module: icp: rip out modhash. Replace the one user with AVL
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12901
This commit is contained in:
parent
1cb6fa2cb8
commit
7eacb87112
|
@ -51,7 +51,6 @@ KERNEL_C = \
|
|||
io/aes.c \
|
||||
io/sha2_mod.c \
|
||||
io/skein_mod.c \
|
||||
os/modhash.c \
|
||||
core/kcf_sched.c \
|
||||
core/kcf_prov_lib.c \
|
||||
core/kcf_callprov.c \
|
||||
|
|
|
@ -26,7 +26,6 @@ $(MODULE)-objs += spi/kcf_spi.o
|
|||
$(MODULE)-objs += io/aes.o
|
||||
$(MODULE)-objs += io/sha2_mod.o
|
||||
$(MODULE)-objs += io/skein_mod.o
|
||||
$(MODULE)-objs += os/modhash.o
|
||||
$(MODULE)-objs += algs/modes/cbc.o
|
||||
$(MODULE)-objs += algs/modes/ccm.o
|
||||
$(MODULE)-objs += algs/modes/ctr.o
|
||||
|
|
|
@ -27,7 +27,6 @@
|
|||
#include <sys/crypto/common.h>
|
||||
#include <sys/crypto/api.h>
|
||||
#include <sys/crypto/impl.h>
|
||||
#include <sys/modhash.h>
|
||||
|
||||
/* Cryptographic mechanisms tables and their access functions */
|
||||
|
||||
|
@ -55,9 +54,6 @@
|
|||
/*
|
||||
* Locking conventions:
|
||||
* --------------------
|
||||
* A global mutex, kcf_mech_tabs_lock, serializes writes to the
|
||||
* mechanism table via kcf_create_mech_entry().
|
||||
*
|
||||
* A mutex is associated with every entry of the tables.
|
||||
* The mutex is acquired whenever the entry is accessed for
|
||||
* 1) retrieving the mech_id (comparing the mech name)
|
||||
|
@ -72,9 +68,6 @@
|
|||
* long enough to justify the cost of using rwlocks, so the per-mechanism
|
||||
* entry mutex won't be very *hot*.
|
||||
*
|
||||
* When both kcf_mech_tabs_lock and a mech_entry mutex need to be held,
|
||||
* kcf_mech_tabs_lock must always be acquired first.
|
||||
*
|
||||
*/
|
||||
|
||||
/* Mechanisms tables */
|
||||
|
@ -111,42 +104,22 @@ const kcf_mech_entry_tab_t kcf_mech_tabs_tab[KCF_LAST_OPSCLASS + 1] = {
|
|||
{KCF_MAXMAC, kcf_mac_mechs_tab},
|
||||
};
|
||||
|
||||
static kmutex_t kcf_mech_tabs_lock;
|
||||
static avl_tree_t kcf_mech_hash;
|
||||
|
||||
static const int kcf_mech_hash_size = 256;
|
||||
static mod_hash_t *kcf_mech_hash; /* mech name to id hash */
|
||||
|
||||
static crypto_mech_type_t
|
||||
kcf_mech_hash_find(const char *mechname)
|
||||
static int
|
||||
kcf_mech_hash_compar(const void *lhs, const void *rhs)
|
||||
{
|
||||
mod_hash_val_t hv;
|
||||
crypto_mech_type_t mt;
|
||||
|
||||
mt = CRYPTO_MECH_INVALID;
|
||||
if (mod_hash_find(kcf_mech_hash, (mod_hash_key_t)mechname, &hv) == 0) {
|
||||
mt = *(crypto_mech_type_t *)hv;
|
||||
ASSERT(mt != CRYPTO_MECH_INVALID);
|
||||
}
|
||||
|
||||
return (mt);
|
||||
const kcf_mech_entry_t *l = lhs, *r = rhs;
|
||||
int cmp = strncmp(l->me_name, r->me_name, CRYPTO_MAX_MECH_NAME);
|
||||
return ((0 < cmp) - (cmp < 0));
|
||||
}
|
||||
|
||||
void
|
||||
kcf_destroy_mech_tabs(void)
|
||||
{
|
||||
int i, max;
|
||||
kcf_ops_class_t class;
|
||||
kcf_mech_entry_t *me_tab;
|
||||
|
||||
if (kcf_mech_hash)
|
||||
mod_hash_destroy_hash(kcf_mech_hash);
|
||||
|
||||
mutex_destroy(&kcf_mech_tabs_lock);
|
||||
|
||||
for (class = KCF_FIRST_OPSCLASS; class <= KCF_LAST_OPSCLASS; class++) {
|
||||
max = kcf_mech_tabs_tab[class].met_size;
|
||||
me_tab = kcf_mech_tabs_tab[class].met_tab;
|
||||
}
|
||||
for (void *cookie = NULL; avl_destroy_nodes(&kcf_mech_hash, &cookie); )
|
||||
;
|
||||
avl_destroy(&kcf_mech_hash);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -161,14 +134,9 @@ kcf_init_mech_tabs(void)
|
|||
kcf_ops_class_t class;
|
||||
kcf_mech_entry_t *me_tab;
|
||||
|
||||
/* Initializes the mutex locks. */
|
||||
|
||||
mutex_init(&kcf_mech_tabs_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
|
||||
/* Then the pre-defined mechanism entries */
|
||||
|
||||
kcf_mech_hash = mod_hash_create_strhash_nodtr("kcf mech2id hash",
|
||||
kcf_mech_hash_size, mod_hash_null_valdtor);
|
||||
avl_create(&kcf_mech_hash, kcf_mech_hash_compar,
|
||||
sizeof (kcf_mech_entry_t), offsetof(kcf_mech_entry_t, me_node));
|
||||
|
||||
for (class = KCF_FIRST_OPSCLASS; class <= KCF_LAST_OPSCLASS; class++) {
|
||||
int max = kcf_mech_tabs_tab[class].met_size;
|
||||
|
@ -176,9 +144,7 @@ kcf_init_mech_tabs(void)
|
|||
for (int i = 0; i < max; i++) {
|
||||
if (me_tab[i].me_name[0] != 0) {
|
||||
me_tab[i].me_mechid = KCF_MECHID(class, i);
|
||||
(void) mod_hash_insert(kcf_mech_hash,
|
||||
(mod_hash_key_t)me_tab[i].me_name,
|
||||
(mod_hash_val_t)&(me_tab[i].me_mechid));
|
||||
avl_add(&kcf_mech_hash, &me_tab[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -213,10 +179,6 @@ kcf_init_mech_tabs(void)
|
|||
static int
|
||||
kcf_create_mech_entry(kcf_ops_class_t class, const char *mechname)
|
||||
{
|
||||
crypto_mech_type_t mt;
|
||||
kcf_mech_entry_t *me_tab;
|
||||
int i = 0, size;
|
||||
|
||||
if ((class < KCF_FIRST_OPSCLASS) || (class > KCF_LAST_OPSCLASS))
|
||||
return (KCF_INVALID_MECH_CLASS);
|
||||
|
||||
|
@ -226,41 +188,28 @@ kcf_create_mech_entry(kcf_ops_class_t class, const char *mechname)
|
|||
* First check if the mechanism is already in one of the tables.
|
||||
* The mech_entry could be in another class.
|
||||
*/
|
||||
mutex_enter(&kcf_mech_tabs_lock);
|
||||
mt = kcf_mech_hash_find(mechname);
|
||||
if (mt != CRYPTO_MECH_INVALID) {
|
||||
/* Nothing to do, regardless the suggested class. */
|
||||
mutex_exit(&kcf_mech_tabs_lock);
|
||||
avl_index_t where = 0;
|
||||
kcf_mech_entry_t tmptab;
|
||||
strlcpy(tmptab.me_name, mechname, CRYPTO_MAX_MECH_NAME);
|
||||
if (avl_find(&kcf_mech_hash, &tmptab, &where) != NULL)
|
||||
return (KCF_SUCCESS);
|
||||
}
|
||||
/* Now take the next unused mech entry in the class's tab */
|
||||
me_tab = kcf_mech_tabs_tab[class].met_tab;
|
||||
size = kcf_mech_tabs_tab[class].met_size;
|
||||
kcf_mech_entry_t *me_tab = kcf_mech_tabs_tab[class].met_tab;
|
||||
int size = kcf_mech_tabs_tab[class].met_size;
|
||||
|
||||
while (i < size) {
|
||||
for (int i = 0; i < size; ++i)
|
||||
if (me_tab[i].me_name[0] == 0) {
|
||||
/* Found an empty spot */
|
||||
(void) strlcpy(me_tab[i].me_name, mechname,
|
||||
strlcpy(me_tab[i].me_name, mechname,
|
||||
CRYPTO_MAX_MECH_NAME);
|
||||
me_tab[i].me_name[CRYPTO_MAX_MECH_NAME-1] = '\0';
|
||||
me_tab[i].me_mechid = KCF_MECHID(class, i);
|
||||
|
||||
/* Add the new mechanism to the hash table */
|
||||
(void) mod_hash_insert(kcf_mech_hash,
|
||||
(mod_hash_key_t)me_tab[i].me_name,
|
||||
(mod_hash_val_t)&(me_tab[i].me_mechid));
|
||||
break;
|
||||
avl_insert(&kcf_mech_hash, &me_tab[i], where);
|
||||
return (KCF_SUCCESS);
|
||||
}
|
||||
i++;
|
||||
}
|
||||
|
||||
mutex_exit(&kcf_mech_tabs_lock);
|
||||
|
||||
if (i == size) {
|
||||
return (KCF_MECH_TAB_FULL);
|
||||
}
|
||||
|
||||
return (KCF_SUCCESS);
|
||||
return (KCF_MECH_TAB_FULL);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -299,7 +248,7 @@ kcf_add_mech_provider(short mech_indx,
|
|||
* Find the class corresponding to the function group flag of
|
||||
* the mechanism.
|
||||
*/
|
||||
kcf_mech_type = kcf_mech_hash_find(mech_info->cm_mech_name);
|
||||
kcf_mech_type = crypto_mech2id(mech_info->cm_mech_name);
|
||||
if (kcf_mech_type == CRYPTO_MECH_INVALID) {
|
||||
crypto_func_group_t fg = mech_info->cm_func_group_mask;
|
||||
kcf_ops_class_t class;
|
||||
|
@ -325,7 +274,7 @@ kcf_add_mech_provider(short mech_indx,
|
|||
return (error);
|
||||
}
|
||||
/* get the KCF mech type that was assigned to the mechanism */
|
||||
kcf_mech_type = kcf_mech_hash_find(mech_info->cm_mech_name);
|
||||
kcf_mech_type = crypto_mech2id(mech_info->cm_mech_name);
|
||||
ASSERT(kcf_mech_type != CRYPTO_MECH_INVALID);
|
||||
}
|
||||
|
||||
|
@ -398,7 +347,7 @@ kcf_remove_mech_provider(const char *mech_name, kcf_provider_desc_t *prov_desc)
|
|||
kcf_mech_entry_t *mech_entry;
|
||||
|
||||
/* get the KCF mech type that was assigned to the mechanism */
|
||||
if ((mech_type = kcf_mech_hash_find(mech_name)) ==
|
||||
if ((mech_type = crypto_mech2id(mech_name)) ==
|
||||
CRYPTO_MECH_INVALID) {
|
||||
/*
|
||||
* Provider was not allowed for this mech due to policy or
|
||||
|
@ -484,9 +433,7 @@ kcf_get_mech_entry(crypto_mech_type_t mech_type, kcf_mech_entry_t **mep)
|
|||
* Description:
|
||||
* Walks the mechanisms tables, looking for an entry that matches the
|
||||
* mechname. Once it find it, it builds the 64-bit mech_type and returns
|
||||
* it. If there are no providers for the mechanism,
|
||||
* but there is an unloaded provider, this routine will attempt
|
||||
* to load it.
|
||||
* it.
|
||||
*
|
||||
* Context:
|
||||
* Process and interruption.
|
||||
|
@ -504,7 +451,15 @@ kcf_get_mech_entry(crypto_mech_type_t mech_type, kcf_mech_entry_t **mep)
|
|||
crypto_mech_type_t
|
||||
crypto_mech2id(const char *mechname)
|
||||
{
|
||||
return (kcf_mech_hash_find(mechname));
|
||||
kcf_mech_entry_t tmptab, *found;
|
||||
strlcpy(tmptab.me_name, mechname, CRYPTO_MAX_MECH_NAME);
|
||||
|
||||
if ((found = avl_find(&kcf_mech_hash, &tmptab, NULL))) {
|
||||
ASSERT(found->me_mechid != CRYPTO_MECH_INVALID);
|
||||
return (found->me_mechid);
|
||||
}
|
||||
|
||||
return (CRYPTO_MECH_INVALID);
|
||||
}
|
||||
|
||||
#if defined(_KERNEL)
|
||||
|
|
|
@ -36,7 +36,6 @@
|
|||
#include <sys/crypto/api.h>
|
||||
#include <sys/crypto/impl.h>
|
||||
#include <sys/crypto/sched_impl.h>
|
||||
#include <sys/modhash_impl.h>
|
||||
#include <sys/crypto/icp.h>
|
||||
|
||||
/*
|
||||
|
@ -114,16 +113,12 @@ icp_fini(void)
|
|||
kcf_sched_destroy();
|
||||
kcf_prov_tab_destroy();
|
||||
kcf_destroy_mech_tabs();
|
||||
mod_hash_fini();
|
||||
}
|
||||
|
||||
/* roughly equivalent to kcf.c: _init() */
|
||||
int __init
|
||||
icp_init(void)
|
||||
{
|
||||
/* initialize the mod hash module */
|
||||
mod_hash_init();
|
||||
|
||||
/* initialize the mechanisms tables supported out-of-the-box */
|
||||
kcf_init_mech_tabs();
|
||||
|
||||
|
|
|
@ -34,6 +34,7 @@
|
|||
#include <sys/crypto/common.h>
|
||||
#include <sys/crypto/api.h>
|
||||
#include <sys/crypto/spi.h>
|
||||
#include <sys/avl.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
@ -245,6 +246,7 @@ typedef struct kcf_mech_entry {
|
|||
crypto_mech_name_t me_name; /* mechanism name */
|
||||
crypto_mech_type_t me_mechid; /* Internal id for mechanism */
|
||||
kcf_prov_mech_desc_t *me_sw_prov; /* provider */
|
||||
avl_node_t me_node;
|
||||
} kcf_mech_entry_t;
|
||||
|
||||
/*
|
||||
|
@ -300,7 +302,7 @@ extern const kcf_mech_entry_tab_t kcf_mech_tabs_tab[];
|
|||
|
||||
#define KCF_MECH2CLASS(mech_type) ((kcf_ops_class_t)((mech_type) >> 32))
|
||||
|
||||
#define KCF_MECH2INDEX(mech_type) ((int)(mech_type))
|
||||
#define KCF_MECH2INDEX(mech_type) ((int)((mech_type) & 0xFFFFFFFF))
|
||||
|
||||
#define KCF_TO_PROV_MECH_INDX(pd, mech_type) \
|
||||
((pd)->pd_mech_indx[KCF_MECH2CLASS(mech_type)] \
|
||||
|
|
|
@ -1,147 +0,0 @@
|
|||
/*
|
||||
* CDDL HEADER START
|
||||
*
|
||||
* The contents of this file are subject to the terms of the
|
||||
* Common Development and Distribution License (the "License").
|
||||
* You may not use this file except in compliance with the License.
|
||||
*
|
||||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
* or http://www.opensolaris.org/os/licensing.
|
||||
* See the License for the specific language governing permissions
|
||||
* and limitations under the License.
|
||||
*
|
||||
* When distributing Covered Code, include this CDDL HEADER in each
|
||||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
* If applicable, add the following below this CDDL HEADER, with the
|
||||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
*
|
||||
* CDDL HEADER END
|
||||
*/
|
||||
/*
|
||||
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
||||
* Use is subject to license terms.
|
||||
*/
|
||||
|
||||
#ifndef _SYS_MODHASH_H
|
||||
#define _SYS_MODHASH_H
|
||||
|
||||
/*
|
||||
* Generic hash implementation for the kernel.
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <sys/zfs_context.h>
|
||||
|
||||
/*
|
||||
* Opaque data types for storing keys and values
|
||||
*/
|
||||
typedef void *mod_hash_val_t;
|
||||
typedef void *mod_hash_key_t;
|
||||
|
||||
/*
|
||||
* Opaque data type for reservation
|
||||
*/
|
||||
typedef void *mod_hash_hndl_t;
|
||||
|
||||
/*
|
||||
* Opaque type for hash itself.
|
||||
*/
|
||||
struct mod_hash;
|
||||
typedef struct mod_hash mod_hash_t;
|
||||
|
||||
/*
|
||||
* String hash table
|
||||
*/
|
||||
mod_hash_t *mod_hash_create_strhash_nodtr(char *, size_t,
|
||||
void (*)(mod_hash_val_t));
|
||||
mod_hash_t *mod_hash_create_strhash(char *, size_t, void (*)(mod_hash_val_t));
|
||||
void mod_hash_destroy_strhash(mod_hash_t *);
|
||||
int mod_hash_strkey_cmp(mod_hash_key_t, mod_hash_key_t);
|
||||
void mod_hash_strkey_dtor(mod_hash_key_t);
|
||||
void mod_hash_strval_dtor(mod_hash_val_t);
|
||||
uint_t mod_hash_bystr(void *, mod_hash_key_t);
|
||||
|
||||
/*
|
||||
* Pointer hash table
|
||||
*/
|
||||
mod_hash_t *mod_hash_create_ptrhash(char *, size_t, void (*)(mod_hash_val_t),
|
||||
size_t);
|
||||
void mod_hash_destroy_ptrhash(mod_hash_t *);
|
||||
int mod_hash_ptrkey_cmp(mod_hash_key_t, mod_hash_key_t);
|
||||
uint_t mod_hash_byptr(void *, mod_hash_key_t);
|
||||
|
||||
/*
|
||||
* ID hash table
|
||||
*/
|
||||
mod_hash_t *mod_hash_create_idhash(char *, size_t, void (*)(mod_hash_val_t));
|
||||
void mod_hash_destroy_idhash(mod_hash_t *);
|
||||
int mod_hash_idkey_cmp(mod_hash_key_t, mod_hash_key_t);
|
||||
uint_t mod_hash_byid(void *, mod_hash_key_t);
|
||||
uint_t mod_hash_iddata_gen(size_t);
|
||||
|
||||
/*
|
||||
* Hash management functions
|
||||
*/
|
||||
mod_hash_t *mod_hash_create_extended(char *, size_t, void (*)(mod_hash_key_t),
|
||||
void (*)(mod_hash_val_t), uint_t (*)(void *, mod_hash_key_t), void *,
|
||||
int (*)(mod_hash_key_t, mod_hash_key_t), int);
|
||||
|
||||
void mod_hash_destroy_hash(mod_hash_t *);
|
||||
void mod_hash_clear(mod_hash_t *);
|
||||
|
||||
/*
|
||||
* Null key and value destructors
|
||||
*/
|
||||
void mod_hash_null_keydtor(mod_hash_key_t);
|
||||
void mod_hash_null_valdtor(mod_hash_val_t);
|
||||
|
||||
/*
|
||||
* Basic hash operations
|
||||
*/
|
||||
|
||||
/*
|
||||
* Error codes for insert, remove, find, destroy.
|
||||
*/
|
||||
#define MH_ERR_NOMEM -1
|
||||
#define MH_ERR_DUPLICATE -2
|
||||
#define MH_ERR_NOTFOUND -3
|
||||
|
||||
/*
|
||||
* Return codes for hash walkers
|
||||
*/
|
||||
#define MH_WALK_CONTINUE 0
|
||||
#define MH_WALK_TERMINATE 1
|
||||
|
||||
/*
|
||||
* Basic hash operations
|
||||
*/
|
||||
int mod_hash_insert(mod_hash_t *, mod_hash_key_t, mod_hash_val_t);
|
||||
int mod_hash_replace(mod_hash_t *, mod_hash_key_t, mod_hash_val_t);
|
||||
int mod_hash_remove(mod_hash_t *, mod_hash_key_t, mod_hash_val_t *);
|
||||
int mod_hash_destroy(mod_hash_t *, mod_hash_key_t);
|
||||
int mod_hash_find(mod_hash_t *, mod_hash_key_t, mod_hash_val_t *);
|
||||
int mod_hash_find_cb(mod_hash_t *, mod_hash_key_t, mod_hash_val_t *,
|
||||
void (*)(mod_hash_key_t, mod_hash_val_t));
|
||||
int mod_hash_find_cb_rval(mod_hash_t *, mod_hash_key_t, mod_hash_val_t *,
|
||||
int (*)(mod_hash_key_t, mod_hash_val_t), int *);
|
||||
void mod_hash_walk(mod_hash_t *,
|
||||
uint_t (*)(mod_hash_key_t, mod_hash_val_t *, void *), void *);
|
||||
|
||||
/*
|
||||
* Reserving hash operations
|
||||
*/
|
||||
int mod_hash_reserve(mod_hash_t *, mod_hash_hndl_t *);
|
||||
int mod_hash_reserve_nosleep(mod_hash_t *, mod_hash_hndl_t *);
|
||||
void mod_hash_cancel(mod_hash_t *, mod_hash_hndl_t *);
|
||||
int mod_hash_insert_reserve(mod_hash_t *, mod_hash_key_t, mod_hash_val_t,
|
||||
mod_hash_hndl_t);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _SYS_MODHASH_H */
|
|
@ -1,108 +0,0 @@
|
|||
/*
|
||||
* CDDL HEADER START
|
||||
*
|
||||
* The contents of this file are subject to the terms of the
|
||||
* Common Development and Distribution License (the "License").
|
||||
* You may not use this file except in compliance with the License.
|
||||
*
|
||||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
* or http://www.opensolaris.org/os/licensing.
|
||||
* See the License for the specific language governing permissions
|
||||
* and limitations under the License.
|
||||
*
|
||||
* When distributing Covered Code, include this CDDL HEADER in each
|
||||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
* If applicable, add the following below this CDDL HEADER, with the
|
||||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
*
|
||||
* CDDL HEADER END
|
||||
*/
|
||||
/*
|
||||
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
|
||||
* Use is subject to license terms.
|
||||
*/
|
||||
|
||||
#ifndef _SYS_MODHASH_IMPL_H
|
||||
#define _SYS_MODHASH_IMPL_H
|
||||
|
||||
/*
|
||||
* Internal details for the kernel's generic hash implementation.
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <sys/zfs_context.h>
|
||||
#include <sys/modhash.h>
|
||||
|
||||
struct mod_hash_entry {
|
||||
mod_hash_key_t mhe_key; /* stored hash key */
|
||||
mod_hash_val_t mhe_val; /* stored hash value */
|
||||
struct mod_hash_entry *mhe_next; /* next item in chain */
|
||||
};
|
||||
|
||||
struct mod_hash_stat {
|
||||
ulong_t mhs_hit; /* tried a 'find' and it succeeded */
|
||||
ulong_t mhs_miss; /* tried a 'find' but it failed */
|
||||
ulong_t mhs_coll; /* occur when insert fails because of dup's */
|
||||
ulong_t mhs_nelems; /* total number of stored key/value pairs */
|
||||
ulong_t mhs_nomem; /* number of times kmem_alloc failed */
|
||||
};
|
||||
|
||||
struct mod_hash {
|
||||
krwlock_t mh_contents; /* lock protecting contents */
|
||||
char *mh_name; /* hash name */
|
||||
int mh_sleep; /* kmem_alloc flag */
|
||||
size_t mh_nchains; /* # of elements in mh_entries */
|
||||
|
||||
/* key and val destructor */
|
||||
void (*mh_kdtor)(mod_hash_key_t);
|
||||
void (*mh_vdtor)(mod_hash_val_t);
|
||||
|
||||
/* key comparator */
|
||||
int (*mh_keycmp)(mod_hash_key_t, mod_hash_key_t);
|
||||
|
||||
/* hash algorithm, and algorithm-private data */
|
||||
uint_t (*mh_hashalg)(void *, mod_hash_key_t);
|
||||
void *mh_hashalg_data;
|
||||
|
||||
struct mod_hash *mh_next; /* next hash in list */
|
||||
|
||||
struct mod_hash_stat mh_stat;
|
||||
|
||||
struct mod_hash_entry *mh_entries[1];
|
||||
};
|
||||
|
||||
/*
|
||||
* MH_SIZE()
|
||||
* Compute the size of a mod_hash_t, in bytes, given the number of
|
||||
* elements it contains.
|
||||
*/
|
||||
#define MH_SIZE(n) \
|
||||
(sizeof (mod_hash_t) + ((n) - 1) * (sizeof (struct mod_hash_entry *)))
|
||||
|
||||
/*
|
||||
* Module initialization; called once.
|
||||
*/
|
||||
void mod_hash_fini(void);
|
||||
void mod_hash_init(void);
|
||||
|
||||
/*
|
||||
* Internal routines. Use directly with care.
|
||||
*/
|
||||
uint_t i_mod_hash(mod_hash_t *, mod_hash_key_t);
|
||||
int i_mod_hash_insert_nosync(mod_hash_t *, mod_hash_key_t, mod_hash_val_t,
|
||||
mod_hash_hndl_t);
|
||||
int i_mod_hash_remove_nosync(mod_hash_t *, mod_hash_key_t, mod_hash_val_t *);
|
||||
int i_mod_hash_find_nosync(mod_hash_t *, mod_hash_key_t, mod_hash_val_t *);
|
||||
void i_mod_hash_walk_nosync(mod_hash_t *, uint_t (*)(mod_hash_key_t,
|
||||
mod_hash_val_t *, void *), void *);
|
||||
void i_mod_hash_clear_nosync(mod_hash_t *hash);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _SYS_MODHASH_IMPL_H */
|
|
@ -1,927 +0,0 @@
|
|||
/*
|
||||
* CDDL HEADER START
|
||||
*
|
||||
* The contents of this file are subject to the terms of the
|
||||
* Common Development and Distribution License (the "License").
|
||||
* You may not use this file except in compliance with the License.
|
||||
*
|
||||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
* or http://www.opensolaris.org/os/licensing.
|
||||
* See the License for the specific language governing permissions
|
||||
* and limitations under the License.
|
||||
*
|
||||
* When distributing Covered Code, include this CDDL HEADER in each
|
||||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
* If applicable, add the following below this CDDL HEADER, with the
|
||||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
*
|
||||
* CDDL HEADER END
|
||||
*/
|
||||
/*
|
||||
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
||||
* Use is subject to license terms.
|
||||
*/
|
||||
|
||||
/*
|
||||
* mod_hash: flexible hash table implementation.
|
||||
*
|
||||
* This is a reasonably fast, reasonably flexible hash table implementation
|
||||
* which features pluggable hash algorithms to support storing arbitrary keys
|
||||
* and values. It is designed to handle small (< 100,000 items) amounts of
|
||||
* data. The hash uses chaining to resolve collisions, and does not feature a
|
||||
* mechanism to grow the hash. Care must be taken to pick nchains to be large
|
||||
* enough for the application at hand, or lots of time will be wasted searching
|
||||
* hash chains.
|
||||
*
|
||||
* The client of the hash is required to supply a number of items to support
|
||||
* the various hash functions:
|
||||
*
|
||||
* - Destructor functions for the key and value being hashed.
|
||||
* A destructor is responsible for freeing an object when the hash
|
||||
* table is no longer storing it. Since keys and values can be of
|
||||
* arbitrary type, separate destructors for keys & values are used.
|
||||
* These may be mod_hash_null_keydtor and mod_hash_null_valdtor if no
|
||||
* destructor is needed for either a key or value.
|
||||
*
|
||||
* - A hashing algorithm which returns a uint_t representing a hash index
|
||||
* The number returned need _not_ be between 0 and nchains. The mod_hash
|
||||
* code will take care of doing that. The second argument (after the
|
||||
* key) to the hashing function is a void * that represents
|
||||
* hash_alg_data-- this is provided so that the hashing algorithm can
|
||||
* maintain some state across calls, or keep algorithm-specific
|
||||
* constants associated with the hash table.
|
||||
*
|
||||
* A pointer-hashing and a string-hashing algorithm are supplied in
|
||||
* this file.
|
||||
*
|
||||
* - A key comparator (a la qsort).
|
||||
* This is used when searching the hash chain. The key comparator
|
||||
* determines if two keys match. It should follow the return value
|
||||
* semantics of strcmp.
|
||||
*
|
||||
* string and pointer comparators are supplied in this file.
|
||||
*
|
||||
* mod_hash_create_strhash() and mod_hash_create_ptrhash() provide good
|
||||
* examples of how to create a customized hash table.
|
||||
*
|
||||
* Basic hash operations:
|
||||
*
|
||||
* mod_hash_create_strhash(name, nchains, dtor),
|
||||
* create a hash using strings as keys.
|
||||
* NOTE: This create a hash which automatically cleans up the string
|
||||
* values it is given for keys.
|
||||
*
|
||||
* mod_hash_create_ptrhash(name, nchains, dtor, key_elem_size):
|
||||
* create a hash using pointers as keys.
|
||||
*
|
||||
* mod_hash_create_extended(name, nchains, kdtor, vdtor,
|
||||
* hash_alg, hash_alg_data,
|
||||
* keycmp, sleep)
|
||||
* create a customized hash table.
|
||||
*
|
||||
* mod_hash_destroy_hash(hash):
|
||||
* destroy the given hash table, calling the key and value destructors
|
||||
* on each key-value pair stored in the hash.
|
||||
*
|
||||
* mod_hash_insert(hash, key, val):
|
||||
* place a key, value pair into the given hash.
|
||||
* duplicate keys are rejected.
|
||||
*
|
||||
* mod_hash_insert_reserve(hash, key, val, handle):
|
||||
* place a key, value pair into the given hash, using handle to indicate
|
||||
* the reserved storage for the pair. (no memory allocation is needed
|
||||
* during a mod_hash_insert_reserve.) duplicate keys are rejected.
|
||||
*
|
||||
* mod_hash_reserve(hash, *handle):
|
||||
* reserve storage for a key-value pair using the memory allocation
|
||||
* policy of 'hash', returning the storage handle in 'handle'.
|
||||
*
|
||||
* mod_hash_reserve_nosleep(hash, *handle): reserve storage for a key-value
|
||||
* pair ignoring the memory allocation policy of 'hash' and always without
|
||||
* sleep, returning the storage handle in 'handle'.
|
||||
*
|
||||
* mod_hash_remove(hash, key, *val):
|
||||
* remove a key-value pair with key 'key' from 'hash', destroying the
|
||||
* stored key, and returning the value in val.
|
||||
*
|
||||
* mod_hash_replace(hash, key, val)
|
||||
* atomically remove an existing key-value pair from a hash, and replace
|
||||
* the key and value with the ones supplied. The removed key and value
|
||||
* (if any) are destroyed.
|
||||
*
|
||||
* mod_hash_destroy(hash, key):
|
||||
* remove a key-value pair with key 'key' from 'hash', destroying both
|
||||
* stored key and stored value.
|
||||
*
|
||||
* mod_hash_find(hash, key, val):
|
||||
* find a value in the hash table corresponding to the given key.
|
||||
*
|
||||
* mod_hash_find_cb(hash, key, val, found_callback)
|
||||
* find a value in the hash table corresponding to the given key.
|
||||
* If a value is found, call specified callback passing key and val to it.
|
||||
* The callback is called with the hash lock held.
|
||||
* It is intended to be used in situations where the act of locating the
|
||||
* data must also modify it - such as in reference counting schemes.
|
||||
*
|
||||
* mod_hash_walk(hash, callback(key, elem, arg), arg)
|
||||
* walks all the elements in the hashtable and invokes the callback
|
||||
* function with the key/value pair for each element. the hashtable
|
||||
* is locked for readers so the callback function should not attempt
|
||||
* to do any updates to the hashable. the callback function should
|
||||
* return MH_WALK_CONTINUE to continue walking the hashtable or
|
||||
* MH_WALK_TERMINATE to abort the walk of the hashtable.
|
||||
*
|
||||
* mod_hash_clear(hash):
|
||||
* clears the given hash table of entries, calling the key and value
|
||||
* destructors for every element in the hash.
|
||||
*/
|
||||
|
||||
#include <sys/zfs_context.h>
|
||||
#include <sys/bitmap.h>
|
||||
#include <sys/modhash_impl.h>
|
||||
#include <sys/sysmacros.h>
|
||||
|
||||
/*
|
||||
* MH_KEY_DESTROY()
|
||||
* Invoke the key destructor.
|
||||
*/
|
||||
#define MH_KEY_DESTROY(hash, key) ((hash->mh_kdtor)(key))
|
||||
|
||||
/*
|
||||
* MH_VAL_DESTROY()
|
||||
* Invoke the value destructor.
|
||||
*/
|
||||
#define MH_VAL_DESTROY(hash, val) ((hash->mh_vdtor)(val))
|
||||
|
||||
/*
|
||||
* MH_KEYCMP()
|
||||
* Call the key comparator for the given hash keys.
|
||||
*/
|
||||
#define MH_KEYCMP(hash, key1, key2) ((hash->mh_keycmp)(key1, key2))
|
||||
|
||||
/*
|
||||
* Cache for struct mod_hash_entry
|
||||
*/
|
||||
kmem_cache_t *mh_e_cache = NULL;
|
||||
mod_hash_t *mh_head = NULL;
|
||||
kmutex_t mh_head_lock;
|
||||
|
||||
/*
|
||||
* mod_hash_null_keydtor()
|
||||
* mod_hash_null_valdtor()
|
||||
* no-op key and value destructors.
|
||||
*/
|
||||
void
|
||||
mod_hash_null_keydtor(mod_hash_key_t key)
|
||||
{
|
||||
(void) key;
|
||||
}
|
||||
|
||||
void
|
||||
mod_hash_null_valdtor(mod_hash_val_t val)
|
||||
{
|
||||
(void) val;
|
||||
}
|
||||
|
||||
/*
|
||||
* mod_hash_bystr()
|
||||
* mod_hash_strkey_cmp()
|
||||
* mod_hash_strkey_dtor()
|
||||
* mod_hash_strval_dtor()
|
||||
* Hash and key comparison routines for hashes with string keys.
|
||||
*
|
||||
* mod_hash_create_strhash()
|
||||
* Create a hash using strings as keys
|
||||
*
|
||||
* The string hashing algorithm is from the "Dragon Book" --
|
||||
* "Compilers: Principles, Tools & Techniques", by Aho, Sethi, Ullman
|
||||
*/
|
||||
|
||||
uint_t
|
||||
mod_hash_bystr(void *hash_data, mod_hash_key_t key)
|
||||
{
|
||||
(void) hash_data;
|
||||
uint_t hash = 0;
|
||||
uint_t g;
|
||||
char *p, *k = (char *)key;
|
||||
|
||||
ASSERT(k);
|
||||
for (p = k; *p != '\0'; p++) {
|
||||
hash = (hash << 4) + *p;
|
||||
if ((g = (hash & 0xf0000000)) != 0) {
|
||||
hash ^= (g >> 24);
|
||||
hash ^= g;
|
||||
}
|
||||
}
|
||||
return (hash);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_strkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
|
||||
{
|
||||
return (strcmp((char *)key1, (char *)key2));
|
||||
}
|
||||
|
||||
void
|
||||
mod_hash_strkey_dtor(mod_hash_key_t key)
|
||||
{
|
||||
char *c = (char *)key;
|
||||
kmem_free(c, strlen(c) + 1);
|
||||
}
|
||||
|
||||
void
|
||||
mod_hash_strval_dtor(mod_hash_val_t val)
|
||||
{
|
||||
char *c = (char *)val;
|
||||
kmem_free(c, strlen(c) + 1);
|
||||
}
|
||||
|
||||
mod_hash_t *
|
||||
mod_hash_create_strhash_nodtr(char *name, size_t nchains,
|
||||
void (*val_dtor)(mod_hash_val_t))
|
||||
{
|
||||
return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
|
||||
val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
|
||||
}
|
||||
|
||||
mod_hash_t *
|
||||
mod_hash_create_strhash(char *name, size_t nchains,
|
||||
void (*val_dtor)(mod_hash_val_t))
|
||||
{
|
||||
return mod_hash_create_extended(name, nchains, mod_hash_strkey_dtor,
|
||||
val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
|
||||
}
|
||||
|
||||
void
|
||||
mod_hash_destroy_strhash(mod_hash_t *strhash)
|
||||
{
|
||||
ASSERT(strhash);
|
||||
mod_hash_destroy_hash(strhash);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* mod_hash_byptr()
|
||||
* mod_hash_ptrkey_cmp()
|
||||
* Hash and key comparison routines for hashes with pointer keys.
|
||||
*
|
||||
* mod_hash_create_ptrhash()
|
||||
* mod_hash_destroy_ptrhash()
|
||||
* Create a hash that uses pointers as keys. This hash algorithm
|
||||
* picks an appropriate set of middle bits in the address to hash on
|
||||
* based on the size of the hash table and a hint about the size of
|
||||
* the items pointed at.
|
||||
*/
|
||||
uint_t
|
||||
mod_hash_byptr(void *hash_data, mod_hash_key_t key)
|
||||
{
|
||||
uintptr_t k = (uintptr_t)key;
|
||||
k >>= (int)(uintptr_t)hash_data;
|
||||
|
||||
return ((uint_t)k);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_ptrkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
|
||||
{
|
||||
uintptr_t k1 = (uintptr_t)key1;
|
||||
uintptr_t k2 = (uintptr_t)key2;
|
||||
if (k1 > k2)
|
||||
return (-1);
|
||||
else if (k1 < k2)
|
||||
return (1);
|
||||
else
|
||||
return (0);
|
||||
}
|
||||
|
||||
mod_hash_t *
|
||||
mod_hash_create_ptrhash(char *name, size_t nchains,
|
||||
void (*val_dtor)(mod_hash_val_t), size_t key_elem_size)
|
||||
{
|
||||
size_t rshift;
|
||||
|
||||
/*
|
||||
* We want to hash on the bits in the middle of the address word
|
||||
* Bits far to the right in the word have little significance, and
|
||||
* are likely to all look the same (for example, an array of
|
||||
* 256-byte structures will have the bottom 8 bits of address
|
||||
* words the same). So we want to right-shift each address to
|
||||
* ignore the bottom bits.
|
||||
*
|
||||
* The high bits, which are also unused, will get taken out when
|
||||
* mod_hash takes hashkey % nchains.
|
||||
*/
|
||||
rshift = highbit64(key_elem_size);
|
||||
|
||||
return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
|
||||
val_dtor, mod_hash_byptr, (void *)rshift, mod_hash_ptrkey_cmp,
|
||||
KM_SLEEP);
|
||||
}
|
||||
|
||||
void
|
||||
mod_hash_destroy_ptrhash(mod_hash_t *hash)
|
||||
{
|
||||
ASSERT(hash);
|
||||
mod_hash_destroy_hash(hash);
|
||||
}
|
||||
|
||||
/*
|
||||
* mod_hash_byid()
|
||||
* mod_hash_idkey_cmp()
|
||||
* Hash and key comparison routines for hashes with 32-bit unsigned keys.
|
||||
*
|
||||
* mod_hash_create_idhash()
|
||||
* mod_hash_destroy_idhash()
|
||||
* mod_hash_iddata_gen()
|
||||
* Create a hash that uses numeric keys.
|
||||
*
|
||||
* The hash algorithm is documented in "Introduction to Algorithms"
|
||||
* (Cormen, Leiserson, Rivest); when the hash table is created, it
|
||||
* attempts to find the next largest prime above the number of hash
|
||||
* slots. The hash index is then this number times the key modulo
|
||||
* the hash size, or (key * prime) % nchains.
|
||||
*/
|
||||
uint_t
|
||||
mod_hash_byid(void *hash_data, mod_hash_key_t key)
|
||||
{
|
||||
uint_t kval = (uint_t)(uintptr_t)hash_data;
|
||||
return ((uint_t)(uintptr_t)key * (uint_t)kval);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_idkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
|
||||
{
|
||||
return ((uint_t)(uintptr_t)key1 - (uint_t)(uintptr_t)key2);
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate the next largest prime number greater than nchains; this value
|
||||
* is intended to be later passed in to mod_hash_create_extended() as the
|
||||
* hash_data.
|
||||
*/
|
||||
uint_t
|
||||
mod_hash_iddata_gen(size_t nchains)
|
||||
{
|
||||
uint_t kval, i, prime;
|
||||
|
||||
/*
|
||||
* Pick the first (odd) prime greater than nchains. Make sure kval is
|
||||
* odd (so start with nchains +1 or +2 as appropriate).
|
||||
*/
|
||||
kval = (nchains % 2 == 0) ? nchains + 1 : nchains + 2;
|
||||
|
||||
for (;;) {
|
||||
prime = 1;
|
||||
for (i = 3; i * i <= kval; i += 2) {
|
||||
if (kval % i == 0)
|
||||
prime = 0;
|
||||
}
|
||||
if (prime == 1)
|
||||
break;
|
||||
kval += 2;
|
||||
}
|
||||
return (kval);
|
||||
}
|
||||
|
||||
mod_hash_t *
|
||||
mod_hash_create_idhash(char *name, size_t nchains,
|
||||
void (*val_dtor)(mod_hash_val_t))
|
||||
{
|
||||
uint_t kval = mod_hash_iddata_gen(nchains);
|
||||
|
||||
return (mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
|
||||
val_dtor, mod_hash_byid, (void *)(uintptr_t)kval,
|
||||
mod_hash_idkey_cmp, KM_SLEEP));
|
||||
}
|
||||
|
||||
void
|
||||
mod_hash_destroy_idhash(mod_hash_t *hash)
|
||||
{
|
||||
ASSERT(hash);
|
||||
mod_hash_destroy_hash(hash);
|
||||
}
|
||||
|
||||
void
|
||||
mod_hash_fini(void)
|
||||
{
|
||||
mutex_destroy(&mh_head_lock);
|
||||
|
||||
if (mh_e_cache) {
|
||||
kmem_cache_destroy(mh_e_cache);
|
||||
mh_e_cache = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* mod_hash_init()
|
||||
* sets up globals, etc for mod_hash_*
|
||||
*/
|
||||
void
|
||||
mod_hash_init(void)
|
||||
{
|
||||
ASSERT(mh_e_cache == NULL);
|
||||
mh_e_cache = kmem_cache_create("mod_hash_entries",
|
||||
sizeof (struct mod_hash_entry), 0, NULL, NULL, NULL, NULL,
|
||||
NULL, 0);
|
||||
|
||||
mutex_init(&mh_head_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* mod_hash_create_extended()
|
||||
* The full-blown hash creation function.
|
||||
*
|
||||
* notes:
|
||||
* nchains - how many hash slots to create. More hash slots will
|
||||
* result in shorter hash chains, but will consume
|
||||
* slightly more memory up front.
|
||||
* sleep - should be KM_SLEEP or KM_NOSLEEP, to indicate whether
|
||||
* to sleep for memory, or fail in low-memory conditions.
|
||||
*
|
||||
* Fails only if KM_NOSLEEP was specified, and no memory was available.
|
||||
*/
|
||||
mod_hash_t *
|
||||
mod_hash_create_extended(
|
||||
char *hname, /* descriptive name for hash */
|
||||
size_t nchains, /* number of hash slots */
|
||||
void (*kdtor)(mod_hash_key_t), /* key destructor */
|
||||
void (*vdtor)(mod_hash_val_t), /* value destructor */
|
||||
uint_t (*hash_alg)(void *, mod_hash_key_t), /* hash algorithm */
|
||||
void *hash_alg_data, /* pass-thru arg for hash_alg */
|
||||
int (*keycmp)(mod_hash_key_t, mod_hash_key_t), /* key comparator */
|
||||
int sleep) /* whether to sleep for mem */
|
||||
{
|
||||
mod_hash_t *mod_hash;
|
||||
size_t size;
|
||||
ASSERT(hname && keycmp && hash_alg && vdtor && kdtor);
|
||||
|
||||
if ((mod_hash = kmem_zalloc(MH_SIZE(nchains), sleep)) == NULL)
|
||||
return (NULL);
|
||||
|
||||
size = strlen(hname) + 1;
|
||||
mod_hash->mh_name = kmem_alloc(size, sleep);
|
||||
if (mod_hash->mh_name == NULL) {
|
||||
kmem_free(mod_hash, MH_SIZE(nchains));
|
||||
return (NULL);
|
||||
}
|
||||
(void) strlcpy(mod_hash->mh_name, hname, size);
|
||||
|
||||
rw_init(&mod_hash->mh_contents, NULL, RW_DEFAULT, NULL);
|
||||
mod_hash->mh_sleep = sleep;
|
||||
mod_hash->mh_nchains = nchains;
|
||||
mod_hash->mh_kdtor = kdtor;
|
||||
mod_hash->mh_vdtor = vdtor;
|
||||
mod_hash->mh_hashalg = hash_alg;
|
||||
mod_hash->mh_hashalg_data = hash_alg_data;
|
||||
mod_hash->mh_keycmp = keycmp;
|
||||
|
||||
/*
|
||||
* Link the hash up on the list of hashes
|
||||
*/
|
||||
mutex_enter(&mh_head_lock);
|
||||
mod_hash->mh_next = mh_head;
|
||||
mh_head = mod_hash;
|
||||
mutex_exit(&mh_head_lock);
|
||||
|
||||
return (mod_hash);
|
||||
}
|
||||
|
||||
/*
|
||||
* mod_hash_destroy_hash()
|
||||
* destroy a hash table, destroying all of its stored keys and values
|
||||
* as well.
|
||||
*/
|
||||
void
|
||||
mod_hash_destroy_hash(mod_hash_t *hash)
|
||||
{
|
||||
mod_hash_t *mhp, *mhpp;
|
||||
|
||||
mutex_enter(&mh_head_lock);
|
||||
/*
|
||||
* Remove the hash from the hash list
|
||||
*/
|
||||
if (hash == mh_head) { /* removing 1st list elem */
|
||||
mh_head = mh_head->mh_next;
|
||||
} else {
|
||||
/*
|
||||
* mhpp can start out NULL since we know the 1st elem isn't the
|
||||
* droid we're looking for.
|
||||
*/
|
||||
mhpp = NULL;
|
||||
for (mhp = mh_head; mhp != NULL; mhp = mhp->mh_next) {
|
||||
if (mhp == hash) {
|
||||
mhpp->mh_next = mhp->mh_next;
|
||||
break;
|
||||
}
|
||||
mhpp = mhp;
|
||||
}
|
||||
}
|
||||
mutex_exit(&mh_head_lock);
|
||||
|
||||
/*
|
||||
* Clean out keys and values.
|
||||
*/
|
||||
mod_hash_clear(hash);
|
||||
|
||||
rw_destroy(&hash->mh_contents);
|
||||
kmem_free(hash->mh_name, strlen(hash->mh_name) + 1);
|
||||
kmem_free(hash, MH_SIZE(hash->mh_nchains));
|
||||
}
|
||||
|
||||
/*
|
||||
* i_mod_hash()
|
||||
* Call the hashing algorithm for this hash table, with the given key.
|
||||
*/
|
||||
uint_t
|
||||
i_mod_hash(mod_hash_t *hash, mod_hash_key_t key)
|
||||
{
|
||||
uint_t h;
|
||||
/*
|
||||
* Prevent div by 0 problems;
|
||||
* Also a nice shortcut when using a hash as a list
|
||||
*/
|
||||
if (hash->mh_nchains == 1)
|
||||
return (0);
|
||||
|
||||
h = (hash->mh_hashalg)(hash->mh_hashalg_data, key);
|
||||
return (h % (hash->mh_nchains - 1));
|
||||
}
|
||||
|
||||
/*
|
||||
* i_mod_hash_insert_nosync()
|
||||
* mod_hash_insert()
|
||||
* mod_hash_insert_reserve()
|
||||
* insert 'val' into the hash table, using 'key' as its key. If 'key' is
|
||||
* already a key in the hash, an error will be returned, and the key-val
|
||||
* pair will not be inserted. i_mod_hash_insert_nosync() supports a simple
|
||||
* handle abstraction, allowing hash entry allocation to be separated from
|
||||
* the hash insertion. this abstraction allows simple use of the mod_hash
|
||||
* structure in situations where mod_hash_insert() with a KM_SLEEP
|
||||
* allocation policy would otherwise be unsafe.
|
||||
*/
|
||||
int
|
||||
i_mod_hash_insert_nosync(mod_hash_t *hash, mod_hash_key_t key,
|
||||
mod_hash_val_t val, mod_hash_hndl_t handle)
|
||||
{
|
||||
uint_t hashidx;
|
||||
struct mod_hash_entry *entry;
|
||||
|
||||
ASSERT(hash);
|
||||
|
||||
/*
|
||||
* If we've not been given reserved storage, allocate storage directly,
|
||||
* using the hash's allocation policy.
|
||||
*/
|
||||
if (handle == (mod_hash_hndl_t)0) {
|
||||
entry = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
|
||||
if (entry == NULL) {
|
||||
hash->mh_stat.mhs_nomem++;
|
||||
return (MH_ERR_NOMEM);
|
||||
}
|
||||
} else {
|
||||
entry = (struct mod_hash_entry *)handle;
|
||||
}
|
||||
|
||||
hashidx = i_mod_hash(hash, key);
|
||||
entry->mhe_key = key;
|
||||
entry->mhe_val = val;
|
||||
entry->mhe_next = hash->mh_entries[hashidx];
|
||||
|
||||
hash->mh_entries[hashidx] = entry;
|
||||
hash->mh_stat.mhs_nelems++;
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_insert(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
|
||||
{
|
||||
int res;
|
||||
mod_hash_val_t v;
|
||||
|
||||
rw_enter(&hash->mh_contents, RW_WRITER);
|
||||
|
||||
/*
|
||||
* Disallow duplicate keys in the hash
|
||||
*/
|
||||
if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
|
||||
rw_exit(&hash->mh_contents);
|
||||
hash->mh_stat.mhs_coll++;
|
||||
return (MH_ERR_DUPLICATE);
|
||||
}
|
||||
|
||||
res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
|
||||
rw_exit(&hash->mh_contents);
|
||||
|
||||
return (res);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_insert_reserve(mod_hash_t *hash, mod_hash_key_t key,
|
||||
mod_hash_val_t val, mod_hash_hndl_t handle)
|
||||
{
|
||||
int res;
|
||||
mod_hash_val_t v;
|
||||
|
||||
rw_enter(&hash->mh_contents, RW_WRITER);
|
||||
|
||||
/*
|
||||
* Disallow duplicate keys in the hash
|
||||
*/
|
||||
if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
|
||||
rw_exit(&hash->mh_contents);
|
||||
hash->mh_stat.mhs_coll++;
|
||||
return (MH_ERR_DUPLICATE);
|
||||
}
|
||||
res = i_mod_hash_insert_nosync(hash, key, val, handle);
|
||||
rw_exit(&hash->mh_contents);
|
||||
|
||||
return (res);
|
||||
}
|
||||
|
||||
/*
|
||||
* mod_hash_reserve()
|
||||
* mod_hash_reserve_nosleep()
|
||||
* mod_hash_cancel()
|
||||
* Make or cancel a mod_hash_entry_t reservation. Reservations are used in
|
||||
* mod_hash_insert_reserve() above.
|
||||
*/
|
||||
int
|
||||
mod_hash_reserve(mod_hash_t *hash, mod_hash_hndl_t *handlep)
|
||||
{
|
||||
*handlep = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
|
||||
if (*handlep == NULL) {
|
||||
hash->mh_stat.mhs_nomem++;
|
||||
return (MH_ERR_NOMEM);
|
||||
}
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_reserve_nosleep(mod_hash_t *hash, mod_hash_hndl_t *handlep)
|
||||
{
|
||||
*handlep = kmem_cache_alloc(mh_e_cache, KM_NOSLEEP);
|
||||
if (*handlep == NULL) {
|
||||
hash->mh_stat.mhs_nomem++;
|
||||
return (MH_ERR_NOMEM);
|
||||
}
|
||||
|
||||
return (0);
|
||||
|
||||
}
|
||||
|
||||
void
|
||||
mod_hash_cancel(mod_hash_t *hash, mod_hash_hndl_t *handlep)
|
||||
{
|
||||
(void) hash;
|
||||
kmem_cache_free(mh_e_cache, *handlep);
|
||||
*handlep = (mod_hash_hndl_t)0;
|
||||
}
|
||||
|
||||
/*
|
||||
* i_mod_hash_remove_nosync()
|
||||
* mod_hash_remove()
|
||||
* Remove an element from the hash table.
|
||||
*/
|
||||
int
|
||||
i_mod_hash_remove_nosync(mod_hash_t *hash, mod_hash_key_t key,
|
||||
mod_hash_val_t *val)
|
||||
{
|
||||
int hashidx;
|
||||
struct mod_hash_entry *e, *ep;
|
||||
|
||||
hashidx = i_mod_hash(hash, key);
|
||||
ep = NULL; /* e's parent */
|
||||
|
||||
for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
|
||||
if (MH_KEYCMP(hash, e->mhe_key, key) == 0)
|
||||
break;
|
||||
ep = e;
|
||||
}
|
||||
|
||||
if (e == NULL) { /* not found */
|
||||
return (MH_ERR_NOTFOUND);
|
||||
}
|
||||
|
||||
if (ep == NULL) /* special case 1st element in bucket */
|
||||
hash->mh_entries[hashidx] = e->mhe_next;
|
||||
else
|
||||
ep->mhe_next = e->mhe_next;
|
||||
|
||||
/*
|
||||
* Clean up resources used by the node's key.
|
||||
*/
|
||||
MH_KEY_DESTROY(hash, e->mhe_key);
|
||||
|
||||
*val = e->mhe_val;
|
||||
kmem_cache_free(mh_e_cache, e);
|
||||
hash->mh_stat.mhs_nelems--;
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_remove(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
|
||||
{
|
||||
int res;
|
||||
|
||||
rw_enter(&hash->mh_contents, RW_WRITER);
|
||||
res = i_mod_hash_remove_nosync(hash, key, val);
|
||||
rw_exit(&hash->mh_contents);
|
||||
|
||||
return (res);
|
||||
}
|
||||
|
||||
/*
|
||||
* mod_hash_replace()
|
||||
* atomically remove an existing key-value pair from a hash, and replace
|
||||
* the key and value with the ones supplied. The removed key and value
|
||||
* (if any) are destroyed.
|
||||
*/
|
||||
int
|
||||
mod_hash_replace(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
|
||||
{
|
||||
int res;
|
||||
mod_hash_val_t v;
|
||||
|
||||
rw_enter(&hash->mh_contents, RW_WRITER);
|
||||
|
||||
if (i_mod_hash_remove_nosync(hash, key, &v) == 0) {
|
||||
/*
|
||||
* mod_hash_remove() takes care of freeing up the key resources.
|
||||
*/
|
||||
MH_VAL_DESTROY(hash, v);
|
||||
}
|
||||
res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
|
||||
|
||||
rw_exit(&hash->mh_contents);
|
||||
|
||||
return (res);
|
||||
}
|
||||
|
||||
/*
|
||||
* mod_hash_destroy()
|
||||
* Remove an element from the hash table matching 'key', and destroy it.
|
||||
*/
|
||||
int
|
||||
mod_hash_destroy(mod_hash_t *hash, mod_hash_key_t key)
|
||||
{
|
||||
mod_hash_val_t val;
|
||||
int rv;
|
||||
|
||||
rw_enter(&hash->mh_contents, RW_WRITER);
|
||||
|
||||
if ((rv = i_mod_hash_remove_nosync(hash, key, &val)) == 0) {
|
||||
/*
|
||||
* mod_hash_remove() takes care of freeing up the key resources.
|
||||
*/
|
||||
MH_VAL_DESTROY(hash, val);
|
||||
}
|
||||
|
||||
rw_exit(&hash->mh_contents);
|
||||
return (rv);
|
||||
}
|
||||
|
||||
/*
|
||||
* i_mod_hash_find_nosync()
|
||||
* mod_hash_find()
|
||||
* Find a value in the hash table corresponding to the given key.
|
||||
*/
|
||||
int
|
||||
i_mod_hash_find_nosync(mod_hash_t *hash, mod_hash_key_t key,
|
||||
mod_hash_val_t *val)
|
||||
{
|
||||
uint_t hashidx;
|
||||
struct mod_hash_entry *e;
|
||||
|
||||
hashidx = i_mod_hash(hash, key);
|
||||
|
||||
for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
|
||||
if (MH_KEYCMP(hash, e->mhe_key, key) == 0) {
|
||||
*val = e->mhe_val;
|
||||
hash->mh_stat.mhs_hit++;
|
||||
return (0);
|
||||
}
|
||||
}
|
||||
hash->mh_stat.mhs_miss++;
|
||||
return (MH_ERR_NOTFOUND);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_find(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
|
||||
{
|
||||
int res;
|
||||
|
||||
rw_enter(&hash->mh_contents, RW_READER);
|
||||
res = i_mod_hash_find_nosync(hash, key, val);
|
||||
rw_exit(&hash->mh_contents);
|
||||
|
||||
return (res);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_find_cb(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
|
||||
void (*find_cb)(mod_hash_key_t, mod_hash_val_t))
|
||||
{
|
||||
int res;
|
||||
|
||||
rw_enter(&hash->mh_contents, RW_READER);
|
||||
res = i_mod_hash_find_nosync(hash, key, val);
|
||||
if (res == 0) {
|
||||
find_cb(key, *val);
|
||||
}
|
||||
rw_exit(&hash->mh_contents);
|
||||
|
||||
return (res);
|
||||
}
|
||||
|
||||
int
|
||||
mod_hash_find_cb_rval(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
|
||||
int (*find_cb)(mod_hash_key_t, mod_hash_val_t), int *cb_rval)
|
||||
{
|
||||
int res;
|
||||
|
||||
rw_enter(&hash->mh_contents, RW_READER);
|
||||
res = i_mod_hash_find_nosync(hash, key, val);
|
||||
if (res == 0) {
|
||||
*cb_rval = find_cb(key, *val);
|
||||
}
|
||||
rw_exit(&hash->mh_contents);
|
||||
|
||||
return (res);
|
||||
}
|
||||
|
||||
void
|
||||
i_mod_hash_walk_nosync(mod_hash_t *hash,
|
||||
uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
|
||||
{
|
||||
struct mod_hash_entry *e;
|
||||
uint_t hashidx;
|
||||
int res = MH_WALK_CONTINUE;
|
||||
|
||||
for (hashidx = 0;
|
||||
(hashidx < (hash->mh_nchains - 1)) && (res == MH_WALK_CONTINUE);
|
||||
hashidx++) {
|
||||
e = hash->mh_entries[hashidx];
|
||||
while ((e != NULL) && (res == MH_WALK_CONTINUE)) {
|
||||
res = callback(e->mhe_key, e->mhe_val, arg);
|
||||
e = e->mhe_next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* mod_hash_walk()
|
||||
* Walks all the elements in the hashtable and invokes the callback
|
||||
* function with the key/value pair for each element. The hashtable
|
||||
* is locked for readers so the callback function should not attempt
|
||||
* to do any updates to the hashable. The callback function should
|
||||
* return MH_WALK_CONTINUE to continue walking the hashtable or
|
||||
* MH_WALK_TERMINATE to abort the walk of the hashtable.
|
||||
*/
|
||||
void
|
||||
mod_hash_walk(mod_hash_t *hash,
|
||||
uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
|
||||
{
|
||||
rw_enter(&hash->mh_contents, RW_READER);
|
||||
i_mod_hash_walk_nosync(hash, callback, arg);
|
||||
rw_exit(&hash->mh_contents);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* i_mod_hash_clear_nosync()
|
||||
* mod_hash_clear()
|
||||
* Clears the given hash table by calling the destructor of every hash
|
||||
* element and freeing up all mod_hash_entry's.
|
||||
*/
|
||||
void
|
||||
i_mod_hash_clear_nosync(mod_hash_t *hash)
|
||||
{
|
||||
int i;
|
||||
struct mod_hash_entry *e, *old_e;
|
||||
|
||||
for (i = 0; i < hash->mh_nchains; i++) {
|
||||
e = hash->mh_entries[i];
|
||||
while (e != NULL) {
|
||||
MH_KEY_DESTROY(hash, e->mhe_key);
|
||||
MH_VAL_DESTROY(hash, e->mhe_val);
|
||||
old_e = e;
|
||||
e = e->mhe_next;
|
||||
kmem_cache_free(mh_e_cache, old_e);
|
||||
}
|
||||
hash->mh_entries[i] = NULL;
|
||||
}
|
||||
hash->mh_stat.mhs_nelems = 0;
|
||||
}
|
||||
|
||||
void
|
||||
mod_hash_clear(mod_hash_t *hash)
|
||||
{
|
||||
ASSERT(hash);
|
||||
rw_enter(&hash->mh_contents, RW_WRITER);
|
||||
i_mod_hash_clear_nosync(hash);
|
||||
rw_exit(&hash->mh_contents);
|
||||
}
|
Loading…
Reference in New Issue