New an improved taskq implementation for the SPL. It allows a
configurable number of threads like the Solaris version and almost all of the options are supported. Unfortunately, it appears to have made absolutely no difference to our performance numbers. I need to keep looking for where we are bottle necking. git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@93 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
This commit is contained in:
parent
839d8b438e
commit
bcd68186d8
|
@ -28,6 +28,7 @@ typedef enum { CV_DEFAULT=0, CV_DRIVER } kcv_type_t;
|
|||
static __inline__ void
|
||||
cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
|
||||
{
|
||||
ENTRY;
|
||||
ASSERT(cvp);
|
||||
ASSERT(type == CV_DEFAULT);
|
||||
ASSERT(arg == NULL);
|
||||
|
@ -44,11 +45,14 @@ cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
|
|||
if (cvp->cv_name)
|
||||
strcpy(cvp->cv_name, name);
|
||||
}
|
||||
|
||||
EXIT;
|
||||
}
|
||||
|
||||
static __inline__ void
|
||||
cv_destroy(kcondvar_t *cvp)
|
||||
{
|
||||
ENTRY;
|
||||
ASSERT(cvp);
|
||||
ASSERT(cvp->cv_magic == CV_MAGIC);
|
||||
spin_lock(&cvp->cv_lock);
|
||||
|
@ -60,12 +64,14 @@ cv_destroy(kcondvar_t *cvp)
|
|||
|
||||
memset(cvp, CV_POISON, sizeof(*cvp));
|
||||
spin_unlock(&cvp->cv_lock);
|
||||
EXIT;
|
||||
}
|
||||
|
||||
static __inline__ void
|
||||
cv_wait(kcondvar_t *cvp, kmutex_t *mtx)
|
||||
{
|
||||
DEFINE_WAIT(wait);
|
||||
ENTRY;
|
||||
|
||||
ASSERT(cvp);
|
||||
ASSERT(mtx);
|
||||
|
@ -93,6 +99,7 @@ cv_wait(kcondvar_t *cvp, kmutex_t *mtx)
|
|||
|
||||
atomic_dec(&cvp->cv_waiters);
|
||||
finish_wait(&cvp->cv_event, &wait);
|
||||
EXIT;
|
||||
}
|
||||
|
||||
/* 'expire_time' argument is an absolute wall clock time in jiffies.
|
||||
|
@ -103,6 +110,7 @@ cv_timedwait(kcondvar_t *cvp, kmutex_t *mtx, clock_t expire_time)
|
|||
{
|
||||
DEFINE_WAIT(wait);
|
||||
clock_t time_left;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(cvp);
|
||||
ASSERT(mtx);
|
||||
|
@ -120,7 +128,7 @@ cv_timedwait(kcondvar_t *cvp, kmutex_t *mtx, clock_t expire_time)
|
|||
/* XXX - Does not handle jiffie wrap properly */
|
||||
time_left = expire_time - jiffies;
|
||||
if (time_left <= 0)
|
||||
return -1;
|
||||
RETURN(-1);
|
||||
|
||||
prepare_to_wait_exclusive(&cvp->cv_event, &wait,
|
||||
TASK_UNINTERRUPTIBLE);
|
||||
|
@ -136,12 +144,13 @@ cv_timedwait(kcondvar_t *cvp, kmutex_t *mtx, clock_t expire_time)
|
|||
atomic_dec(&cvp->cv_waiters);
|
||||
finish_wait(&cvp->cv_event, &wait);
|
||||
|
||||
return (time_left > 0 ? time_left : -1);
|
||||
RETURN(time_left > 0 ? time_left : -1);
|
||||
}
|
||||
|
||||
static __inline__ void
|
||||
cv_signal(kcondvar_t *cvp)
|
||||
{
|
||||
ENTRY;
|
||||
ASSERT(cvp);
|
||||
ASSERT(cvp->cv_magic == CV_MAGIC);
|
||||
|
||||
|
@ -151,6 +160,8 @@ cv_signal(kcondvar_t *cvp)
|
|||
* the wait queue to ensure we don't race waking up processes. */
|
||||
if (atomic_read(&cvp->cv_waiters) > 0)
|
||||
wake_up(&cvp->cv_event);
|
||||
|
||||
EXIT;
|
||||
}
|
||||
|
||||
static __inline__ void
|
||||
|
@ -158,10 +169,13 @@ cv_broadcast(kcondvar_t *cvp)
|
|||
{
|
||||
ASSERT(cvp);
|
||||
ASSERT(cvp->cv_magic == CV_MAGIC);
|
||||
ENTRY;
|
||||
|
||||
/* Wake_up_all() will wake up all waiters even those which
|
||||
* have the WQ_FLAG_EXCLUSIVE flag set. */
|
||||
if (atomic_read(&cvp->cv_waiters) > 0)
|
||||
wake_up_all(&cvp->cv_event);
|
||||
|
||||
EXIT;
|
||||
}
|
||||
#endif /* _SPL_CONDVAR_H */
|
||||
|
|
|
@ -36,6 +36,7 @@ typedef struct {
|
|||
static __inline__ void
|
||||
mutex_init(kmutex_t *mp, char *name, int type, void *ibc)
|
||||
{
|
||||
ENTRY;
|
||||
ASSERT(mp);
|
||||
ASSERT(ibc == NULL); /* XXX - Spin mutexes not needed */
|
||||
ASSERT(type == MUTEX_DEFAULT); /* XXX - Only default type supported */
|
||||
|
@ -51,12 +52,14 @@ mutex_init(kmutex_t *mp, char *name, int type, void *ibc)
|
|||
if (mp->km_name)
|
||||
strcpy(mp->km_name, name);
|
||||
}
|
||||
EXIT;
|
||||
}
|
||||
|
||||
#undef mutex_destroy
|
||||
static __inline__ void
|
||||
mutex_destroy(kmutex_t *mp)
|
||||
{
|
||||
ENTRY;
|
||||
ASSERT(mp);
|
||||
ASSERT(mp->km_magic == KM_MAGIC);
|
||||
spin_lock(&mp->km_lock);
|
||||
|
@ -66,11 +69,13 @@ mutex_destroy(kmutex_t *mp)
|
|||
|
||||
memset(mp, KM_POISON, sizeof(*mp));
|
||||
spin_unlock(&mp->km_lock);
|
||||
EXIT;
|
||||
}
|
||||
|
||||
static __inline__ void
|
||||
mutex_enter(kmutex_t *mp)
|
||||
{
|
||||
ENTRY;
|
||||
ASSERT(mp);
|
||||
ASSERT(mp->km_magic == KM_MAGIC);
|
||||
spin_lock(&mp->km_lock);
|
||||
|
@ -91,6 +96,7 @@ mutex_enter(kmutex_t *mp)
|
|||
ASSERT(mp->km_owner == NULL);
|
||||
mp->km_owner = current;
|
||||
spin_unlock(&mp->km_lock);
|
||||
EXIT;
|
||||
}
|
||||
|
||||
/* Return 1 if we acquired the mutex, else zero. */
|
||||
|
@ -98,6 +104,7 @@ static __inline__ int
|
|||
mutex_tryenter(kmutex_t *mp)
|
||||
{
|
||||
int rc;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(mp);
|
||||
ASSERT(mp->km_magic == KM_MAGIC);
|
||||
|
@ -118,14 +125,16 @@ mutex_tryenter(kmutex_t *mp)
|
|||
ASSERT(mp->km_owner == NULL);
|
||||
mp->km_owner = current;
|
||||
spin_unlock(&mp->km_lock);
|
||||
return 1;
|
||||
RETURN(1);
|
||||
}
|
||||
return 0;
|
||||
|
||||
RETURN(0);
|
||||
}
|
||||
|
||||
static __inline__ void
|
||||
mutex_exit(kmutex_t *mp)
|
||||
{
|
||||
ENTRY;
|
||||
ASSERT(mp);
|
||||
ASSERT(mp->km_magic == KM_MAGIC);
|
||||
spin_lock(&mp->km_lock);
|
||||
|
@ -134,6 +143,7 @@ mutex_exit(kmutex_t *mp)
|
|||
mp->km_owner = NULL;
|
||||
spin_unlock(&mp->km_lock);
|
||||
up(&mp->km_sem);
|
||||
EXIT;
|
||||
}
|
||||
|
||||
/* Return 1 if mutex is held by current process, else zero. */
|
||||
|
@ -141,6 +151,7 @@ static __inline__ int
|
|||
mutex_owned(kmutex_t *mp)
|
||||
{
|
||||
int rc;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(mp);
|
||||
ASSERT(mp->km_magic == KM_MAGIC);
|
||||
|
@ -148,7 +159,7 @@ mutex_owned(kmutex_t *mp)
|
|||
rc = (mp->km_owner == current);
|
||||
spin_unlock(&mp->km_lock);
|
||||
|
||||
return rc;
|
||||
RETURN(rc);
|
||||
}
|
||||
|
||||
/* Return owner if mutex is owned, else NULL. */
|
||||
|
@ -156,6 +167,7 @@ static __inline__ kthread_t *
|
|||
mutex_owner(kmutex_t *mp)
|
||||
{
|
||||
kthread_t *thr;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(mp);
|
||||
ASSERT(mp->km_magic == KM_MAGIC);
|
||||
|
@ -163,7 +175,7 @@ mutex_owner(kmutex_t *mp)
|
|||
thr = mp->km_owner;
|
||||
spin_unlock(&mp->km_lock);
|
||||
|
||||
return thr;
|
||||
RETURN(thr);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
|
@ -5,82 +5,75 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Task Queues - As of linux 2.6.x task queues have been replaced by a
|
||||
* similar construct called work queues. The big difference on the linux
|
||||
* side is that functions called from work queues run in process context
|
||||
* and not interrupt context.
|
||||
*
|
||||
* One nice feature of Solaris which does not exist in linux work
|
||||
* queues in the notion of a dynamic work queue. Rather than implementing
|
||||
* this in the shim layer I'm hardcoding one-thread per work queue.
|
||||
*
|
||||
* XXX - This may end up being a significant performance penalty which
|
||||
* forces us to implement dynamic workqueues. Which is all very doable
|
||||
* with a little effort.
|
||||
*/
|
||||
#include <linux/module.h>
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/gfp.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/kthread.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
#undef DEBUG_TASKQ_UNIMPLEMENTED
|
||||
#include <sys/kmem.h>
|
||||
|
||||
#define TASKQ_NAMELEN 31
|
||||
#define taskq_t workq_t
|
||||
|
||||
typedef struct workqueue_struct workq_t;
|
||||
#define TASKQ_PREPOPULATE 0x00000001
|
||||
#define TASKQ_CPR_SAFE 0x00000002
|
||||
#define TASKQ_DYNAMIC 0x00000004
|
||||
|
||||
typedef unsigned long taskqid_t;
|
||||
typedef void (*task_func_t)(void *);
|
||||
|
||||
/*
|
||||
* Public flags for taskq_create(): bit range 0-15
|
||||
*/
|
||||
#define TASKQ_PREPOPULATE 0x0000 /* XXX - Workqueues fully populate */
|
||||
#define TASKQ_CPR_SAFE 0x0000 /* XXX - No analog */
|
||||
#define TASKQ_DYNAMIC 0x0000 /* XXX - Worksqueues not dynamic */
|
||||
typedef void (task_func_t)(void *);
|
||||
|
||||
/*
|
||||
* Flags for taskq_dispatch. TQ_SLEEP/TQ_NOSLEEP should be same as
|
||||
* KM_SLEEP/KM_NOSLEEP.
|
||||
* KM_SLEEP/KM_NOSLEEP. TQ_NOQUEUE/TQ_NOALLOC are set particularly
|
||||
* large so as not to conflict with already used GFP_* defines.
|
||||
*/
|
||||
#define TQ_SLEEP 0x00 /* XXX - Workqueues don't support */
|
||||
#define TQ_NOSLEEP 0x00 /* these sorts of flags. They */
|
||||
#define TQ_NOQUEUE 0x00 /* always run in application */
|
||||
#define TQ_NOALLOC 0x00 /* context and can sleep. */
|
||||
#define TQ_SLEEP KM_SLEEP
|
||||
#define TQ_NOSLEEP KM_NOSLEEP
|
||||
#define TQ_NOQUEUE 0x01000000
|
||||
#define TQ_NOALLOC 0x02000000
|
||||
#define TQ_NEW 0x04000000
|
||||
#define TQ_ACTIVE 0x80000000
|
||||
|
||||
typedef struct task {
|
||||
spinlock_t t_lock;
|
||||
struct list_head t_list;
|
||||
taskqid_t t_id;
|
||||
task_func_t *t_func;
|
||||
void *t_arg;
|
||||
} task_t;
|
||||
|
||||
#ifdef DEBUG_TASKQ_UNIMPLEMENTED
|
||||
static __inline__ void taskq_init(void) {
|
||||
#error "taskq_init() not implemented"
|
||||
}
|
||||
|
||||
static __inline__ taskq_t *
|
||||
taskq_create_instance(const char *, int, int, pri_t, int, int, uint_t) {
|
||||
#error "taskq_create_instance() not implemented"
|
||||
}
|
||||
|
||||
extern void nulltask(void *);
|
||||
extern void taskq_suspend(taskq_t *);
|
||||
extern int taskq_suspended(taskq_t *);
|
||||
extern void taskq_resume(taskq_t *);
|
||||
|
||||
#endif /* DEBUG_TASKQ_UNIMPLEMENTED */
|
||||
typedef struct taskq {
|
||||
spinlock_t tq_lock; /* protects taskq_t */
|
||||
struct task_struct **tq_threads; /* thread pointers */
|
||||
const char *tq_name; /* taskq name */
|
||||
int tq_nactive; /* # of active threads */
|
||||
int tq_nthreads; /* # of total threads */
|
||||
int tq_pri; /* priority */
|
||||
int tq_minalloc; /* min task_t pool size */
|
||||
int tq_maxalloc; /* max task_t pool size */
|
||||
int tq_nalloc; /* cur task_t pool size */
|
||||
uint_t tq_flags; /* flags */
|
||||
taskqid_t tq_next_id; /* next pend/work id */
|
||||
taskqid_t tq_lowest_id; /* lowest pend/work id */
|
||||
struct list_head tq_free_list; /* free task_t's */
|
||||
struct list_head tq_work_list; /* work task_t's */
|
||||
struct list_head tq_pend_list; /* pending task_t's */
|
||||
wait_queue_head_t tq_work_waitq; /* new work waitq */
|
||||
wait_queue_head_t tq_wait_waitq; /* wait waitq */
|
||||
} taskq_t;
|
||||
|
||||
extern taskqid_t __taskq_dispatch(taskq_t *, task_func_t, void *, uint_t);
|
||||
extern taskq_t *__taskq_create(const char *, int, pri_t, int, int, uint_t);
|
||||
extern void __taskq_destroy(taskq_t *);
|
||||
extern void __taskq_wait(taskq_t *);
|
||||
extern int __taskq_member(taskq_t *, void *);
|
||||
|
||||
#define taskq_create(name, thr, pri, min, max, flags) \
|
||||
__taskq_create(name, thr, pri, min, max, flags)
|
||||
#define taskq_dispatch(tq, func, priv, flags) \
|
||||
__taskq_dispatch(tq, (task_func_t)func, priv, flags)
|
||||
#define taskq_destroy(tq) __taskq_destroy(tq)
|
||||
#define taskq_member(tq, t) __taskq_member(tq, t)
|
||||
#define taskq_wait_id(tq, id) __taskq_wait_id(tq, id)
|
||||
#define taskq_wait(tq) __taskq_wait(tq)
|
||||
#define taskq_member(tq, kthr) 1 /* XXX -Just be true */
|
||||
#define taskq_dispatch(tq, f, p, fl) __taskq_dispatch(tq, f, p, fl)
|
||||
#define taskq_create(n, th, p, mi, ma, fl) __taskq_create(n, th, p, mi, ma, fl)
|
||||
#define taskq_destroy(tq) __taskq_destroy(tq)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -6,109 +6,427 @@
|
|||
|
||||
#define DEBUG_SUBSYSTEM S_TASKQ
|
||||
|
||||
/*
|
||||
* Task queue interface
|
||||
*
|
||||
* The taskq_work_wrapper functions are used to manage the work_structs
|
||||
* which must be submitted to linux. The shim layer allocates a wrapper
|
||||
* structure for all items which contains a pointer to itself as well as
|
||||
* the real work to be performed. When the work item run the generic
|
||||
* handle is called which calls the real work function and then using
|
||||
* the self pointer frees the work_struct.
|
||||
/* NOTE: Must be called with tq->tq_lock held, returns a list_t which
|
||||
* is not attached to the free, work, or pending taskq lists.
|
||||
*/
|
||||
typedef struct taskq_work_wrapper {
|
||||
struct work_struct tww_work;
|
||||
task_func_t tww_func;
|
||||
void * tww_priv;
|
||||
} taskq_work_wrapper_t;
|
||||
|
||||
static void
|
||||
taskq_work_handler(void *priv)
|
||||
static task_t *
|
||||
task_alloc(taskq_t *tq, uint_t flags)
|
||||
{
|
||||
taskq_work_wrapper_t *tww = priv;
|
||||
task_t *t;
|
||||
int count = 0;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(tww);
|
||||
ASSERT(tww->tww_func);
|
||||
ASSERT(tq);
|
||||
ASSERT(flags & (TQ_SLEEP | TQ_NOSLEEP)); /* One set */
|
||||
ASSERT(!((flags & TQ_SLEEP) && (flags & TQ_NOSLEEP))); /* Not both */
|
||||
ASSERT(spin_is_locked(&tq->tq_lock));
|
||||
retry:
|
||||
/* Aquire task_t's from free list if available */
|
||||
if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
|
||||
t = list_entry(tq->tq_free_list.next, task_t, t_list);
|
||||
list_del_init(&t->t_list);
|
||||
RETURN(t);
|
||||
}
|
||||
|
||||
/* Call the real function and free the wrapper */
|
||||
tww->tww_func(tww->tww_priv);
|
||||
kfree(tww);
|
||||
/* Free list is empty and memory allocs are prohibited */
|
||||
if (flags & TQ_NOALLOC)
|
||||
RETURN(NULL);
|
||||
|
||||
/* Hit maximum task_t pool size */
|
||||
if (tq->tq_nalloc >= tq->tq_maxalloc) {
|
||||
if (flags & TQ_NOSLEEP)
|
||||
RETURN(NULL);
|
||||
|
||||
/* Sleep periodically polling the free list for an available
|
||||
* task_t. If a full second passes and we have not found
|
||||
* one gives up and return a NULL to the caller. */
|
||||
if (flags & TQ_SLEEP) {
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
schedule_timeout(HZ / 100);
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
if (count < 100)
|
||||
GOTO(retry, count++);
|
||||
|
||||
RETURN(NULL);
|
||||
}
|
||||
|
||||
/* Unreachable, TQ_SLEEP xor TQ_NOSLEEP */
|
||||
SBUG();
|
||||
}
|
||||
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
t = kmem_alloc(sizeof(task_t), flags & (TQ_SLEEP | TQ_NOSLEEP));
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
|
||||
if (t) {
|
||||
spin_lock_init(&t->t_lock);
|
||||
INIT_LIST_HEAD(&t->t_list);
|
||||
t->t_id = 0;
|
||||
t->t_func = NULL;
|
||||
t->t_arg = NULL;
|
||||
tq->tq_nalloc++;
|
||||
}
|
||||
|
||||
RETURN(t);
|
||||
}
|
||||
|
||||
/* XXX - All flags currently ignored */
|
||||
taskqid_t
|
||||
__taskq_dispatch(taskq_t *tq, task_func_t func, void *priv, uint_t flags)
|
||||
/* NOTE: Must be called with tq->tq_lock held, expectes the task_t
|
||||
* to already be removed from the free, work, or pending taskq lists.
|
||||
*/
|
||||
static void
|
||||
task_free(taskq_t *tq, task_t *t)
|
||||
{
|
||||
struct workqueue_struct *wq = tq;
|
||||
taskq_work_wrapper_t *tww;
|
||||
int rc;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(tq);
|
||||
ASSERT(t);
|
||||
ASSERT(spin_is_locked(&tq->tq_lock));
|
||||
ASSERT(list_empty(&t->t_list));
|
||||
|
||||
kmem_free(t, sizeof(task_t));
|
||||
tq->tq_nalloc--;
|
||||
|
||||
EXIT;
|
||||
}
|
||||
|
||||
/* NOTE: Must be called with tq->tq_lock held, either destroyes the
|
||||
* task_t if too many exist or moves it to the free list for later use.
|
||||
*/
|
||||
static void
|
||||
task_done(taskq_t *tq, task_t *t)
|
||||
{
|
||||
ENTRY;
|
||||
ASSERT(tq);
|
||||
ASSERT(t);
|
||||
ASSERT(spin_is_locked(&tq->tq_lock));
|
||||
|
||||
list_del_init(&t->t_list);
|
||||
|
||||
if (tq->tq_nalloc <= tq->tq_minalloc) {
|
||||
t->t_id = 0;
|
||||
t->t_func = NULL;
|
||||
t->t_arg = NULL;
|
||||
list_add(&t->t_list, &tq->tq_free_list);
|
||||
} else {
|
||||
task_free(tq, t);
|
||||
}
|
||||
|
||||
EXIT;
|
||||
}
|
||||
|
||||
/* Taskqid's are handed out in a monotonically increasing fashion per
|
||||
* taskq_t. We don't handle taskqid wrapping yet, but fortuntely it isi
|
||||
* a 64-bit value so this is probably never going to happen. The lowest
|
||||
* pending taskqid is stored in the taskq_t to make it easy for any
|
||||
* taskq_wait()'ers to know if the tasks they're waiting for have
|
||||
* completed. Unfortunately, tq_task_lowest is kept up to date is
|
||||
* a pretty brain dead way, something more clever should be done.
|
||||
*/
|
||||
static int
|
||||
taskq_wait_check(taskq_t *tq, taskqid_t id)
|
||||
{
|
||||
RETURN(tq->tq_lowest_id >= id);
|
||||
}
|
||||
|
||||
/* Expected to wait for all previously scheduled tasks to complete. We do
|
||||
* not need to wait for tasked scheduled after this call to complete. In
|
||||
* otherwords we do not need to drain the entire taskq. */
|
||||
void
|
||||
__taskq_wait_id(taskq_t *tq, taskqid_t id)
|
||||
{
|
||||
ENTRY;
|
||||
ASSERT(tq);
|
||||
|
||||
wait_event(tq->tq_wait_waitq, taskq_wait_check(tq, id));
|
||||
|
||||
EXIT;
|
||||
}
|
||||
EXPORT_SYMBOL(__taskq_wait_id);
|
||||
|
||||
void
|
||||
__taskq_wait(taskq_t *tq)
|
||||
{
|
||||
taskqid_t id;
|
||||
ENTRY;
|
||||
ASSERT(tq);
|
||||
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
id = tq->tq_next_id;
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
|
||||
__taskq_wait_id(tq, id);
|
||||
|
||||
EXIT;
|
||||
|
||||
}
|
||||
EXPORT_SYMBOL(__taskq_wait);
|
||||
|
||||
int
|
||||
__taskq_member(taskq_t *tq, void *t)
|
||||
{
|
||||
int i;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(tq);
|
||||
ASSERT(t);
|
||||
|
||||
for (i = 0; i < tq->tq_nthreads; i++)
|
||||
if (tq->tq_threads[i] == (struct task_struct *)t)
|
||||
RETURN(1);
|
||||
|
||||
RETURN(0);
|
||||
}
|
||||
EXPORT_SYMBOL(__taskq_member);
|
||||
|
||||
taskqid_t
|
||||
__taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
|
||||
{
|
||||
task_t *t;
|
||||
taskqid_t rc = 0;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(tq);
|
||||
ASSERT(func);
|
||||
|
||||
/* Use GFP_ATOMIC since this may be called in interrupt context */
|
||||
tww = (taskq_work_wrapper_t *)kmalloc(sizeof(*tww), GFP_ATOMIC);
|
||||
if (!tww)
|
||||
RETURN((taskqid_t)0);
|
||||
|
||||
INIT_WORK(&(tww->tww_work), taskq_work_handler, tww);
|
||||
tww->tww_func = func;
|
||||
tww->tww_priv = priv;
|
||||
|
||||
rc = queue_work(wq, &(tww->tww_work));
|
||||
if (!rc) {
|
||||
kfree(tww);
|
||||
RETURN((taskqid_t)0);
|
||||
if (unlikely(in_atomic() && (flags & TQ_SLEEP))) {
|
||||
CERROR("May schedule while atomic: %s/0x%08x/%d\n",
|
||||
current->comm, preempt_count(), current->pid);
|
||||
SBUG();
|
||||
}
|
||||
|
||||
RETURN((taskqid_t)wq);
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
|
||||
/* Taskq being destroyed and all tasks drained */
|
||||
if (!(tq->tq_flags & TQ_ACTIVE))
|
||||
GOTO(out, rc = 0);
|
||||
|
||||
/* Do not queue the task unless there is idle thread for it */
|
||||
ASSERT(tq->tq_nactive <= tq->tq_nthreads);
|
||||
if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
|
||||
GOTO(out, rc = 0);
|
||||
|
||||
if ((t = task_alloc(tq, flags)) == NULL)
|
||||
GOTO(out, rc = 0);
|
||||
|
||||
|
||||
spin_lock(&t->t_lock);
|
||||
list_add(&t->t_list, &tq->tq_pend_list);
|
||||
t->t_id = rc = tq->tq_next_id;
|
||||
tq->tq_next_id++;
|
||||
t->t_func = func;
|
||||
t->t_arg = arg;
|
||||
spin_unlock(&t->t_lock);
|
||||
|
||||
wake_up(&tq->tq_work_waitq);
|
||||
out:
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
RETURN(rc);
|
||||
}
|
||||
EXPORT_SYMBOL(__taskq_dispatch);
|
||||
|
||||
/* XXX - We must fully implement dynamic workqueues since they make a
|
||||
* significant impact in terms of performance. For now I've made
|
||||
* a trivial compromise. If you ask for one thread you get one
|
||||
* thread, if you ask for more than that you get one per core.
|
||||
* It's unclear if you ever really need/want more than one per-core
|
||||
* anyway. More analysis is required.
|
||||
*
|
||||
* name - Workqueue names are limited to 10 chars
|
||||
* pri - Ignore priority
|
||||
* min - Ignored until this is a dynamic thread pool
|
||||
* max - Ignored until this is a dynamic thread pool
|
||||
* flags - Ignored until this is a dynamic thread_pool
|
||||
*/
|
||||
/* NOTE: Must be called with tq->tq_lock held */
|
||||
static taskqid_t
|
||||
taskq_lowest_id(taskq_t *tq)
|
||||
{
|
||||
taskqid_t lowest_id = ~0;
|
||||
task_t *t;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(tq);
|
||||
ASSERT(spin_is_locked(&tq->tq_lock));
|
||||
|
||||
list_for_each_entry(t, &tq->tq_pend_list, t_list)
|
||||
if (t->t_id < lowest_id)
|
||||
lowest_id = t->t_id;
|
||||
|
||||
list_for_each_entry(t, &tq->tq_work_list, t_list)
|
||||
if (t->t_id < lowest_id)
|
||||
lowest_id = t->t_id;
|
||||
|
||||
RETURN(lowest_id);
|
||||
}
|
||||
|
||||
static int
|
||||
taskq_thread(void *args)
|
||||
{
|
||||
DECLARE_WAITQUEUE(wait, current);
|
||||
sigset_t blocked;
|
||||
taskqid_t id;
|
||||
taskq_t *tq = args;
|
||||
task_t *t;
|
||||
ENTRY;
|
||||
|
||||
ASSERT(tq);
|
||||
current->flags |= PF_NOFREEZE;
|
||||
|
||||
sigfillset(&blocked);
|
||||
sigprocmask(SIG_BLOCK, &blocked, NULL);
|
||||
flush_signals(current);
|
||||
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
tq->tq_nthreads++;
|
||||
wake_up(&tq->tq_wait_waitq);
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
|
||||
while (!kthread_should_stop()) {
|
||||
|
||||
add_wait_queue(&tq->tq_work_waitq, &wait);
|
||||
if (list_empty(&tq->tq_pend_list)) {
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
schedule();
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
} else {
|
||||
__set_current_state(TASK_RUNNING);
|
||||
}
|
||||
|
||||
remove_wait_queue(&tq->tq_work_waitq, &wait);
|
||||
if (!list_empty(&tq->tq_pend_list)) {
|
||||
t = list_entry(tq->tq_pend_list.next, task_t, t_list);
|
||||
list_del_init(&t->t_list);
|
||||
list_add(&t->t_list, &tq->tq_work_list);
|
||||
tq->tq_nactive++;
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
|
||||
/* Perform the requested task */
|
||||
t->t_func(t->t_arg);
|
||||
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
tq->tq_nactive--;
|
||||
id = t->t_id;
|
||||
task_done(tq, t);
|
||||
|
||||
/* Update the lowest remaining taskqid yet to run */
|
||||
if (tq->tq_lowest_id == id) {
|
||||
tq->tq_lowest_id = taskq_lowest_id(tq);
|
||||
ASSERT(tq->tq_lowest_id > id);
|
||||
}
|
||||
|
||||
wake_up_all(&tq->tq_wait_waitq);
|
||||
}
|
||||
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
|
||||
}
|
||||
|
||||
__set_current_state(TASK_RUNNING);
|
||||
tq->tq_nthreads--;
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
|
||||
RETURN(0);
|
||||
}
|
||||
|
||||
taskq_t *
|
||||
__taskq_create(const char *name, int nthreads, pri_t pri,
|
||||
int minalloc, int maxalloc, uint_t flags)
|
||||
{
|
||||
taskq_t *tq;
|
||||
struct task_struct *t;
|
||||
int rc = 0, i, j = 0;
|
||||
ENTRY;
|
||||
|
||||
if (nthreads == 1)
|
||||
tq = create_singlethread_workqueue(name);
|
||||
else
|
||||
tq = create_workqueue(name);
|
||||
ASSERT(name != NULL);
|
||||
ASSERT(pri <= maxclsyspri);
|
||||
ASSERT(minalloc >= 0);
|
||||
ASSERT(maxalloc <= INT_MAX);
|
||||
ASSERT(!(flags & (TASKQ_CPR_SAFE | TASKQ_DYNAMIC))); /* Unsupported */
|
||||
|
||||
return tq;
|
||||
tq = kmem_alloc(sizeof(*tq), KM_SLEEP);
|
||||
if (tq == NULL)
|
||||
RETURN(NULL);
|
||||
|
||||
tq->tq_threads = kmem_alloc(nthreads * sizeof(t), KM_SLEEP);
|
||||
if (tq->tq_threads == NULL) {
|
||||
kmem_free(tq, sizeof(*tq));
|
||||
RETURN(NULL);
|
||||
}
|
||||
|
||||
spin_lock_init(&tq->tq_lock);
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
tq->tq_name = name;
|
||||
tq->tq_nactive = 0;
|
||||
tq->tq_nthreads = 0;
|
||||
tq->tq_pri = pri;
|
||||
tq->tq_minalloc = minalloc;
|
||||
tq->tq_maxalloc = maxalloc;
|
||||
tq->tq_nalloc = 0;
|
||||
tq->tq_flags = (flags | TQ_ACTIVE);
|
||||
tq->tq_next_id = 1;
|
||||
tq->tq_lowest_id = 1;
|
||||
INIT_LIST_HEAD(&tq->tq_free_list);
|
||||
INIT_LIST_HEAD(&tq->tq_work_list);
|
||||
INIT_LIST_HEAD(&tq->tq_pend_list);
|
||||
init_waitqueue_head(&tq->tq_work_waitq);
|
||||
init_waitqueue_head(&tq->tq_wait_waitq);
|
||||
|
||||
if (flags & TASKQ_PREPOPULATE)
|
||||
for (i = 0; i < minalloc; i++)
|
||||
task_done(tq, task_alloc(tq, TQ_SLEEP | TQ_NEW));
|
||||
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
|
||||
for (i = 0; i < nthreads; i++) {
|
||||
t = kthread_create(taskq_thread, tq, "%s/%d", name, i);
|
||||
if (t) {
|
||||
tq->tq_threads[i] = t;
|
||||
kthread_bind(t, i % num_online_cpus());
|
||||
set_user_nice(t, PRIO_TO_NICE(pri));
|
||||
wake_up_process(t);
|
||||
j++;
|
||||
} else {
|
||||
tq->tq_threads[i] = NULL;
|
||||
rc = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Wait for all threads to be started before potential destroy */
|
||||
wait_event(tq->tq_wait_waitq, tq->tq_nthreads == j);
|
||||
|
||||
if (rc) {
|
||||
__taskq_destroy(tq);
|
||||
tq = NULL;
|
||||
}
|
||||
|
||||
RETURN(tq);
|
||||
}
|
||||
EXPORT_SYMBOL(__taskq_create);
|
||||
|
||||
void
|
||||
__taskq_destroy(taskq_t *tq)
|
||||
{
|
||||
task_t *t;
|
||||
int i, nthreads;
|
||||
ENTRY;
|
||||
destroy_workqueue(tq);
|
||||
|
||||
ASSERT(tq);
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
tq->tq_flags &= ~TQ_ACTIVE;
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
|
||||
/* TQ_ACTIVE cleared prevents new tasks being added to pending */
|
||||
__taskq_wait(tq);
|
||||
|
||||
nthreads = tq->tq_nthreads;
|
||||
for (i = 0; i < nthreads; i++)
|
||||
if (tq->tq_threads[i])
|
||||
kthread_stop(tq->tq_threads[i]);
|
||||
|
||||
spin_lock_irq(&tq->tq_lock);
|
||||
|
||||
while (!list_empty(&tq->tq_free_list)) {
|
||||
t = list_entry(tq->tq_free_list.next, task_t, t_list);
|
||||
list_del_init(&t->t_list);
|
||||
task_free(tq, t);
|
||||
}
|
||||
|
||||
ASSERT(tq->tq_nthreads == 0);
|
||||
ASSERT(tq->tq_nalloc == 0);
|
||||
ASSERT(list_empty(&tq->tq_free_list));
|
||||
ASSERT(list_empty(&tq->tq_work_list));
|
||||
ASSERT(list_empty(&tq->tq_pend_list));
|
||||
|
||||
spin_unlock_irq(&tq->tq_lock);
|
||||
kmem_free(tq->tq_threads, nthreads * sizeof(task_t *));
|
||||
kmem_free(tq, sizeof(taskq_t));
|
||||
|
||||
EXIT;
|
||||
}
|
||||
EXPORT_SYMBOL(__taskq_destroy);
|
||||
|
||||
void
|
||||
__taskq_wait(taskq_t *tq)
|
||||
{
|
||||
ENTRY;
|
||||
flush_workqueue(tq);
|
||||
EXIT;
|
||||
}
|
||||
EXPORT_SYMBOL(__taskq_wait);
|
||||
|
|
|
@ -43,7 +43,8 @@ splat_taskq_test1(struct file *file, void *arg)
|
|||
|
||||
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME, "Taskq '%s' creating\n",
|
||||
SPLAT_TASKQ_TEST1_NAME);
|
||||
if ((tq = taskq_create(SPLAT_TASKQ_TEST1_NAME, 1, 0, 0, 0, 0)) == NULL) {
|
||||
if ((tq = taskq_create(SPLAT_TASKQ_TEST1_NAME, 1, maxclsyspri,
|
||||
50, INT_MAX, TASKQ_PREPOPULATE)) == NULL) {
|
||||
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME,
|
||||
"Taskq '%s' create failed\n",
|
||||
SPLAT_TASKQ_TEST1_NAME);
|
||||
|
@ -58,7 +59,8 @@ splat_taskq_test1(struct file *file, void *arg)
|
|||
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME,
|
||||
"Taskq '%s' function '%s' dispatching\n",
|
||||
tq_arg.name, sym2str(splat_taskq_test1_func));
|
||||
if ((id = taskq_dispatch(tq, splat_taskq_test1_func, &tq_arg, 0)) == 0) {
|
||||
if ((id = taskq_dispatch(tq, splat_taskq_test1_func,
|
||||
&tq_arg, TQ_SLEEP)) == 0) {
|
||||
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME,
|
||||
"Taskq '%s' function '%s' dispatch failed\n",
|
||||
tq_arg.name, sym2str(splat_taskq_test1_func));
|
||||
|
@ -109,6 +111,8 @@ splat_taskq_test2_func2(void *arg)
|
|||
}
|
||||
|
||||
#define TEST2_TASKQS 8
|
||||
#define TEST2_THREADS_PER_TASKQ 4
|
||||
|
||||
static int
|
||||
splat_taskq_test2(struct file *file, void *arg) {
|
||||
taskq_t *tq[TEST2_TASKQS] = { NULL };
|
||||
|
@ -121,7 +125,9 @@ splat_taskq_test2(struct file *file, void *arg) {
|
|||
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME, "Taskq '%s/%d' "
|
||||
"creating\n", SPLAT_TASKQ_TEST2_NAME, i);
|
||||
if ((tq[i] = taskq_create(SPLAT_TASKQ_TEST2_NAME,
|
||||
1, 0, 0, 0, 0)) == NULL) {
|
||||
TEST2_THREADS_PER_TASKQ,
|
||||
maxclsyspri, 50, INT_MAX,
|
||||
TASKQ_PREPOPULATE)) == NULL) {
|
||||
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
|
||||
"Taskq '%s/%d' create failed\n",
|
||||
SPLAT_TASKQ_TEST2_NAME, i);
|
||||
|
@ -139,7 +145,8 @@ splat_taskq_test2(struct file *file, void *arg) {
|
|||
tq_args[i].name, tq_args[i].id,
|
||||
sym2str(splat_taskq_test2_func1));
|
||||
if ((id = taskq_dispatch(
|
||||
tq[i], splat_taskq_test2_func1, &tq_args[i], 0)) == 0) {
|
||||
tq[i], splat_taskq_test2_func1,
|
||||
&tq_args[i], TQ_SLEEP)) == 0) {
|
||||
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
|
||||
"Taskq '%s/%d' function '%s' dispatch "
|
||||
"failed\n", tq_args[i].name, tq_args[i].id,
|
||||
|
@ -153,7 +160,8 @@ splat_taskq_test2(struct file *file, void *arg) {
|
|||
tq_args[i].name, tq_args[i].id,
|
||||
sym2str(splat_taskq_test2_func2));
|
||||
if ((id = taskq_dispatch(
|
||||
tq[i], splat_taskq_test2_func2, &tq_args[i], 0)) == 0) {
|
||||
tq[i], splat_taskq_test2_func2,
|
||||
&tq_args[i], TQ_SLEEP)) == 0) {
|
||||
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
|
||||
"Taskq '%s/%d' function '%s' dispatch failed\n",
|
||||
tq_args[i].name, tq_args[i].id,
|
||||
|
|
Loading…
Reference in New Issue