Linux 5.0 compat: SIMD compatibility

Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS,
and 5.0 and newer kernels.

This commit squashes the following commits from master in to
a single commit which can be applied to 0.8.2.

10fa2545 - Linux 4.14, 4.19, 5.0+ compat: SIMD save/restore
b88ca2ac - Enable SIMD for encryption
095b5412 - Fix CONFIG_X86_DEBUG_FPU build failure
e5db3134 - Linux 5.0 compat: SIMD compatibility

Reviewed-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
TEST_ZIMPORT_SKIP="yes"
This commit is contained in:
Brian Behlendorf 2019-07-12 09:31:20 -07:00 committed by Tony Hutter
parent 988b040476
commit 62c034f6d4
30 changed files with 548 additions and 206 deletions

View File

@ -107,6 +107,7 @@
#include <sys/vdev_impl.h> #include <sys/vdev_impl.h>
#include <sys/vdev_file.h> #include <sys/vdev_file.h>
#include <sys/vdev_initialize.h> #include <sys/vdev_initialize.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_trim.h> #include <sys/vdev_trim.h>
#include <sys/spa_impl.h> #include <sys/spa_impl.h>
#include <sys/metaslab_impl.h> #include <sys/metaslab_impl.h>
@ -7110,6 +7111,8 @@ ztest_run(ztest_shared_t *zs)
metaslab_preload_limit = ztest_random(20) + 1; metaslab_preload_limit = ztest_random(20) + 1;
ztest_spa = spa; ztest_spa = spa;
VERIFY0(vdev_raidz_impl_set("cycle"));
dmu_objset_stats_t dds; dmu_objset_stats_t dds;
VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool, VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os)); DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));

View File

@ -2,8 +2,9 @@ dnl #
dnl # Handle differences in kernel FPU code. dnl # Handle differences in kernel FPU code.
dnl # dnl #
dnl # Kernel dnl # Kernel
dnl # 5.0: All kernel fpu functions are GPL only, so we can't use them. dnl # 5.0: Wrappers have been introduced to save/restore the FPU state.
dnl # (nothing defined) dnl # This change was made to the 4.19.38 and 4.14.120 LTS kernels.
dnl # HAVE_KERNEL_FPU_INTERNAL
dnl # dnl #
dnl # 4.2: Use __kernel_fpu_{begin,end}() dnl # 4.2: Use __kernel_fpu_{begin,end}()
dnl # HAVE_UNDERSCORE_KERNEL_FPU & KERNEL_EXPORTS_X86_FPU dnl # HAVE_UNDERSCORE_KERNEL_FPU & KERNEL_EXPORTS_X86_FPU
@ -12,7 +13,11 @@ dnl # Pre-4.2: Use kernel_fpu_{begin,end}()
dnl # HAVE_KERNEL_FPU & KERNEL_EXPORTS_X86_FPU dnl # HAVE_KERNEL_FPU & KERNEL_EXPORTS_X86_FPU
dnl # dnl #
AC_DEFUN([ZFS_AC_KERNEL_FPU], [ AC_DEFUN([ZFS_AC_KERNEL_FPU], [
AC_MSG_CHECKING([which kernel_fpu header to use]) dnl #
dnl # N.B. The header check is performed before all other checks since
dnl # it depends on HAVE_KERNEL_FPU_API_HEADER being set in confdefs.h.
dnl #
AC_MSG_CHECKING([whether fpu headers are available])
ZFS_LINUX_TRY_COMPILE([ ZFS_LINUX_TRY_COMPILE([
#include <linux/module.h> #include <linux/module.h>
#include <asm/fpu/api.h> #include <asm/fpu/api.h>
@ -25,9 +30,13 @@ AC_DEFUN([ZFS_AC_KERNEL_FPU], [
AC_MSG_RESULT(i387.h & xcr.h) AC_MSG_RESULT(i387.h & xcr.h)
]) ])
AC_MSG_CHECKING([which kernel_fpu function to use]) dnl #
dnl # Legacy kernel
dnl #
AC_MSG_CHECKING([whether kernel fpu is available])
ZFS_LINUX_TRY_COMPILE_SYMBOL([ ZFS_LINUX_TRY_COMPILE_SYMBOL([
#include <linux/module.h> #include <linux/module.h>
#include <linux/types.h>
#ifdef HAVE_KERNEL_FPU_API_HEADER #ifdef HAVE_KERNEL_FPU_API_HEADER
#include <asm/fpu/api.h> #include <asm/fpu/api.h>
#else #else
@ -45,8 +54,12 @@ AC_DEFUN([ZFS_AC_KERNEL_FPU], [
AC_DEFINE(KERNEL_EXPORTS_X86_FPU, 1, AC_DEFINE(KERNEL_EXPORTS_X86_FPU, 1,
[kernel exports FPU functions]) [kernel exports FPU functions])
],[ ],[
dnl #
dnl # Linux 4.2 kernel
dnl #
ZFS_LINUX_TRY_COMPILE_SYMBOL([ ZFS_LINUX_TRY_COMPILE_SYMBOL([
#include <linux/module.h> #include <linux/module.h>
#include <linux/types.h>
#ifdef HAVE_KERNEL_FPU_API_HEADER #ifdef HAVE_KERNEL_FPU_API_HEADER
#include <asm/fpu/api.h> #include <asm/fpu/api.h>
#else #else
@ -57,12 +70,60 @@ AC_DEFUN([ZFS_AC_KERNEL_FPU], [
],[ ],[
__kernel_fpu_begin(); __kernel_fpu_begin();
__kernel_fpu_end(); __kernel_fpu_end();
], [__kernel_fpu_begin], [arch/x86/kernel/fpu/core.c arch/x86/kernel/i387.c], [ ], [__kernel_fpu_begin],
[arch/x86/kernel/fpu/core.c arch/x86/kernel/i387.c], [
AC_MSG_RESULT(__kernel_fpu_*) AC_MSG_RESULT(__kernel_fpu_*)
AC_DEFINE(HAVE_UNDERSCORE_KERNEL_FPU, 1, [kernel has __kernel_fpu_* functions]) AC_DEFINE(HAVE_UNDERSCORE_KERNEL_FPU, 1,
AC_DEFINE(KERNEL_EXPORTS_X86_FPU, 1, [kernel exports FPU functions]) [kernel has __kernel_fpu_* functions])
AC_DEFINE(KERNEL_EXPORTS_X86_FPU, 1,
[kernel exports FPU functions])
],[ ],[
AC_MSG_RESULT(not exported) ZFS_LINUX_TRY_COMPILE([
#include <linux/module.h>
#if defined(__x86_64) || defined(__x86_64__) || \
defined(__i386) || defined(__i386__)
#if !defined(__x86)
#define __x86
#endif
#endif
#if !defined(__x86)
#error Unsupported architecture
#endif
#include <linux/types.h>
#ifdef HAVE_KERNEL_FPU_API_HEADER
#include <asm/fpu/api.h>
#include <asm/fpu/internal.h>
#else
#include <asm/i387.h>
#include <asm/xcr.h>
#endif
#if !defined(XSTATE_XSAVE)
#error XSTATE_XSAVE not defined
#endif
#if !defined(XSTATE_XRESTORE)
#error XSTATE_XRESTORE not defined
#endif
],[
struct fpu *fpu = &current->thread.fpu;
union fpregs_state *st = &fpu->state;
struct fregs_state *fr __attribute__ ((unused)) =
&st->fsave;
struct fxregs_state *fxr __attribute__ ((unused)) =
&st->fxsave;
struct xregs_state *xr __attribute__ ((unused)) =
&st->xsave;
], [
AC_MSG_RESULT(internal)
AC_DEFINE(HAVE_KERNEL_FPU_INTERNAL, 1,
[kernel fpu internal])
],[
AC_MSG_RESULT(unavailable)
])
]) ])
]) ])
]) ])

View File

@ -7,6 +7,7 @@ KERNEL_H = \
$(top_srcdir)/include/linux/blkdev_compat.h \ $(top_srcdir)/include/linux/blkdev_compat.h \
$(top_srcdir)/include/linux/utsname_compat.h \ $(top_srcdir)/include/linux/utsname_compat.h \
$(top_srcdir)/include/linux/kmap_compat.h \ $(top_srcdir)/include/linux/kmap_compat.h \
$(top_srcdir)/include/linux/simd.h \
$(top_srcdir)/include/linux/simd_x86.h \ $(top_srcdir)/include/linux/simd_x86.h \
$(top_srcdir)/include/linux/simd_aarch64.h \ $(top_srcdir)/include/linux/simd_aarch64.h \
$(top_srcdir)/include/linux/mod_compat.h \ $(top_srcdir)/include/linux/mod_compat.h \

42
include/linux/simd.h Normal file
View File

@ -0,0 +1,42 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2019 Lawrence Livermore National Security, LLC.
*/
#ifndef _SIMD_H
#define _SIMD_H
#if defined(__x86)
#include <linux/simd_x86.h>
#elif defined(__aarch64__)
#include <linux/simd_aarch64.h>
#else
#define kfpu_allowed() 0
#define kfpu_begin() do {} while (0)
#define kfpu_end() do {} while (0)
#define kfpu_init() 0
#define kfpu_fini() ((void) 0)
#endif
#endif /* _SIMD_H */

View File

@ -27,9 +27,10 @@
* *
* Kernel fpu methods: * Kernel fpu methods:
* kfpu_allowed() * kfpu_allowed()
* kfpu_initialize()
* kfpu_begin() * kfpu_begin()
* kfpu_end() * kfpu_end()
* kfpu_init()
* kfpu_fini()
*/ */
#ifndef _SIMD_AARCH64_H #ifndef _SIMD_AARCH64_H
@ -43,20 +44,20 @@
#if defined(_KERNEL) #if defined(_KERNEL)
#include <asm/neon.h> #include <asm/neon.h>
#define kfpu_begin() \ #define kfpu_allowed() 1
{ \ #define kfpu_begin() kernel_neon_begin()
kernel_neon_begin(); \ #define kfpu_end() kernel_neon_end()
} #define kfpu_init() 0
#define kfpu_end() \ #define kfpu_fini() ((void) 0)
{ \
kernel_neon_end(); \
}
#else #else
/* /*
* fpu dummy methods for userspace * fpu dummy methods for userspace
*/ */
#define kfpu_begin() do {} while (0) #define kfpu_allowed() 1
#define kfpu_end() do {} while (0) #define kfpu_begin() do {} while (0)
#define kfpu_end() do {} while (0)
#define kfpu_init() 0
#define kfpu_fini() ((void) 0)
#endif /* defined(_KERNEL) */ #endif /* defined(_KERNEL) */
#endif /* __aarch64__ */ #endif /* __aarch64__ */

View File

@ -27,9 +27,10 @@
* *
* Kernel fpu methods: * Kernel fpu methods:
* kfpu_allowed() * kfpu_allowed()
* kfpu_initialize()
* kfpu_begin() * kfpu_begin()
* kfpu_end() * kfpu_end()
* kfpu_init()
* kfpu_fini()
* *
* SIMD support: * SIMD support:
* *
@ -84,6 +85,15 @@
#if defined(_KERNEL) #if defined(_KERNEL)
/*
* Disable the WARN_ON_FPU() macro to prevent additional dependencies
* when providing the kfpu_* functions. Relevant warnings are included
* as appropriate and are unconditionally enabled.
*/
#if defined(CONFIG_X86_DEBUG_FPU) && !defined(KERNEL_EXPORTS_X86_FPU)
#undef CONFIG_X86_DEBUG_FPU
#endif
#if defined(HAVE_KERNEL_FPU_API_HEADER) #if defined(HAVE_KERNEL_FPU_API_HEADER)
#include <asm/fpu/api.h> #include <asm/fpu/api.h>
#include <asm/fpu/internal.h> #include <asm/fpu/internal.h>
@ -92,33 +102,231 @@
#include <asm/xcr.h> #include <asm/xcr.h>
#endif #endif
/*
* The following cases are for kernels which export either the
* kernel_fpu_* or __kernel_fpu_* functions.
*/
#if defined(KERNEL_EXPORTS_X86_FPU)
#define kfpu_allowed() 1
#define kfpu_init() 0
#define kfpu_fini() ((void) 0)
#if defined(HAVE_UNDERSCORE_KERNEL_FPU) #if defined(HAVE_UNDERSCORE_KERNEL_FPU)
#define kfpu_begin() \ #define kfpu_begin() \
{ \ { \
preempt_disable(); \ preempt_disable(); \
__kernel_fpu_begin(); \ __kernel_fpu_begin(); \
} }
#define kfpu_end() \ #define kfpu_end() \
{ \ { \
__kernel_fpu_end(); \ __kernel_fpu_end(); \
preempt_enable(); \ preempt_enable(); \
} }
#elif defined(HAVE_KERNEL_FPU) #elif defined(HAVE_KERNEL_FPU)
#define kfpu_begin() kernel_fpu_begin() #define kfpu_begin() kernel_fpu_begin()
#define kfpu_end() kernel_fpu_end() #define kfpu_end() kernel_fpu_end()
#else
/* Kernel doesn't export any kernel_fpu_* functions */
#include <asm/fpu/internal.h> /* For kernel xgetbv() */
#define kfpu_begin() panic("This code should never run")
#define kfpu_end() panic("This code should never run")
#endif /* defined(HAVE_KERNEL_FPU) */
#else #else
/* /*
* fpu dummy methods for userspace * This case is unreachable. When KERNEL_EXPORTS_X86_FPU is defined then
* either HAVE_UNDERSCORE_KERNEL_FPU or HAVE_KERNEL_FPU must be defined.
*/ */
#define kfpu_begin() do {} while (0) #error "Unreachable kernel configuration"
#define kfpu_end() do {} while (0) #endif
#else /* defined(KERNEL_EXPORTS_X86_FPU) */
/*
* When the kernel_fpu_* symbols are unavailable then provide our own
* versions which allow the FPU to be safely used.
*/
#if defined(HAVE_KERNEL_FPU_INTERNAL)
extern union fpregs_state **zfs_kfpu_fpregs;
/*
* Initialize per-cpu variables to store FPU state.
*/
static inline void
kfpu_fini(void)
{
int cpu;
for_each_possible_cpu(cpu) {
if (zfs_kfpu_fpregs[cpu] != NULL) {
kfree(zfs_kfpu_fpregs[cpu]);
}
}
kfree(zfs_kfpu_fpregs);
}
static inline int
kfpu_init(void)
{
int cpu;
zfs_kfpu_fpregs = kzalloc(num_possible_cpus() *
sizeof (union fpregs_state *), GFP_KERNEL);
if (zfs_kfpu_fpregs == NULL)
return (-ENOMEM);
for_each_possible_cpu(cpu) {
zfs_kfpu_fpregs[cpu] = kmalloc_node(sizeof (union fpregs_state),
GFP_KERNEL | __GFP_ZERO, cpu_to_node(cpu));
if (zfs_kfpu_fpregs[cpu] == NULL) {
kfpu_fini();
return (-ENOMEM);
}
}
return (0);
}
#define kfpu_allowed() 1
#define ex_handler_fprestore ex_handler_default
/*
* FPU save and restore instructions.
*/
#define __asm __asm__ __volatile__
#define kfpu_fxsave(addr) __asm("fxsave %0" : "=m" (*(addr)))
#define kfpu_fxsaveq(addr) __asm("fxsaveq %0" : "=m" (*(addr)))
#define kfpu_fnsave(addr) __asm("fnsave %0; fwait" : "=m" (*(addr)))
#define kfpu_fxrstor(addr) __asm("fxrstor %0" : : "m" (*(addr)))
#define kfpu_fxrstorq(addr) __asm("fxrstorq %0" : : "m" (*(addr)))
#define kfpu_frstor(addr) __asm("frstor %0" : : "m" (*(addr)))
#define kfpu_fxsr_clean(rval) __asm("fnclex; emms; fildl %P[addr]" \
: : [addr] "m" (rval));
static inline void
kfpu_save_xsave(struct xregs_state *addr, uint64_t mask)
{
uint32_t low, hi;
int err;
low = mask;
hi = mask >> 32;
XSTATE_XSAVE(addr, low, hi, err);
WARN_ON_ONCE(err);
}
static inline void
kfpu_save_fxsr(struct fxregs_state *addr)
{
if (IS_ENABLED(CONFIG_X86_32))
kfpu_fxsave(addr);
else
kfpu_fxsaveq(addr);
}
static inline void
kfpu_save_fsave(struct fregs_state *addr)
{
kfpu_fnsave(addr);
}
static inline void
kfpu_begin(void)
{
/*
* Preemption and interrupts must be disabled for the critical
* region where the FPU state is being modified.
*/
preempt_disable();
local_irq_disable();
/*
* The current FPU registers need to be preserved by kfpu_begin()
* and restored by kfpu_end(). They are stored in a dedicated
* per-cpu variable, not in the task struct, this allows any user
* FPU state to be correctly preserved and restored.
*/
union fpregs_state *state = zfs_kfpu_fpregs[smp_processor_id()];
if (static_cpu_has(X86_FEATURE_XSAVE)) {
kfpu_save_xsave(&state->xsave, ~0);
} else if (static_cpu_has(X86_FEATURE_FXSR)) {
kfpu_save_fxsr(&state->fxsave);
} else {
kfpu_save_fsave(&state->fsave);
}
}
static inline void
kfpu_restore_xsave(struct xregs_state *addr, uint64_t mask)
{
uint32_t low, hi;
low = mask;
hi = mask >> 32;
XSTATE_XRESTORE(addr, low, hi);
}
static inline void
kfpu_restore_fxsr(struct fxregs_state *addr)
{
/*
* On AuthenticAMD K7 and K8 processors the fxrstor instruction only
* restores the _x87 FOP, FIP, and FDP registers when an exception
* is pending. Clean the _x87 state to force the restore.
*/
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK)))
kfpu_fxsr_clean(addr);
if (IS_ENABLED(CONFIG_X86_32)) {
kfpu_fxrstor(addr);
} else {
kfpu_fxrstorq(addr);
}
}
static inline void
kfpu_restore_fsave(struct fregs_state *addr)
{
kfpu_frstor(addr);
}
static inline void
kfpu_end(void)
{
union fpregs_state *state = zfs_kfpu_fpregs[smp_processor_id()];
if (static_cpu_has(X86_FEATURE_XSAVE)) {
kfpu_restore_xsave(&state->xsave, ~0);
} else if (static_cpu_has(X86_FEATURE_FXSR)) {
kfpu_restore_fxsr(&state->fxsave);
} else {
kfpu_restore_fsave(&state->fsave);
}
local_irq_enable();
preempt_enable();
}
#else
/*
* FPU support is unavailable.
*/
#define kfpu_allowed() 0
#define kfpu_begin() do {} while (0)
#define kfpu_end() do {} while (0)
#define kfpu_init() 0
#define kfpu_fini() ((void) 0)
#endif /* defined(HAVE_KERNEL_FPU_INTERNAL) */
#endif /* defined(KERNEL_EXPORTS_X86_FPU) */
#else /* defined(_KERNEL) */
/*
* FPU dummy methods for user space.
*/
#define kfpu_allowed() 1
#define kfpu_begin() do {} while (0)
#define kfpu_end() do {} while (0)
#endif /* defined(_KERNEL) */ #endif /* defined(_KERNEL) */
/* /*
@ -289,7 +497,6 @@ CPUID_FEATURE_CHECK(pclmulqdq, PCLMULQDQ);
#endif /* !defined(_KERNEL) */ #endif /* !defined(_KERNEL) */
/* /*
* Detect register set support * Detect register set support
*/ */
@ -300,7 +507,7 @@ __simd_state_enabled(const uint64_t state)
uint64_t xcr0; uint64_t xcr0;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_OSXSAVE) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_OSXSAVE)
has_osxsave = !!boot_cpu_has(X86_FEATURE_OSXSAVE); has_osxsave = !!boot_cpu_has(X86_FEATURE_OSXSAVE);
#else #else
has_osxsave = B_FALSE; has_osxsave = B_FALSE;
@ -330,11 +537,7 @@ static inline boolean_t
zfs_sse_available(void) zfs_sse_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(KERNEL_EXPORTS_X86_FPU)
return (!!boot_cpu_has(X86_FEATURE_XMM)); return (!!boot_cpu_has(X86_FEATURE_XMM));
#else
return (B_FALSE);
#endif
#elif !defined(_KERNEL) #elif !defined(_KERNEL)
return (__cpuid_has_sse()); return (__cpuid_has_sse());
#endif #endif
@ -347,11 +550,7 @@ static inline boolean_t
zfs_sse2_available(void) zfs_sse2_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(KERNEL_EXPORTS_X86_FPU)
return (!!boot_cpu_has(X86_FEATURE_XMM2)); return (!!boot_cpu_has(X86_FEATURE_XMM2));
#else
return (B_FALSE);
#endif
#elif !defined(_KERNEL) #elif !defined(_KERNEL)
return (__cpuid_has_sse2()); return (__cpuid_has_sse2());
#endif #endif
@ -364,11 +563,7 @@ static inline boolean_t
zfs_sse3_available(void) zfs_sse3_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(KERNEL_EXPORTS_X86_FPU)
return (!!boot_cpu_has(X86_FEATURE_XMM3)); return (!!boot_cpu_has(X86_FEATURE_XMM3));
#else
return (B_FALSE);
#endif
#elif !defined(_KERNEL) #elif !defined(_KERNEL)
return (__cpuid_has_sse3()); return (__cpuid_has_sse3());
#endif #endif
@ -381,11 +576,7 @@ static inline boolean_t
zfs_ssse3_available(void) zfs_ssse3_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(KERNEL_EXPORTS_X86_FPU)
return (!!boot_cpu_has(X86_FEATURE_SSSE3)); return (!!boot_cpu_has(X86_FEATURE_SSSE3));
#else
return (B_FALSE);
#endif
#elif !defined(_KERNEL) #elif !defined(_KERNEL)
return (__cpuid_has_ssse3()); return (__cpuid_has_ssse3());
#endif #endif
@ -398,11 +589,7 @@ static inline boolean_t
zfs_sse4_1_available(void) zfs_sse4_1_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(KERNEL_EXPORTS_X86_FPU)
return (!!boot_cpu_has(X86_FEATURE_XMM4_1)); return (!!boot_cpu_has(X86_FEATURE_XMM4_1));
#else
return (B_FALSE);
#endif
#elif !defined(_KERNEL) #elif !defined(_KERNEL)
return (__cpuid_has_sse4_1()); return (__cpuid_has_sse4_1());
#endif #endif
@ -415,11 +602,7 @@ static inline boolean_t
zfs_sse4_2_available(void) zfs_sse4_2_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(KERNEL_EXPORTS_X86_FPU)
return (!!boot_cpu_has(X86_FEATURE_XMM4_2)); return (!!boot_cpu_has(X86_FEATURE_XMM4_2));
#else
return (B_FALSE);
#endif
#elif !defined(_KERNEL) #elif !defined(_KERNEL)
return (__cpuid_has_sse4_2()); return (__cpuid_has_sse4_2());
#endif #endif
@ -433,11 +616,7 @@ zfs_avx_available(void)
{ {
boolean_t has_avx; boolean_t has_avx;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(KERNEL_EXPORTS_X86_FPU)
has_avx = !!boot_cpu_has(X86_FEATURE_AVX); has_avx = !!boot_cpu_has(X86_FEATURE_AVX);
#else
has_avx = B_FALSE;
#endif
#elif !defined(_KERNEL) #elif !defined(_KERNEL)
has_avx = __cpuid_has_avx(); has_avx = __cpuid_has_avx();
#endif #endif
@ -453,11 +632,7 @@ zfs_avx2_available(void)
{ {
boolean_t has_avx2; boolean_t has_avx2;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX2) && defined(KERNEL_EXPORTS_X86_FPU)
has_avx2 = !!boot_cpu_has(X86_FEATURE_AVX2); has_avx2 = !!boot_cpu_has(X86_FEATURE_AVX2);
#else
has_avx2 = B_FALSE;
#endif
#elif !defined(_KERNEL) #elif !defined(_KERNEL)
has_avx2 = __cpuid_has_avx2(); has_avx2 = __cpuid_has_avx2();
#endif #endif
@ -472,7 +647,7 @@ static inline boolean_t
zfs_bmi1_available(void) zfs_bmi1_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_BMI1) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_BMI1)
return (!!boot_cpu_has(X86_FEATURE_BMI1)); return (!!boot_cpu_has(X86_FEATURE_BMI1));
#else #else
return (B_FALSE); return (B_FALSE);
@ -489,7 +664,7 @@ static inline boolean_t
zfs_bmi2_available(void) zfs_bmi2_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_BMI2) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_BMI2)
return (!!boot_cpu_has(X86_FEATURE_BMI2)); return (!!boot_cpu_has(X86_FEATURE_BMI2));
#else #else
return (B_FALSE); return (B_FALSE);
@ -506,7 +681,7 @@ static inline boolean_t
zfs_aes_available(void) zfs_aes_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AES) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AES)
return (!!boot_cpu_has(X86_FEATURE_AES)); return (!!boot_cpu_has(X86_FEATURE_AES));
#else #else
return (B_FALSE); return (B_FALSE);
@ -523,7 +698,7 @@ static inline boolean_t
zfs_pclmulqdq_available(void) zfs_pclmulqdq_available(void)
{ {
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_PCLMULQDQ) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_PCLMULQDQ)
return (!!boot_cpu_has(X86_FEATURE_PCLMULQDQ)); return (!!boot_cpu_has(X86_FEATURE_PCLMULQDQ));
#else #else
return (B_FALSE); return (B_FALSE);
@ -557,7 +732,7 @@ zfs_avx512f_available(void)
boolean_t has_avx512 = B_FALSE; boolean_t has_avx512 = B_FALSE;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX512F) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AVX512F)
has_avx512 = !!boot_cpu_has(X86_FEATURE_AVX512F); has_avx512 = !!boot_cpu_has(X86_FEATURE_AVX512F);
#else #else
has_avx512 = B_FALSE; has_avx512 = B_FALSE;
@ -576,7 +751,7 @@ zfs_avx512cd_available(void)
boolean_t has_avx512 = B_FALSE; boolean_t has_avx512 = B_FALSE;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX512CD) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AVX512CD)
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) && has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
boot_cpu_has(X86_FEATURE_AVX512CD); boot_cpu_has(X86_FEATURE_AVX512CD);
#else #else
@ -596,7 +771,7 @@ zfs_avx512er_available(void)
boolean_t has_avx512 = B_FALSE; boolean_t has_avx512 = B_FALSE;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX512ER) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AVX512ER)
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) && has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
boot_cpu_has(X86_FEATURE_AVX512ER); boot_cpu_has(X86_FEATURE_AVX512ER);
#else #else
@ -616,7 +791,7 @@ zfs_avx512pf_available(void)
boolean_t has_avx512 = B_FALSE; boolean_t has_avx512 = B_FALSE;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX512PF) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AVX512PF)
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) && has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
boot_cpu_has(X86_FEATURE_AVX512PF); boot_cpu_has(X86_FEATURE_AVX512PF);
#else #else
@ -636,7 +811,7 @@ zfs_avx512bw_available(void)
boolean_t has_avx512 = B_FALSE; boolean_t has_avx512 = B_FALSE;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX512BW) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AVX512BW)
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) && has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
boot_cpu_has(X86_FEATURE_AVX512BW); boot_cpu_has(X86_FEATURE_AVX512BW);
#else #else
@ -656,7 +831,7 @@ zfs_avx512dq_available(void)
boolean_t has_avx512 = B_FALSE; boolean_t has_avx512 = B_FALSE;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX512DQ) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AVX512DQ)
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) && has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
boot_cpu_has(X86_FEATURE_AVX512DQ); boot_cpu_has(X86_FEATURE_AVX512DQ);
#else #else
@ -676,7 +851,7 @@ zfs_avx512vl_available(void)
boolean_t has_avx512 = B_FALSE; boolean_t has_avx512 = B_FALSE;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX512VL) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AVX512VL)
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) && has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
boot_cpu_has(X86_FEATURE_AVX512VL); boot_cpu_has(X86_FEATURE_AVX512VL);
#else #else
@ -696,7 +871,7 @@ zfs_avx512ifma_available(void)
boolean_t has_avx512 = B_FALSE; boolean_t has_avx512 = B_FALSE;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX512IFMA) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AVX512IFMA)
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) && has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
boot_cpu_has(X86_FEATURE_AVX512IFMA); boot_cpu_has(X86_FEATURE_AVX512IFMA);
#else #else
@ -716,7 +891,7 @@ zfs_avx512vbmi_available(void)
boolean_t has_avx512 = B_FALSE; boolean_t has_avx512 = B_FALSE;
#if defined(_KERNEL) #if defined(_KERNEL)
#if defined(X86_FEATURE_AVX512VBMI) && defined(KERNEL_EXPORTS_X86_FPU) #if defined(X86_FEATURE_AVX512VBMI)
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) && has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
boot_cpu_has(X86_FEATURE_AVX512VBMI); boot_cpu_has(X86_FEATURE_AVX512VBMI);
#else #else

View File

@ -51,7 +51,7 @@ int vdev_raidz_reconstruct(struct raidz_map *, const int *, int);
*/ */
void vdev_raidz_math_init(void); void vdev_raidz_math_init(void);
void vdev_raidz_math_fini(void); void vdev_raidz_math_fini(void);
struct raidz_impl_ops *vdev_raidz_math_get_ops(void); const struct raidz_impl_ops *vdev_raidz_math_get_ops(void);
int vdev_raidz_math_generate(struct raidz_map *); int vdev_raidz_math_generate(struct raidz_map *);
int vdev_raidz_math_reconstruct(struct raidz_map *, const int *, const int *, int vdev_raidz_math_reconstruct(struct raidz_map *, const int *, const int *,
const int); const int);

View File

@ -126,7 +126,7 @@ typedef struct raidz_map {
uintptr_t rm_reports; /* # of referencing checksum reports */ uintptr_t rm_reports; /* # of referencing checksum reports */
uint8_t rm_freed; /* map no longer has referencing ZIO */ uint8_t rm_freed; /* map no longer has referencing ZIO */
uint8_t rm_ecksuminjected; /* checksum error was injected */ uint8_t rm_ecksuminjected; /* checksum error was injected */
raidz_impl_ops_t *rm_ops; /* RAIDZ math operations */ const raidz_impl_ops_t *rm_ops; /* RAIDZ math operations */
raidz_col_t rm_col[1]; /* Flexible array of I/O columns */ raidz_col_t rm_col[1]; /* Flexible array of I/O columns */
} raidz_map_t; } raidz_map_t;

View File

@ -27,6 +27,7 @@
#include <sys/crypto/spi.h> #include <sys/crypto/spi.h>
#include <modes/modes.h> #include <modes/modes.h>
#include <aes/aes_impl.h> #include <aes/aes_impl.h>
#include <linux/simd.h>
/* /*
* Initialize AES encryption and decryption key schedules. * Initialize AES encryption and decryption key schedules.
@ -40,9 +41,9 @@
void void
aes_init_keysched(const uint8_t *cipherKey, uint_t keyBits, void *keysched) aes_init_keysched(const uint8_t *cipherKey, uint_t keyBits, void *keysched)
{ {
aes_impl_ops_t *ops = aes_impl_get_ops(); const aes_impl_ops_t *ops = aes_impl_get_ops();
aes_key_t *newbie = keysched; aes_key_t *newbie = keysched;
uint_t keysize, i, j; uint_t keysize, i, j;
union { union {
uint64_t ka64[4]; uint64_t ka64[4];
uint32_t ka32[8]; uint32_t ka32[8];
@ -252,12 +253,17 @@ static size_t aes_supp_impl_cnt = 0;
static aes_impl_ops_t *aes_supp_impl[ARRAY_SIZE(aes_all_impl)]; static aes_impl_ops_t *aes_supp_impl[ARRAY_SIZE(aes_all_impl)];
/* /*
* Selects the aes operations for encrypt/decrypt/key setup * Returns the AES operations for encrypt/decrypt/key setup. When a
* SIMD implementation is not allowed in the current context, then
* fallback to the fastest generic implementation.
*/ */
aes_impl_ops_t * const aes_impl_ops_t *
aes_impl_get_ops() aes_impl_get_ops(void)
{ {
aes_impl_ops_t *ops = NULL; if (!kfpu_allowed())
return (&aes_generic_impl);
const aes_impl_ops_t *ops = NULL;
const uint32_t impl = AES_IMPL_READ(icp_aes_impl); const uint32_t impl = AES_IMPL_READ(icp_aes_impl);
switch (impl) { switch (impl) {
@ -266,15 +272,13 @@ aes_impl_get_ops()
ops = &aes_fastest_impl; ops = &aes_fastest_impl;
break; break;
case IMPL_CYCLE: case IMPL_CYCLE:
{ /* Cycle through supported implementations */
ASSERT(aes_impl_initialized); ASSERT(aes_impl_initialized);
ASSERT3U(aes_supp_impl_cnt, >, 0); ASSERT3U(aes_supp_impl_cnt, >, 0);
/* Cycle through supported implementations */
static size_t cycle_impl_idx = 0; static size_t cycle_impl_idx = 0;
size_t idx = (++cycle_impl_idx) % aes_supp_impl_cnt; size_t idx = (++cycle_impl_idx) % aes_supp_impl_cnt;
ops = aes_supp_impl[idx]; ops = aes_supp_impl[idx];
} break;
break;
default: default:
ASSERT3U(impl, <, aes_supp_impl_cnt); ASSERT3U(impl, <, aes_supp_impl_cnt);
ASSERT3U(aes_supp_impl_cnt, >, 0); ASSERT3U(aes_supp_impl_cnt, >, 0);
@ -288,13 +292,16 @@ aes_impl_get_ops()
return (ops); return (ops);
} }
/*
* Initialize all supported implementations.
*/
void void
aes_impl_init(void) aes_impl_init(void)
{ {
aes_impl_ops_t *curr_impl; aes_impl_ops_t *curr_impl;
int i, c; int i, c;
/* move supported impl into aes_supp_impls */ /* Move supported implementations into aes_supp_impls */
for (i = 0, c = 0; i < ARRAY_SIZE(aes_all_impl); i++) { for (i = 0, c = 0; i < ARRAY_SIZE(aes_all_impl); i++) {
curr_impl = (aes_impl_ops_t *)aes_all_impl[i]; curr_impl = (aes_impl_ops_t *)aes_all_impl[i];

View File

@ -108,7 +108,7 @@ aes_aesni_decrypt(const uint32_t rk[], int Nr, const uint32_t ct[4],
static boolean_t static boolean_t
aes_aesni_will_work(void) aes_aesni_will_work(void)
{ {
return (zfs_aes_available()); return (kfpu_allowed() && zfs_aes_available());
} }
const aes_impl_ops_t aes_aesni_impl = { const aes_impl_ops_t aes_aesni_impl = {

View File

@ -29,6 +29,7 @@
#include <sys/crypto/impl.h> #include <sys/crypto/impl.h>
#include <sys/byteorder.h> #include <sys/byteorder.h>
#include <modes/gcm_impl.h> #include <modes/gcm_impl.h>
#include <linux/simd.h>
#define GHASH(c, d, t, o) \ #define GHASH(c, d, t, o) \
xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \ xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \
@ -46,7 +47,7 @@ gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
void (*copy_block)(uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *)) void (*xor_block)(uint8_t *, uint8_t *))
{ {
gcm_impl_ops_t *gops; const gcm_impl_ops_t *gops;
size_t remainder = length; size_t remainder = length;
size_t need = 0; size_t need = 0;
uint8_t *datap = (uint8_t *)data; uint8_t *datap = (uint8_t *)data;
@ -168,7 +169,7 @@ gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
void (*copy_block)(uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *)) void (*xor_block)(uint8_t *, uint8_t *))
{ {
gcm_impl_ops_t *gops; const gcm_impl_ops_t *gops;
uint64_t counter_mask = ntohll(0x00000000ffffffffULL); uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
uint8_t *ghash, *macp = NULL; uint8_t *ghash, *macp = NULL;
int i, rv; int i, rv;
@ -320,7 +321,7 @@ gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *)) void (*xor_block)(uint8_t *, uint8_t *))
{ {
gcm_impl_ops_t *gops; const gcm_impl_ops_t *gops;
size_t pt_len; size_t pt_len;
size_t remainder; size_t remainder;
uint8_t *ghash; uint8_t *ghash;
@ -427,7 +428,7 @@ gcm_format_initial_blocks(uchar_t *iv, ulong_t iv_len,
void (*copy_block)(uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *)) void (*xor_block)(uint8_t *, uint8_t *))
{ {
gcm_impl_ops_t *gops; const gcm_impl_ops_t *gops;
uint8_t *cb; uint8_t *cb;
ulong_t remainder = iv_len; ulong_t remainder = iv_len;
ulong_t processed = 0; ulong_t processed = 0;
@ -481,7 +482,7 @@ gcm_init(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
void (*copy_block)(uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *)) void (*xor_block)(uint8_t *, uint8_t *))
{ {
gcm_impl_ops_t *gops; const gcm_impl_ops_t *gops;
uint8_t *ghash, *datap, *authp; uint8_t *ghash, *datap, *authp;
size_t remainder, processed; size_t remainder, processed;
@ -660,12 +661,17 @@ static size_t gcm_supp_impl_cnt = 0;
static gcm_impl_ops_t *gcm_supp_impl[ARRAY_SIZE(gcm_all_impl)]; static gcm_impl_ops_t *gcm_supp_impl[ARRAY_SIZE(gcm_all_impl)];
/* /*
* Selects the gcm operation * Returns the GCM operations for encrypt/decrypt/key setup. When a
* SIMD implementation is not allowed in the current context, then
* fallback to the fastest generic implementation.
*/ */
gcm_impl_ops_t * const gcm_impl_ops_t *
gcm_impl_get_ops() gcm_impl_get_ops()
{ {
gcm_impl_ops_t *ops = NULL; if (!kfpu_allowed())
return (&gcm_generic_impl);
const gcm_impl_ops_t *ops = NULL;
const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl); const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);
switch (impl) { switch (impl) {
@ -674,15 +680,13 @@ gcm_impl_get_ops()
ops = &gcm_fastest_impl; ops = &gcm_fastest_impl;
break; break;
case IMPL_CYCLE: case IMPL_CYCLE:
{ /* Cycle through supported implementations */
ASSERT(gcm_impl_initialized); ASSERT(gcm_impl_initialized);
ASSERT3U(gcm_supp_impl_cnt, >, 0); ASSERT3U(gcm_supp_impl_cnt, >, 0);
/* Cycle through supported implementations */
static size_t cycle_impl_idx = 0; static size_t cycle_impl_idx = 0;
size_t idx = (++cycle_impl_idx) % gcm_supp_impl_cnt; size_t idx = (++cycle_impl_idx) % gcm_supp_impl_cnt;
ops = gcm_supp_impl[idx]; ops = gcm_supp_impl[idx];
} break;
break;
default: default:
ASSERT3U(impl, <, gcm_supp_impl_cnt); ASSERT3U(impl, <, gcm_supp_impl_cnt);
ASSERT3U(gcm_supp_impl_cnt, >, 0); ASSERT3U(gcm_supp_impl_cnt, >, 0);
@ -696,13 +700,16 @@ gcm_impl_get_ops()
return (ops); return (ops);
} }
/*
* Initialize all supported implementations.
*/
void void
gcm_impl_init(void) gcm_impl_init(void)
{ {
gcm_impl_ops_t *curr_impl; gcm_impl_ops_t *curr_impl;
int i, c; int i, c;
/* move supported impl into aes_supp_impls */ /* Move supported implementations into gcm_supp_impls */
for (i = 0, c = 0; i < ARRAY_SIZE(gcm_all_impl); i++) { for (i = 0, c = 0; i < ARRAY_SIZE(gcm_all_impl); i++) {
curr_impl = (gcm_impl_ops_t *)gcm_all_impl[i]; curr_impl = (gcm_impl_ops_t *)gcm_all_impl[i];
@ -711,7 +718,10 @@ gcm_impl_init(void)
} }
gcm_supp_impl_cnt = c; gcm_supp_impl_cnt = c;
/* set fastest implementation. assume hardware accelerated is fastest */ /*
* Set the fastest implementation given the assumption that the
* hardware accelerated version is the fastest.
*/
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ) #if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
if (gcm_pclmulqdq_impl.is_supported()) { if (gcm_pclmulqdq_impl.is_supported()) {
memcpy(&gcm_fastest_impl, &gcm_pclmulqdq_impl, memcpy(&gcm_fastest_impl, &gcm_pclmulqdq_impl,

View File

@ -52,7 +52,7 @@ gcm_pclmulqdq_mul(uint64_t *x_in, uint64_t *y, uint64_t *res)
static boolean_t static boolean_t
gcm_pclmulqdq_will_work(void) gcm_pclmulqdq_will_work(void)
{ {
return (zfs_pclmulqdq_available()); return (kfpu_allowed() && zfs_pclmulqdq_available());
} }
const gcm_impl_ops_t gcm_pclmulqdq_impl = { const gcm_impl_ops_t gcm_pclmulqdq_impl = {

View File

@ -201,9 +201,9 @@ extern const aes_impl_ops_t aes_aesni_impl;
void aes_impl_init(void); void aes_impl_init(void);
/* /*
* Get selected aes implementation * Returns optimal allowed AES implementation
*/ */
struct aes_impl_ops *aes_impl_get_ops(void); const struct aes_impl_ops *aes_impl_get_ops(void);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -64,9 +64,9 @@ extern const gcm_impl_ops_t gcm_pclmulqdq_impl;
void gcm_impl_init(void); void gcm_impl_init(void);
/* /*
* Get selected aes implementation * Returns optimal allowed GCM implementation
*/ */
struct gcm_impl_ops *gcm_impl_get_ops(void); const struct gcm_impl_ops *gcm_impl_get_ops(void);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -206,7 +206,7 @@ aes_mod_init(void)
{ {
int ret; int ret;
/* find fastest implementations and set any requested implementations */ /* Determine the fastest available implementation. */
aes_impl_init(); aes_impl_init();
gcm_impl_init(); gcm_impl_init();

View File

@ -140,6 +140,7 @@
#include <sys/zio_checksum.h> #include <sys/zio_checksum.h>
#include <sys/zfs_context.h> #include <sys/zfs_context.h>
#include <zfs_fletcher.h> #include <zfs_fletcher.h>
#include <linux/simd.h>
#define FLETCHER_MIN_SIMD_SIZE 64 #define FLETCHER_MIN_SIMD_SIZE 64
@ -205,21 +206,19 @@ static struct fletcher_4_impl_selector {
const char *fis_name; const char *fis_name;
uint32_t fis_sel; uint32_t fis_sel;
} fletcher_4_impl_selectors[] = { } fletcher_4_impl_selectors[] = {
#if !defined(_KERNEL)
{ "cycle", IMPL_CYCLE }, { "cycle", IMPL_CYCLE },
#endif
{ "fastest", IMPL_FASTEST }, { "fastest", IMPL_FASTEST },
{ "scalar", IMPL_SCALAR } { "scalar", IMPL_SCALAR }
}; };
#if defined(_KERNEL) #if defined(_KERNEL)
static kstat_t *fletcher_4_kstat; static kstat_t *fletcher_4_kstat;
#endif
static struct fletcher_4_kstat { static struct fletcher_4_kstat {
uint64_t native; uint64_t native;
uint64_t byteswap; uint64_t byteswap;
} fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1]; } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
#endif
/* Indicate that benchmark has been completed */ /* Indicate that benchmark has been completed */
static boolean_t fletcher_4_initialized = B_FALSE; static boolean_t fletcher_4_initialized = B_FALSE;
@ -408,32 +407,36 @@ fletcher_4_impl_set(const char *val)
return (err); return (err);
} }
/*
* Returns the Fletcher 4 operations for checksums. When a SIMD
* implementation is not allowed in the current context, then fallback
* to the fastest generic implementation.
*/
static inline const fletcher_4_ops_t * static inline const fletcher_4_ops_t *
fletcher_4_impl_get(void) fletcher_4_impl_get(void)
{ {
fletcher_4_ops_t *ops = NULL; if (!kfpu_allowed())
const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); return (&fletcher_4_superscalar4_ops);
const fletcher_4_ops_t *ops = NULL;
uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
switch (impl) { switch (impl) {
case IMPL_FASTEST: case IMPL_FASTEST:
ASSERT(fletcher_4_initialized); ASSERT(fletcher_4_initialized);
ops = &fletcher_4_fastest_impl; ops = &fletcher_4_fastest_impl;
break; break;
#if !defined(_KERNEL) case IMPL_CYCLE:
case IMPL_CYCLE: { /* Cycle through supported implementations */
ASSERT(fletcher_4_initialized); ASSERT(fletcher_4_initialized);
ASSERT3U(fletcher_4_supp_impls_cnt, >, 0); ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
static uint32_t cycle_count = 0; static uint32_t cycle_count = 0;
uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt; uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
ops = fletcher_4_supp_impls[idx]; ops = fletcher_4_supp_impls[idx];
} break;
break;
#endif
default: default:
ASSERT3U(fletcher_4_supp_impls_cnt, >, 0); ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
ASSERT3U(impl, <, fletcher_4_supp_impls_cnt); ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
ops = fletcher_4_supp_impls[impl]; ops = fletcher_4_supp_impls[impl];
break; break;
} }
@ -659,6 +662,7 @@ fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *, typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
zio_cksum_t *); zio_cksum_t *);
#if defined(_KERNEL)
static void static void
fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size) fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
{ {
@ -716,16 +720,18 @@ fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
/* restore original selection */ /* restore original selection */
atomic_swap_32(&fletcher_4_impl_chosen, sel_save); atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
} }
#endif /* _KERNEL */
void /*
fletcher_4_init(void) * Initialize and benchmark all supported implementations.
*/
static void
fletcher_4_benchmark(void)
{ {
static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
fletcher_4_ops_t *curr_impl; fletcher_4_ops_t *curr_impl;
char *databuf;
int i, c; int i, c;
/* move supported impl into fletcher_4_supp_impls */ /* Move supported implementations into fletcher_4_supp_impls */
for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) { for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i]; curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
@ -735,19 +741,10 @@ fletcher_4_init(void)
membar_producer(); /* complete fletcher_4_supp_impls[] init */ membar_producer(); /* complete fletcher_4_supp_impls[] init */
fletcher_4_supp_impls_cnt = c; /* number of supported impl */ fletcher_4_supp_impls_cnt = c; /* number of supported impl */
#if !defined(_KERNEL) #if defined(_KERNEL)
/* Skip benchmarking and use last implementation as fastest */ static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
memcpy(&fletcher_4_fastest_impl, char *databuf = vmem_alloc(data_size, KM_SLEEP);
fletcher_4_supp_impls[fletcher_4_supp_impls_cnt-1],
sizeof (fletcher_4_fastest_impl));
fletcher_4_fastest_impl.name = "fastest";
membar_producer();
fletcher_4_initialized = B_TRUE;
return;
#endif
/* Benchmark all supported implementations */
databuf = vmem_alloc(data_size, KM_SLEEP);
for (i = 0; i < data_size / sizeof (uint64_t); i++) for (i = 0; i < data_size / sizeof (uint64_t); i++)
((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */ ((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
@ -755,9 +752,28 @@ fletcher_4_init(void)
fletcher_4_benchmark_impl(B_TRUE, databuf, data_size); fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
vmem_free(databuf, data_size); vmem_free(databuf, data_size);
#else
/*
* Skip the benchmark in user space to avoid impacting libzpool
* consumers (zdb, zhack, zinject, ztest). The last implementation
* is assumed to be the fastest and used by default.
*/
memcpy(&fletcher_4_fastest_impl,
fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
sizeof (fletcher_4_fastest_impl));
fletcher_4_fastest_impl.name = "fastest";
membar_producer();
#endif /* _KERNEL */
}
void
fletcher_4_init(void)
{
/* Determine the fastest available implementation. */
fletcher_4_benchmark();
#if defined(_KERNEL) #if defined(_KERNEL)
/* install kstats for all implementations */ /* Install kstats for all implementations */
fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc", fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL); KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
if (fletcher_4_kstat != NULL) { if (fletcher_4_kstat != NULL) {

View File

@ -198,7 +198,7 @@ unsigned char SRC __attribute__((vector_size(16)));
static boolean_t fletcher_4_aarch64_neon_valid(void) static boolean_t fletcher_4_aarch64_neon_valid(void)
{ {
return (B_TRUE); return (kfpu_allowed());
} }
const fletcher_4_ops_t fletcher_4_aarch64_neon_ops = { const fletcher_4_ops_t fletcher_4_aarch64_neon_ops = {

View File

@ -157,7 +157,7 @@ STACK_FRAME_NON_STANDARD(fletcher_4_avx512f_byteswap);
static boolean_t static boolean_t
fletcher_4_avx512f_valid(void) fletcher_4_avx512f_valid(void)
{ {
return (zfs_avx512f_available()); return (kfpu_allowed() && zfs_avx512f_available());
} }
const fletcher_4_ops_t fletcher_4_avx512f_ops = { const fletcher_4_ops_t fletcher_4_avx512f_ops = {

View File

@ -156,7 +156,7 @@ fletcher_4_avx2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
static boolean_t fletcher_4_avx2_valid(void) static boolean_t fletcher_4_avx2_valid(void)
{ {
return (zfs_avx_available() && zfs_avx2_available()); return (kfpu_allowed() && zfs_avx_available() && zfs_avx2_available());
} }
const fletcher_4_ops_t fletcher_4_avx2_ops = { const fletcher_4_ops_t fletcher_4_avx2_ops = {

View File

@ -157,7 +157,7 @@ fletcher_4_sse2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
static boolean_t fletcher_4_sse2_valid(void) static boolean_t fletcher_4_sse2_valid(void)
{ {
return (zfs_sse2_available()); return (kfpu_allowed() && zfs_sse2_available());
} }
const fletcher_4_ops_t fletcher_4_sse2_ops = { const fletcher_4_ops_t fletcher_4_sse2_ops = {
@ -214,7 +214,8 @@ fletcher_4_ssse3_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
static boolean_t fletcher_4_ssse3_valid(void) static boolean_t fletcher_4_ssse3_valid(void)
{ {
return (zfs_sse2_available() && zfs_ssse3_available()); return (kfpu_allowed() && zfs_sse2_available() &&
zfs_ssse3_available());
} }
const fletcher_4_ops_t fletcher_4_ssse3_ops = { const fletcher_4_ops_t fletcher_4_ssse3_ops = {

View File

@ -853,10 +853,23 @@ zfs_prop_align_right(zfs_prop_t prop)
#endif #endif
#if defined(_KERNEL) #if defined(_KERNEL)
#include <linux/simd.h>
#if defined(HAVE_KERNEL_FPU_INTERNAL)
union fpregs_state **zfs_kfpu_fpregs;
EXPORT_SYMBOL(zfs_kfpu_fpregs);
#endif /* HAVE_KERNEL_FPU_INTERNAL */
static int __init static int __init
zcommon_init(void) zcommon_init(void)
{ {
int error = kfpu_init();
if (error)
return (error);
fletcher_4_init(); fletcher_4_init();
return (0); return (0);
} }
@ -864,6 +877,7 @@ static void __exit
zcommon_fini(void) zcommon_fini(void)
{ {
fletcher_4_fini(); fletcher_4_fini();
kfpu_fini();
} }
module_init(zcommon_init); module_init(zcommon_init);

View File

@ -27,9 +27,9 @@
#include <sys/zio.h> #include <sys/zio.h>
#include <sys/debug.h> #include <sys/debug.h>
#include <sys/zfs_debug.h> #include <sys/zfs_debug.h>
#include <sys/vdev_raidz.h> #include <sys/vdev_raidz.h>
#include <sys/vdev_raidz_impl.h> #include <sys/vdev_raidz_impl.h>
#include <linux/simd.h>
extern boolean_t raidz_will_scalar_work(void); extern boolean_t raidz_will_scalar_work(void);
@ -87,6 +87,7 @@ static uint32_t user_sel_impl = IMPL_FASTEST;
static size_t raidz_supp_impl_cnt = 0; static size_t raidz_supp_impl_cnt = 0;
static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)]; static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];
#if defined(_KERNEL)
/* /*
* kstats values for supported implementations * kstats values for supported implementations
* Values represent per disk throughput of 8 disk+parity raidz vdev [B/s] * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s]
@ -95,14 +96,19 @@ static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1];
/* kstat for benchmarked implementations */ /* kstat for benchmarked implementations */
static kstat_t *raidz_math_kstat = NULL; static kstat_t *raidz_math_kstat = NULL;
#endif
/* /*
* Selects the raidz operation for raidz_map * Returns the RAIDZ operations for raidz_map() parity calculations. When
* If rm_ops is set to NULL original raidz implementation will be used * a SIMD implementation is not allowed in the current context, then fallback
* to the fastest generic implementation.
*/ */
raidz_impl_ops_t * const raidz_impl_ops_t *
vdev_raidz_math_get_ops() vdev_raidz_math_get_ops(void)
{ {
if (!kfpu_allowed())
return (&vdev_raidz_scalar_impl);
raidz_impl_ops_t *ops = NULL; raidz_impl_ops_t *ops = NULL;
const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl); const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
@ -111,18 +117,14 @@ vdev_raidz_math_get_ops()
ASSERT(raidz_math_initialized); ASSERT(raidz_math_initialized);
ops = &vdev_raidz_fastest_impl; ops = &vdev_raidz_fastest_impl;
break; break;
#if !defined(_KERNEL)
case IMPL_CYCLE: case IMPL_CYCLE:
{ /* Cycle through all supported implementations */
ASSERT(raidz_math_initialized); ASSERT(raidz_math_initialized);
ASSERT3U(raidz_supp_impl_cnt, >, 0); ASSERT3U(raidz_supp_impl_cnt, >, 0);
/* Cycle through all supported implementations */
static size_t cycle_impl_idx = 0; static size_t cycle_impl_idx = 0;
size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt; size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
ops = raidz_supp_impl[idx]; ops = raidz_supp_impl[idx];
} break;
break;
#endif
case IMPL_ORIGINAL: case IMPL_ORIGINAL:
ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl; ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl;
break; break;
@ -273,6 +275,8 @@ const char *raidz_rec_name[] = {
"rec_pq", "rec_pr", "rec_qr", "rec_pqr" "rec_pq", "rec_pr", "rec_qr", "rec_pqr"
}; };
#if defined(_KERNEL)
#define RAIDZ_KSTAT_LINE_LEN (17 + 10*12 + 1) #define RAIDZ_KSTAT_LINE_LEN (17 + 10*12 + 1)
static int static int
@ -435,21 +439,21 @@ benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
} }
} }
} }
#endif
void /*
vdev_raidz_math_init(void) * Initialize and benchmark all supported implementations.
*/
static void
benchmark_raidz(void)
{ {
raidz_impl_ops_t *curr_impl; raidz_impl_ops_t *curr_impl;
zio_t *bench_zio = NULL; int i, c;
raidz_map_t *bench_rm = NULL;
uint64_t bench_parity;
int i, c, fn;
/* move supported impl into raidz_supp_impl */ /* Move supported impl into raidz_supp_impl */
for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) { for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i]; curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i];
/* initialize impl */
if (curr_impl->init) if (curr_impl->init)
curr_impl->init(); curr_impl->init();
@ -459,18 +463,10 @@ vdev_raidz_math_init(void)
membar_producer(); /* complete raidz_supp_impl[] init */ membar_producer(); /* complete raidz_supp_impl[] init */
raidz_supp_impl_cnt = c; /* number of supported impl */ raidz_supp_impl_cnt = c; /* number of supported impl */
#if !defined(_KERNEL) #if defined(_KERNEL)
/* Skip benchmarking and use last implementation as fastest */ zio_t *bench_zio = NULL;
memcpy(&vdev_raidz_fastest_impl, raidz_supp_impl[raidz_supp_impl_cnt-1], raidz_map_t *bench_rm = NULL;
sizeof (vdev_raidz_fastest_impl)); uint64_t bench_parity;
strcpy(vdev_raidz_fastest_impl.name, "fastest");
raidz_math_initialized = B_TRUE;
/* Use 'cycle' math selection method for userspace */
VERIFY0(vdev_raidz_impl_set("cycle"));
return;
#endif
/* Fake a zio and run the benchmark on a warmed up buffer */ /* Fake a zio and run the benchmark on a warmed up buffer */
bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP); bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
@ -480,7 +476,7 @@ vdev_raidz_math_init(void)
memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE); memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE);
/* Benchmark parity generation methods */ /* Benchmark parity generation methods */
for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) { for (int fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
bench_parity = fn + 1; bench_parity = fn + 1;
/* New raidz_map is needed for each generate_p/q/r */ /* New raidz_map is needed for each generate_p/q/r */
bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT, bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
@ -495,7 +491,7 @@ vdev_raidz_math_init(void)
bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT, bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
BENCH_COLS, PARITY_PQR); BENCH_COLS, PARITY_PQR);
for (fn = 0; fn < RAIDZ_REC_NUM; fn++) for (int fn = 0; fn < RAIDZ_REC_NUM; fn++)
benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl); benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);
vdev_raidz_map_free(bench_rm); vdev_raidz_map_free(bench_rm);
@ -503,11 +499,29 @@ vdev_raidz_math_init(void)
/* cleanup the bench zio */ /* cleanup the bench zio */
abd_free(bench_zio->io_abd); abd_free(bench_zio->io_abd);
kmem_free(bench_zio, sizeof (zio_t)); kmem_free(bench_zio, sizeof (zio_t));
#else
/*
* Skip the benchmark in user space to avoid impacting libzpool
* consumers (zdb, zhack, zinject, ztest). The last implementation
* is assumed to be the fastest and used by default.
*/
memcpy(&vdev_raidz_fastest_impl,
raidz_supp_impl[raidz_supp_impl_cnt - 1],
sizeof (vdev_raidz_fastest_impl));
strcpy(vdev_raidz_fastest_impl.name, "fastest");
#endif /* _KERNEL */
}
/* install kstats for all impl */ void
vdev_raidz_math_init(void)
{
/* Determine the fastest available implementation. */
benchmark_raidz();
#if defined(_KERNEL)
/* Install kstats for all implementations */
raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc", raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL); KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
if (raidz_math_kstat != NULL) { if (raidz_math_kstat != NULL) {
raidz_math_kstat->ks_data = NULL; raidz_math_kstat->ks_data = NULL;
raidz_math_kstat->ks_ndata = UINT32_MAX; raidz_math_kstat->ks_ndata = UINT32_MAX;
@ -517,6 +531,7 @@ vdev_raidz_math_init(void)
raidz_math_kstat_addr); raidz_math_kstat_addr);
kstat_install(raidz_math_kstat); kstat_install(raidz_math_kstat);
} }
#endif
/* Finish initialization */ /* Finish initialization */
atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl); atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
@ -527,15 +542,15 @@ void
vdev_raidz_math_fini(void) vdev_raidz_math_fini(void)
{ {
raidz_impl_ops_t const *curr_impl; raidz_impl_ops_t const *curr_impl;
int i;
#if defined(_KERNEL)
if (raidz_math_kstat != NULL) { if (raidz_math_kstat != NULL) {
kstat_delete(raidz_math_kstat); kstat_delete(raidz_math_kstat);
raidz_math_kstat = NULL; raidz_math_kstat = NULL;
} }
#endif
/* fini impl */ for (int i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
for (i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
curr_impl = raidz_all_maths[i]; curr_impl = raidz_all_maths[i];
if (curr_impl->fini) if (curr_impl->fini)
curr_impl->fini(); curr_impl->fini();
@ -546,9 +561,7 @@ static const struct {
char *name; char *name;
uint32_t sel; uint32_t sel;
} math_impl_opts[] = { } math_impl_opts[] = {
#if !defined(_KERNEL)
{ "cycle", IMPL_CYCLE }, { "cycle", IMPL_CYCLE },
#endif
{ "fastest", IMPL_FASTEST }, { "fastest", IMPL_FASTEST },
{ "original", IMPL_ORIGINAL }, { "original", IMPL_ORIGINAL },
{ "scalar", IMPL_SCALAR } { "scalar", IMPL_SCALAR }

View File

@ -207,7 +207,7 @@ DEFINE_REC_METHODS(aarch64_neon);
static boolean_t static boolean_t
raidz_will_aarch64_neon_work(void) raidz_will_aarch64_neon_work(void)
{ {
return (B_TRUE); // __arch64__ requires NEON return (kfpu_allowed());
} }
const raidz_impl_ops_t vdev_raidz_aarch64_neon_impl = { const raidz_impl_ops_t vdev_raidz_aarch64_neon_impl = {

View File

@ -217,7 +217,7 @@ DEFINE_REC_METHODS(aarch64_neonx2);
static boolean_t static boolean_t
raidz_will_aarch64_neonx2_work(void) raidz_will_aarch64_neonx2_work(void)
{ {
return (B_TRUE); // __arch64__ requires NEON return (kfpu_allowed());
} }
const raidz_impl_ops_t vdev_raidz_aarch64_neonx2_impl = { const raidz_impl_ops_t vdev_raidz_aarch64_neonx2_impl = {

View File

@ -396,7 +396,7 @@ DEFINE_REC_METHODS(avx2);
static boolean_t static boolean_t
raidz_will_avx2_work(void) raidz_will_avx2_work(void)
{ {
return (zfs_avx_available() && zfs_avx2_available()); return (kfpu_allowed() && zfs_avx_available() && zfs_avx2_available());
} }
const raidz_impl_ops_t vdev_raidz_avx2_impl = { const raidz_impl_ops_t vdev_raidz_avx2_impl = {

View File

@ -393,9 +393,8 @@ DEFINE_REC_METHODS(avx512bw);
static boolean_t static boolean_t
raidz_will_avx512bw_work(void) raidz_will_avx512bw_work(void)
{ {
return (zfs_avx_available() && return (kfpu_allowed() && zfs_avx_available() &&
zfs_avx512f_available() && zfs_avx512f_available() && zfs_avx512bw_available());
zfs_avx512bw_available());
} }
const raidz_impl_ops_t vdev_raidz_avx512bw_impl = { const raidz_impl_ops_t vdev_raidz_avx512bw_impl = {

View File

@ -470,9 +470,8 @@ DEFINE_REC_METHODS(avx512f);
static boolean_t static boolean_t
raidz_will_avx512f_work(void) raidz_will_avx512f_work(void)
{ {
return (zfs_avx_available() && return (kfpu_allowed() && zfs_avx_available() &&
zfs_avx2_available() && zfs_avx2_available() && zfs_avx512f_available());
zfs_avx512f_available());
} }
const raidz_impl_ops_t vdev_raidz_avx512f_impl = { const raidz_impl_ops_t vdev_raidz_avx512f_impl = {

View File

@ -607,7 +607,7 @@ DEFINE_REC_METHODS(sse2);
static boolean_t static boolean_t
raidz_will_sse2_work(void) raidz_will_sse2_work(void)
{ {
return (zfs_sse_available() && zfs_sse2_available()); return (kfpu_allowed() && zfs_sse_available() && zfs_sse2_available());
} }
const raidz_impl_ops_t vdev_raidz_sse2_impl = { const raidz_impl_ops_t vdev_raidz_sse2_impl = {

View File

@ -399,8 +399,8 @@ DEFINE_REC_METHODS(ssse3);
static boolean_t static boolean_t
raidz_will_ssse3_work(void) raidz_will_ssse3_work(void)
{ {
return (zfs_sse_available() && zfs_sse2_available() && return (kfpu_allowed() && zfs_sse_available() &&
zfs_ssse3_available()); zfs_sse2_available() && zfs_ssse3_available());
} }
const raidz_impl_ops_t vdev_raidz_ssse3_impl = { const raidz_impl_ops_t vdev_raidz_ssse3_impl = {

View File

@ -549,12 +549,12 @@ zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv, uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
uint8_t *mac, zio_crypt_key_t *key) uint8_t *mac, zio_crypt_key_t *key)
{ {
int ret;
crypto_mechanism_t mech; crypto_mechanism_t mech;
uio_t puio, cuio; uio_t puio, cuio;
uint64_t aad[3]; uint64_t aad[3];
iovec_t plain_iovecs[2], cipher_iovecs[3]; iovec_t plain_iovecs[2], cipher_iovecs[3];
uint_t enc_len, keydata_len, aad_len; uint_t enc_len, keydata_len, aad_len;
int ret;
ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW); ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);