_refcount_destroy(&abd->abd_children); zfs_refcount_destroy(&abd->abd_children);
abd_free_struct(abd); abd_free_struct(abd);
} }
@ -249,9 +286,31 @@ abd_free_linear(abd_t *abd)
abd_free_struct(abd); abd_free_struct(abd);
} }
static void
abd_free_gang_abd(abd_t *abd)
{
ASSERT(abd_is_gang(abd));
abd_t *cabd;
while ((cabd = list_remove_head(&ABD_GANG(abd).abd_gang_chain))
!= NULL) {
abd->abd_size -= cabd->abd_size;
if (cabd->abd_flags & ABD_FLAG_GANG_FREE) {
if (cabd->abd_flags & ABD_FLAG_OWNER)
abd_free(cabd);
else
abd_put(cabd);
}
}
ASSERT0(abd->abd_size);
list_destroy(&ABD_GANG(abd).abd_gang_chain);
zfs_refcount_destroy(&abd->abd_children);
abd_free_struct(abd);
}
/* /*
* Free an ABD. Only use this on ABDs allocated with abd_alloc() or * Free an ABD. Only use this on ABDs allocated with abd_alloc(),
* abd_alloc_linear(). * abd_alloc_linear(), or abd_alloc_gang_abd().
*/ */
void void
abd_free(abd_t *abd) abd_free(abd_t *abd)
@ -264,6 +323,8 @@ abd_free(abd_t *abd)
ASSERT(abd->abd_flags & ABD_FLAG_OWNER); ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
if (abd_is_linear(abd)) if (abd_is_linear(abd))
abd_free_linear(abd); abd_free_linear(abd);
else if (abd_is_gang(abd))
abd_free_gang_abd(abd);
else else
abd_free_scatter(abd); abd_free_scatter(abd);
} }
@ -284,6 +345,109 @@ abd_alloc_sametype(abd_t *sabd, size_t size)
} }
} }
/*
* Create gang ABD that will be the head of a list of ABD's. This is used
* to "chain" scatter/gather lists together when constructing aggregated
* IO's. To free this abd, abd_free() must be called.
*/
abd_t *
abd_alloc_gang_abd(void)
{
abd_t *abd;
abd = abd_alloc_struct(0);
abd->abd_flags = ABD_FLAG_GANG | ABD_FLAG_OWNER;
abd->abd_size = 0;
abd->abd_parent = NULL;
list_create(&ABD_GANG(abd).abd_gang_chain,
sizeof (abd_t), offsetof(abd_t, abd_gang_link));
zfs_refcount_create(&abd->abd_children);
return (abd);
}
/*
* Add a child ABD to a gang ABD's chained list.
*/
void
abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
{
ASSERT(abd_is_gang(pabd));
abd_t *child_abd = NULL;
/*
* In order to verify that an ABD is not already part of
* another gang ABD, we must lock the child ABD's abd_mtx
* to check its abd_gang_link status. We unlock the abd_mtx
* only after it is has been added to a gang ABD, which
* will update the abd_gang_link's status. See comment below
* for how an ABD can be in multiple gang ABD's simultaneously.
*/
mutex_enter(&cabd->abd_mtx);
if (list_link_active(&cabd->abd_gang_link)) {
/*
* If the child ABD is already part of another
* gang ABD then we must allocate a new
* ABD to use a seperate link. We mark the newly
* allocated ABD with ABD_FLAG_GANG_FREE, before
* adding it to the gang ABD's list, to make the
* gang ABD aware that it is responsible to call
* abd_put(). We use abd_get_offset() in order
* to just allocate a new ABD but avoid copying the
* data over into the newly allocated ABD.
*
* An ABD may become part of multiple gang ABD's. For
* example, when writting ditto bocks, the same ABD
* is used to write 2 or 3 locations with 2 or 3
* zio_t's. Each of the zio's may be aggregated with
* different adjacent zio's. zio aggregation uses gang
* zio's, so the single ABD can become part of multiple
* gang zio's.
*
* The ASSERT below is to make sure that if
* free_on_free is passed as B_TRUE, the ABD can
* not be in mulitple gang ABD's. The gang ABD
* can not be responsible for cleaning up the child
* ABD memory allocation if the ABD can be in
* multiple gang ABD's at one time.
*/
ASSERT3B(free_on_free, ==, B_FALSE);
child_abd = abd_get_offset(cabd, 0);
child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
} else {
child_abd = cabd;
if (free_on_free)
child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
}
ASSERT3P(child_abd, !=, NULL);
list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd);
mutex_exit(&cabd->abd_mtx);
pabd->abd_size += child_abd->abd_size;
}
/*
* Locate the ABD for the supplied offset in the gang ABD.
* Return a new offset relative to the returned ABD.
*/
abd_t *
abd_gang_get_offset(abd_t *abd, size_t *off)
{
abd_t *cabd;
ASSERT(abd_is_gang(abd));
ASSERT3U(*off, <, abd->abd_size);
for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL;
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
if (*off >= cabd->abd_size)
*off -= cabd->abd_size;
else
return (cabd);
}
VERIFY3P(cabd, !=, NULL);
return (cabd);
}
/* /*
* Allocate a new ABD to point to offset off of sabd. It shares the underlying * Allocate a new ABD to point to offset off of sabd. It shares the underlying
* buffer data with sabd. Use abd_put() to free. sabd must not be freed while * buffer data with sabd. Use abd_put() to free. sabd must not be freed while
@ -308,6 +472,21 @@ abd_get_offset_impl(abd_t *sabd, size_t off, size_t size)
abd->abd_flags = ABD_FLAG_LINEAR; abd->abd_flags = ABD_FLAG_LINEAR;
ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off; ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
} else if (abd_is_gang(sabd)) {
size_t left = size;
abd = abd_alloc_gang_abd();
abd->abd_flags &= ~ABD_FLAG_OWNER;
for (abd_t *cabd = abd_gang_get_offset(sabd, &off);
cabd != NULL && left > 0;
cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) {
int csize = MIN(left, cabd->abd_size - off);
abd_t *nabd = abd_get_offset_impl(cabd, off, csize);
abd_gang_add(abd, nabd, B_FALSE);
left -= csize;
off = 0;
}
ASSERT3U(left, ==, 0);
} else { } else {
abd = abd_get_offset_scatter(sabd, off); abd = abd_get_offset_scatter(sabd, off);
} }
@ -334,6 +513,18 @@ abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
return (abd_get_offset_impl(sabd, off, size)); return (abd_get_offset_impl(sabd, off, size));
} }
/*
* Return a size scatter ABD. In order to free the returned
* ABD abd_put() must be called.
*/
abd_t *
abd_get_zeros(size_t size)
{
ASSERT3P(abd_zero_scatter, !=, NULL);
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
return (abd_get_offset_size(abd_zero_scatter, 0, size));
}
/* /*
* Allocate a linear ABD structure for buf. You must free this with abd_put() * Allocate a linear ABD structure for buf. You must free this with abd_put()
* since the resulting ABD doesn't own its own buffer. * since the resulting ABD doesn't own its own buffer.
@ -477,20 +668,69 @@ abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
abd_update_linear_stats(abd, ABDSTAT_INCR); abd_update_linear_stats(abd, ABDSTAT_INCR);
} }
/*
* Initializes an abd_iter based on whether the abd is a gang ABD
* or just a single ABD.
*/
static inline abd_t *
abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off)
{
abd_t *cabd = NULL;
if (abd_is_gang(abd)) {
cabd = abd_gang_get_offset(abd, &off);
if (cabd) {
abd_iter_init(aiter, cabd);
abd_iter_advance(aiter, off);
}
} else {
abd_iter_init(aiter, abd);
abd_iter_advance(aiter, off);
}
return (cabd);
}
/*
* Advances an abd_iter. We have to be careful with gang ABD as
* advancing could mean that we are at the end of a particular ABD and
* must grab the ABD in the gang ABD's list.
*/
static inline abd_t *
abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter,
size_t len)
{
abd_iter_advance(aiter, len);
if (abd_is_gang(abd) && abd_iter_at_end(aiter)) {
ASSERT3P(cabd, !=, NULL);
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd);
if (cabd) {
abd_iter_init(aiter, cabd);
abd_iter_advance(aiter, 0);
}
}
return (cabd);
}
int int
abd_iterate_func(abd_t *abd, size_t off, size_t size, abd_iterate_func(abd_t *abd, size_t off, size_t size,
abd_iter_func_t *func, void *private) abd_iter_func_t *func, void *private)
{ {
int ret = 0; int ret = 0;
struct abd_iter aiter; struct abd_iter aiter;
boolean_t abd_multi;
abd_t *c_abd;
abd_verify(abd); abd_verify(abd);
ASSERT3U(off + size, <=, abd->abd_size); ASSERT3U(off + size, <=, abd->abd_size);
abd_iter_init(&aiter, abd); abd_multi = abd_is_gang(abd);
abd_iter_advance(&aiter, off); c_abd = abd_init_abd_iter(abd, &aiter, off);
while (size > 0) { while (size > 0) {
/* If we are at the end of the gang ABD we are done */
if (abd_multi && !c_abd)
break;
abd_iter_map(&aiter); abd_iter_map(&aiter);
size_t len = MIN(aiter.iter_mapsize, size); size_t len = MIN(aiter.iter_mapsize, size);
@ -504,7 +744,7 @@ abd_iterate_func(abd_t *abd, size_t off, size_t size,
break; break;
size -= len; size -= len;
abd_iter_advance(&aiter, len); c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
} }
return (ret); return (ret);
@ -611,6 +851,8 @@ abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
{ {
int ret = 0; int ret = 0;
struct abd_iter daiter, saiter; struct abd_iter daiter, saiter;
boolean_t dabd_is_gang_abd, sabd_is_gang_abd;
abd_t *c_dabd, *c_sabd;
abd_verify(dabd); abd_verify(dabd);
abd_verify(sabd); abd_verify(sabd);
@ -618,12 +860,17 @@ abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
ASSERT3U(doff + size, <=, dabd->abd_size); ASSERT3U(doff + size, <=, dabd->abd_size);
ASSERT3U(soff + size, <=, sabd->abd_size); ASSERT3U(soff + size, <=, sabd->abd_size);
abd_iter_init(&daiter, dabd); dabd_is_gang_abd = abd_is_gang(dabd);
abd_iter_init(&saiter, sabd); sabd_is_gang_abd = abd_is_gang(sabd);
abd_iter_advance(&daiter, doff); c_dabd = abd_init_abd_iter(dabd, &daiter, doff);
abd_iter_advance(&saiter, soff); c_sabd = abd_init_abd_iter(sabd, &saiter, soff);
while (size > 0) { while (size > 0) {
/* if we are at the end of the gang ABD we are done */
if ((dabd_is_gang_abd && !c_dabd) ||
(sabd_is_gang_abd && !c_sabd))
break;
abd_iter_map(&daiter); abd_iter_map(&daiter);
abd_iter_map(&saiter); abd_iter_map(&saiter);
@ -642,8 +889,10 @@ abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
break; break;
size -= len; size -= len;
abd_iter_advance(&daiter, len); c_dabd =
abd_iter_advance(&saiter, len); abd_advance_abd_iter(dabd, c_dabd, &daiter, len);
c_sabd =
abd_advance_abd_iter(sabd, c_sabd, &saiter, len);
} }
return (ret); return (ret);
@ -704,29 +953,46 @@ abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
struct abd_iter daiter = {0}; struct abd_iter daiter = {0};
void *caddrs[3]; void *caddrs[3];
unsigned long flags __maybe_unused = 0; unsigned long flags __maybe_unused = 0;
abd_t *c_cabds[3];
abd_t *c_dabd = NULL;
boolean_t cabds_is_gang_abd[3];
boolean_t dabd_is_gang_abd = B_FALSE;
ASSERT3U(parity, <=, 3); ASSERT3U(parity, <=, 3);
for (i = 0; i < parity; i++) for (i = 0; i < parity; i++) {
abd_iter_init(&caiters[i], cabds[i]); cabds_is_gang_abd[i] = abd_is_gang(cabds[i]);
c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], 0);
}
if (dabd) if (dabd) {
abd_iter_init(&daiter, dabd); dabd_is_gang_abd = abd_is_gang(dabd);
c_dabd = abd_init_abd_iter(dabd, &daiter, 0);
}
ASSERT3S(dsize, >=, 0); ASSERT3S(dsize, >=, 0);
abd_enter_critical(flags); abd_enter_critical(flags);
while (csize > 0) { while (csize > 0) {
len = csize; /* if we are at the end of the gang ABD we are done */
if (dabd_is_gang_abd && !c_dabd)
if (dabd && dsize > 0) break;
abd_iter_map(&daiter);
for (i = 0; i < parity; i++) { for (i = 0; i < parity; i++) {
/*
* If we are at the end of the gang ABD we are
* done.
*/
if (cabds_is_gang_abd[i] && !c_cabds[i])
break;
abd_iter_map(&caiters[i]); abd_iter_map(&caiters[i]);
caddrs[i] = caiters[i].iter_mapaddr; caddrs[i] = caiters[i].iter_mapaddr;
} }
len = csize;
if (dabd && dsize > 0)
abd_iter_map(&daiter);
switch (parity) { switch (parity) {
case 3: case 3:
@ -761,12 +1027,16 @@ abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
for (i = parity-1; i >= 0; i--) { for (i = parity-1; i >= 0; i--) {
abd_iter_unmap(&caiters[i]); abd_iter_unmap(&caiters[i]);
abd_iter_advance(&caiters[i], len); c_cabds[i] =
abd_advance_abd_iter(cabds[i], c_cabds[i],
&caiters[i], len);
} }
if (dabd && dsize > 0) { if (dabd && dsize > 0) {
abd_iter_unmap(&daiter); abd_iter_unmap(&daiter);
abd_iter_advance(&daiter, dlen); c_dabd =
abd_advance_abd_iter(dabd, c_dabd, &daiter,
dlen);
dsize -= dlen; dsize -= dlen;
} }
@ -801,18 +1071,34 @@ abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
struct abd_iter xiters[3]; struct abd_iter xiters[3];
void *caddrs[3], *xaddrs[3]; void *caddrs[3], *xaddrs[3];
unsigned long flags __maybe_unused = 0; unsigned long flags __maybe_unused = 0;
boolean_t cabds_is_gang_abd[3];
boolean_t tabds_is_gang_abd[3];
abd_t *c_cabds[3];
abd_t *c_tabds[3];
ASSERT3U(parity, <=, 3); ASSERT3U(parity, <=, 3);
for (i = 0; i < parity; i++) { for (i = 0; i < parity; i++) {
abd_iter_init(&citers[i], cabds[i]); cabds_is_gang_abd[i] = abd_is_gang(cabds[i]);
abd_iter_init(&xiters[i], tabds[i]); tabds_is_gang_abd[i] = abd_is_gang(tabds[i]);
c_cabds[i] =
abd_init_abd_iter(cabds[i], &citers[i], 0);
c_tabds[i] =
abd_init_abd_iter(tabds[i], &xiters[i], 0);
} }
abd_enter_critical(flags); abd_enter_critical(flags);
while (tsize > 0) { while (tsize > 0) {
for (i = 0; i < parity; i++) { for (i = 0; i < parity; i++) {
/*
* If we are at the end of the gang ABD we
* are done.
*/
if (cabds_is_gang_abd[i] && !c_cabds[i])
break;
if (tabds_is_gang_abd[i] && !c_tabds[i])
break;
abd_iter_map(&citers[i]); abd_iter_map(&citers[i]);
abd_iter_map(&xiters[i]); abd_iter_map(&xiters[i]);
caddrs[i] = citers[i].iter_mapaddr; caddrs[i] = citers[i].iter_mapaddr;
@ -846,8 +1132,12 @@ abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
for (i = parity-1; i >= 0; i--) { for (i = parity-1; i >= 0; i--) {
abd_iter_unmap(&xiters[i]); abd_iter_unmap(&xiters[i]);
abd_iter_unmap(&citers[i]); abd_iter_unmap(&citers[i]);
abd_iter_advance(&xiters[i], len); c_tabds[i] =
abd_iter_advance(&citers[i], len); abd_advance_abd_iter(tabds[i], c_tabds[i],
&xiters[i], len);
c_cabds[i] =
abd_advance_abd_iter(cabds[i], c_cabds[i],
&citers[i], len);
} }
tsize -= len; tsize -= len;

View File

@ -535,15 +535,6 @@ vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
static void static void
vdev_queue_agg_io_done(zio_t *aio) vdev_queue_agg_io_done(zio_t *aio)
{ {
if (aio->io_type == ZIO_TYPE_READ) {
zio_t *pio;
zio_link_t *zl = NULL;
while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
abd_copy_off(pio->io_abd, aio->io_abd,
0, pio->io_offset - aio->io_offset, pio->io_size);
}
}
abd_free(aio->io_abd); abd_free(aio->io_abd);
} }
@ -556,6 +547,14 @@ vdev_queue_agg_io_done(zio_t *aio)
#define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
#define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
/*
* Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this
* by creating a gang ABD from the adjacent ZIOs io_abd's. By using
* a gang ABD we avoid doing memory copies to and from the parent,
* child ZIOs. The gang ABD also accounts for gaps between adjacent
* io_offsets by simply getting the zero ABD for writes or allocating
* a new ABD for reads and placing them in the gang ABD as well.
*/
static zio_t * static zio_t *
vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
{ {
@ -568,6 +567,7 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
boolean_t stretch = B_FALSE; boolean_t stretch = B_FALSE;
avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
uint64_t next_offset;
abd_t *abd; abd_t *abd;
maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa); maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa);
@ -695,7 +695,7 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
size = IO_SPAN(first, last); size = IO_SPAN(first, last);
ASSERT3U(size, <=, maxblocksize); ASSERT3U(size, <=, maxblocksize);
abd = abd_alloc_for_io(size, B_TRUE); abd = abd_alloc_gang_abd();
if (abd == NULL) if (abd == NULL)
return (NULL); return (NULL);
@ -706,32 +706,58 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
aio->io_timestamp = first->io_timestamp; aio->io_timestamp = first->io_timestamp;
nio = first; nio = first;
next_offset = first->io_offset;
do { do {
dio = nio; dio = nio;
nio = AVL_NEXT(t, dio); nio = AVL_NEXT(t, dio);
zio_add_child(dio, aio); zio_add_child(dio, aio);
vdev_queue_io_remove(vq, dio); vdev_queue_io_remove(vq, dio);
if (dio->io_offset != next_offset) {
/* allocate a buffer for a read gap */
ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ);
ASSERT3U(dio->io_offset, >, next_offset);
abd = abd_alloc_for_io(
dio->io_offset - next_offset, B_TRUE);
abd_gang_add(aio->io_abd, abd, B_TRUE);
}
if (dio->io_abd &&
(dio->io_size != abd_get_size(dio->io_abd))) {
/* abd size not the same as IO size */
ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size);
abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size);
abd_gang_add(aio->io_abd, abd, B_TRUE);
} else {
if (dio->io_flags & ZIO_FLAG_NODATA) {
/* allocate a buffer for a write gap */
ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
ASSERT3P(dio->io_abd, ==, NULL);
abd_gang_add(aio->io_abd,
abd_get_zeros(dio->io_size), B_TRUE);
} else {
/*
* We pass B_FALSE to abd_gang_add()
* because we did not allocate a new
* ABD, so it is assumed the caller
* will free this ABD.
*/
abd_gang_add(aio->io_abd, dio->io_abd,
B_FALSE);
}
}
next_offset = dio->io_offset + dio->io_size;
} while (dio != last); } while (dio != last);
ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size);
/* /*
* We need to drop the vdev queue's lock during zio_execute() to * We need to drop the vdev queue's lock during zio_execute() to
* avoid a deadlock that we could encounter due to lock order * avoid a deadlock that we could encounter due to lock order
* reversal between vq_lock and io_lock in zio_change_priority(). * reversal between vq_lock and io_lock in zio_change_priority().
* Use the dropped lock to do memory copy without congestion.
*/ */
mutex_exit(&vq->vq_lock); mutex_exit(&vq->vq_lock);
while ((dio = zio_walk_parents(aio, &zl)) != NULL) { while ((dio = zio_walk_parents(aio, &zl)) != NULL) {
ASSERT3U(dio->io_type, ==, aio->io_type); ASSERT3U(dio->io_type, ==, aio->io_type);
if (dio->io_flags & ZIO_FLAG_NODATA) {
ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
abd_zero_off(aio->io_abd,
dio->io_offset - aio->io_offset, dio->io_size);
} else if (dio->io_type == ZIO_TYPE_WRITE) {
abd_copy_off(aio->io_abd, dio->io_abd,
dio->io_offset - aio->io_offset, 0, dio->io_size);
}
zio_vdev_io_bypass(dio); zio_vdev_io_bypass(dio);
zio_execute(dio); zio_execute(dio);
} }