Remove old or redundant SHA2 files

We had three sha2.h headers in different places.
The FreeBSD version, the Linux version and the generic solaris version.

The only assembly used for acceleration was some old x86-64 openssl
implementation for sha256 within the icp module.

For FreeBSD the whole SHA2 files of FreeBSD were copied into OpenZFS,
these files got removed also.

Tested-by: Rich Ercolani <rincebrain@gmail.com>
Tested-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes #13741
This commit is contained in:
Tino Reichardt 2023-02-27 16:11:51 +01:00 committed by Brian Behlendorf
parent 163f3d3a1f
commit 3e254aaad0
18 changed files with 3 additions and 7312 deletions

View File

@ -79,7 +79,6 @@ noinst_HEADERS = \
%D%/spl/sys/zone.h \ %D%/spl/sys/zone.h \
\ \
%D%/zfs/sys/freebsd_crypto.h \ %D%/zfs/sys/freebsd_crypto.h \
%D%/zfs/sys/sha2.h \
%D%/zfs/sys/vdev_os.h \ %D%/zfs/sys/vdev_os.h \
%D%/zfs/sys/zfs_bootenv_os.h \ %D%/zfs/sys/zfs_bootenv_os.h \
%D%/zfs/sys/zfs_context_os.h \ %D%/zfs/sys/zfs_context_os.h \

View File

@ -1,197 +0,0 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright 2013 Saso Kiselkov. All rights reserved. */
#ifndef _SYS_SHA2_H
#define _SYS_SHA2_H
#include <sys/types.h> /* for uint_* */
#ifdef __cplusplus
extern "C" {
#endif
#define SHA256_DIGEST_LENGTH 32 /* SHA256 digest length in bytes */
#define SHA384_DIGEST_LENGTH 48 /* SHA384 digest length in bytes */
#define SHA512_DIGEST_LENGTH 64 /* SHA512 digest length in bytes */
/* Truncated versions of SHA-512 according to FIPS-180-4, section 5.3.6 */
#define SHA512_224_DIGEST_LENGTH 28 /* SHA512/224 digest length */
#define SHA512_256_DIGEST_LENGTH 32 /* SHA512/256 digest length */
#define SHA256_HMAC_BLOCK_SIZE 64 /* SHA256-HMAC block size */
#define SHA512_HMAC_BLOCK_SIZE 128 /* SHA512-HMAC block size */
#define SHA256 0
#define SHA256_HMAC 1
#define SHA256_HMAC_GEN 2
#define SHA384 3
#define SHA384_HMAC 4
#define SHA384_HMAC_GEN 5
#define SHA512 6
#define SHA512_HMAC 7
#define SHA512_HMAC_GEN 8
#define SHA512_224 9
#define SHA512_256 10
/*
* SHA2 context.
* The contents of this structure are a private interface between the
* Init/Update/Final calls of the functions defined below.
* Callers must never attempt to read or write any of the fields
* in this structure directly.
*/
#include <crypto/sha2/sha256.h>
#include <crypto/sha2/sha384.h>
#include <crypto/sha2/sha512.h>
#include <crypto/sha2/sha512t.h>
typedef struct {
uint32_t algotype; /* Algorithm Type */
union {
SHA256_CTX SHA256_ctx;
SHA384_CTX SHA384_ctx;
SHA512_CTX SHA512_ctx;
};
} SHA2_CTX;
extern void SHA256Init(SHA256_CTX *);
extern void SHA256Update(SHA256_CTX *, const void *, size_t);
extern void SHA256Final(void *, SHA256_CTX *);
extern void SHA384Init(SHA384_CTX *);
extern void SHA384Update(SHA384_CTX *, const void *, size_t);
extern void SHA384Final(void *, SHA384_CTX *);
extern void SHA512Init(SHA512_CTX *);
extern void SHA512Update(SHA512_CTX *, const void *, size_t);
extern void SHA512Final(void *, SHA512_CTX *);
static inline void
SHA2Init(uint64_t mech, SHA2_CTX *c)
{
switch (mech) {
case SHA256:
SHA256_Init(&c->SHA256_ctx);
break;
case SHA384:
SHA384_Init(&c->SHA384_ctx);
break;
case SHA512:
SHA512_Init(&c->SHA512_ctx);
break;
case SHA512_256:
SHA512_256_Init(&c->SHA512_ctx);
break;
default:
panic("unknown mechanism %ju", (uintmax_t)mech);
}
c->algotype = (uint32_t)mech;
}
static inline void
SHA2Update(SHA2_CTX *c, const void *p, size_t s)
{
switch (c->algotype) {
case SHA256:
SHA256_Update(&c->SHA256_ctx, p, s);
break;
case SHA384:
SHA384_Update(&c->SHA384_ctx, p, s);
break;
case SHA512:
SHA512_Update(&c->SHA512_ctx, p, s);
break;
case SHA512_256:
SHA512_256_Update(&c->SHA512_ctx, p, s);
break;
default:
panic("unknown mechanism %d", c->algotype);
}
}
static inline void
SHA2Final(void *p, SHA2_CTX *c)
{
switch (c->algotype) {
case SHA256:
SHA256_Final(p, &c->SHA256_ctx);
break;
case SHA384:
SHA384_Final(p, &c->SHA384_ctx);
break;
case SHA512:
SHA512_Final(p, &c->SHA512_ctx);
break;
case SHA512_256:
SHA512_256_Final(p, &c->SHA512_ctx);
break;
default:
panic("unknown mechanism %d", c->algotype);
}
}
#ifdef _SHA2_IMPL
/*
* The following types/functions are all private to the implementation
* of the SHA2 functions and must not be used by consumers of the interface
*/
/*
* List of support mechanisms in this module.
*
* It is important to note that in the module, division or modulus calculations
* are used on the enumerated type to determine which mechanism is being used;
* therefore, changing the order or additional mechanisms should be done
* carefully
*/
typedef enum sha2_mech_type {
SHA256_MECH_INFO_TYPE, /* SUN_CKM_SHA256 */
SHA256_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA256_HMAC */
SHA256_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA256_HMAC_GENERAL */
SHA384_MECH_INFO_TYPE, /* SUN_CKM_SHA384 */
SHA384_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA384_HMAC */
SHA384_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA384_HMAC_GENERAL */
SHA512_MECH_INFO_TYPE, /* SUN_CKM_SHA512 */
SHA512_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA512_HMAC */
SHA512_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA512_HMAC_GENERAL */
SHA512_224_MECH_INFO_TYPE, /* SUN_CKM_SHA512_224 */
SHA512_256_MECH_INFO_TYPE /* SUN_CKM_SHA512_256 */
} sha2_mech_type_t;
#endif /* _SHA2_IMPL */
#ifdef __cplusplus
}
#endif
#endif /* _SYS_SHA2_H */

View File

@ -19,7 +19,6 @@ kernel_linux_HEADERS = \
kernel_sysdir = $(kerneldir)/sys kernel_sysdir = $(kerneldir)/sys
kernel_sys_HEADERS = \ kernel_sys_HEADERS = \
%D%/zfs/sys/policy.h \ %D%/zfs/sys/policy.h \
%D%/zfs/sys/sha2.h \
%D%/zfs/sys/trace_acl.h \ %D%/zfs/sys/trace_acl.h \
%D%/zfs/sys/trace_arc.h \ %D%/zfs/sys/trace_arc.h \
%D%/zfs/sys/trace_common.h \ %D%/zfs/sys/trace_common.h \

View File

@ -1,148 +0,0 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright 2013 Saso Kiselkov. All rights reserved. */
#ifndef _SYS_SHA2_H
#define _SYS_SHA2_H
#include <sys/types.h> /* for uint_* */
#ifdef __cplusplus
extern "C" {
#endif
#define SHA256_DIGEST_LENGTH 32 /* SHA256 digest length in bytes */
#define SHA384_DIGEST_LENGTH 48 /* SHA384 digest length in bytes */
#define SHA512_DIGEST_LENGTH 64 /* SHA512 digest length in bytes */
/* Truncated versions of SHA-512 according to FIPS-180-4, section 5.3.6 */
#define SHA512_224_DIGEST_LENGTH 28 /* SHA512/224 digest length */
#define SHA512_256_DIGEST_LENGTH 32 /* SHA512/256 digest length */
#define SHA256_HMAC_BLOCK_SIZE 64 /* SHA256-HMAC block size */
#define SHA512_HMAC_BLOCK_SIZE 128 /* SHA512-HMAC block size */
#define SHA256 0
#define SHA256_HMAC 1
#define SHA256_HMAC_GEN 2
#define SHA384 3
#define SHA384_HMAC 4
#define SHA384_HMAC_GEN 5
#define SHA512 6
#define SHA512_HMAC 7
#define SHA512_HMAC_GEN 8
#define SHA512_224 9
#define SHA512_256 10
/*
* SHA2 context.
* The contents of this structure are a private interface between the
* Init/Update/Final calls of the functions defined below.
* Callers must never attempt to read or write any of the fields
* in this structure directly.
*/
typedef struct {
uint32_t algotype; /* Algorithm Type */
/* state (ABCDEFGH) */
union {
uint32_t s32[8]; /* for SHA256 */
uint64_t s64[8]; /* for SHA384/512 */
} state;
/* number of bits */
union {
uint32_t c32[2]; /* for SHA256 , modulo 2^64 */
uint64_t c64[2]; /* for SHA384/512, modulo 2^128 */
} count;
union {
uint8_t buf8[128]; /* undigested input */
uint32_t buf32[32]; /* realigned input */
uint64_t buf64[16]; /* realigned input */
} buf_un;
} SHA2_CTX;
typedef SHA2_CTX SHA256_CTX;
typedef SHA2_CTX SHA384_CTX;
typedef SHA2_CTX SHA512_CTX;
extern void SHA2Init(uint64_t mech, SHA2_CTX *);
extern void SHA2Update(SHA2_CTX *, const void *, size_t);
extern void SHA2Final(void *, SHA2_CTX *);
extern void SHA256Init(SHA256_CTX *);
extern void SHA256Update(SHA256_CTX *, const void *, size_t);
extern void SHA256Final(void *, SHA256_CTX *);
extern void SHA384Init(SHA384_CTX *);
extern void SHA384Update(SHA384_CTX *, const void *, size_t);
extern void SHA384Final(void *, SHA384_CTX *);
extern void SHA512Init(SHA512_CTX *);
extern void SHA512Update(SHA512_CTX *, const void *, size_t);
extern void SHA512Final(void *, SHA512_CTX *);
#ifdef _SHA2_IMPL
/*
* The following types/functions are all private to the implementation
* of the SHA2 functions and must not be used by consumers of the interface
*/
/*
* List of support mechanisms in this module.
*
* It is important to note that in the module, division or modulus calculations
* are used on the enumerated type to determine which mechanism is being used;
* therefore, changing the order or additional mechanisms should be done
* carefully
*/
typedef enum sha2_mech_type {
SHA256_MECH_INFO_TYPE, /* SUN_CKM_SHA256 */
SHA256_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA256_HMAC */
SHA256_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA256_HMAC_GENERAL */
SHA384_MECH_INFO_TYPE, /* SUN_CKM_SHA384 */
SHA384_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA384_HMAC */
SHA384_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA384_HMAC_GENERAL */
SHA512_MECH_INFO_TYPE, /* SUN_CKM_SHA512 */
SHA512_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA512_HMAC */
SHA512_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA512_HMAC_GENERAL */
SHA512_224_MECH_INFO_TYPE, /* SUN_CKM_SHA512_224 */
SHA512_256_MECH_INFO_TYPE /* SUN_CKM_SHA512_256 */
} sha2_mech_type_t;
#endif /* _SHA2_IMPL */
#ifdef __cplusplus
}
#endif
#endif /* _SYS_SHA2_H */

View File

@ -1,148 +0,0 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright 2013 Saso Kiselkov. All rights reserved. */
#ifndef _SYS_SHA2_H
#define _SYS_SHA2_H
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define SHA256_DIGEST_LENGTH 32 /* SHA256 digest length in bytes */
#define SHA384_DIGEST_LENGTH 48 /* SHA384 digest length in bytes */
#define SHA512_DIGEST_LENGTH 64 /* SHA512 digest length in bytes */
/* Truncated versions of SHA-512 according to FIPS-180-4, section 5.3.6 */
#define SHA512_224_DIGEST_LENGTH 28 /* SHA512/224 digest length */
#define SHA512_256_DIGEST_LENGTH 32 /* SHA512/256 digest length */
#define SHA256_HMAC_BLOCK_SIZE 64 /* SHA256-HMAC block size */
#define SHA512_HMAC_BLOCK_SIZE 128 /* SHA512-HMAC block size */
#define SHA256 0
#define SHA256_HMAC 1
#define SHA256_HMAC_GEN 2
#define SHA384 3
#define SHA384_HMAC 4
#define SHA384_HMAC_GEN 5
#define SHA512 6
#define SHA512_HMAC 7
#define SHA512_HMAC_GEN 8
#define SHA512_224 9
#define SHA512_256 10
/*
* SHA2 context.
* The contents of this structure are a private interface between the
* Init/Update/Final calls of the functions defined below.
* Callers must never attempt to read or write any of the fields
* in this structure directly.
*/
typedef struct {
uint32_t algotype; /* Algorithm Type */
/* state (ABCDEFGH) */
union {
uint32_t s32[8]; /* for SHA256 */
uint64_t s64[8]; /* for SHA384/512 */
} state;
/* number of bits */
union {
uint32_t c32[2]; /* for SHA256 , modulo 2^64 */
uint64_t c64[2]; /* for SHA384/512, modulo 2^128 */
} count;
union {
uint8_t buf8[128]; /* undigested input */
uint32_t buf32[32]; /* realigned input */
uint64_t buf64[16]; /* realigned input */
} buf_un;
} SHA2_CTX;
typedef SHA2_CTX SHA256_CTX;
typedef SHA2_CTX SHA384_CTX;
typedef SHA2_CTX SHA512_CTX;
extern void SHA256Init(SHA256_CTX *);
extern void SHA256Update(SHA256_CTX *, const void *, size_t);
extern void SHA256Final(void *, SHA256_CTX *);
extern void SHA384Init(SHA384_CTX *);
extern void SHA384Update(SHA384_CTX *, const void *, size_t);
extern void SHA384Final(void *, SHA384_CTX *);
extern void SHA512Init(SHA512_CTX *);
extern void SHA512Update(SHA512_CTX *, const void *, size_t);
extern void SHA512Final(void *, SHA512_CTX *);
extern void SHA2Init(uint64_t mech, SHA2_CTX *);
extern void SHA2Update(SHA2_CTX *, const void *, size_t);
extern void SHA2Final(void *, SHA2_CTX *);
#ifdef _SHA2_IMPL
/*
* The following types/functions are all private to the implementation
* of the SHA2 functions and must not be used by consumers of the interface
*/
/*
* List of support mechanisms in this module.
*
* It is important to note that in the module, division or modulus calculations
* are used on the enumerated type to determine which mechanism is being used;
* therefore, changing the order or additional mechanisms should be done
* carefully
*/
typedef enum sha2_mech_type {
SHA256_MECH_INFO_TYPE, /* SUN_CKM_SHA256 */
SHA256_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA256_HMAC */
SHA256_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA256_HMAC_GENERAL */
SHA384_MECH_INFO_TYPE, /* SUN_CKM_SHA384 */
SHA384_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA384_HMAC */
SHA384_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA384_HMAC_GENERAL */
SHA512_MECH_INFO_TYPE, /* SUN_CKM_SHA512 */
SHA512_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA512_HMAC */
SHA512_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA512_HMAC_GENERAL */
SHA512_224_MECH_INFO_TYPE, /* SUN_CKM_SHA512_224 */
SHA512_256_MECH_INFO_TYPE /* SUN_CKM_SHA512_256 */
} sha2_mech_type_t;
#endif /* _SHA2_IMPL */
#ifdef __cplusplus
}
#endif
#endif /* _SYS_SHA2_H */

View File

@ -94,7 +94,6 @@ ICP_OBJS := \
algs/modes/gcm.o \ algs/modes/gcm.o \
algs/modes/gcm_generic.o \ algs/modes/gcm_generic.o \
algs/modes/modes.o \ algs/modes/modes.o \
algs/sha2/sha2.o \
algs/skein/skein.o \ algs/skein/skein.o \
algs/skein/skein_block.o \ algs/skein/skein_block.o \
algs/skein/skein_iv.o \ algs/skein/skein_iv.o \
@ -122,9 +121,7 @@ ICP_OBJS_X86_64 := \
asm-x86_64/blake3/blake3_sse41.o \ asm-x86_64/blake3/blake3_sse41.o \
asm-x86_64/modes/aesni-gcm-x86_64.o \ asm-x86_64/modes/aesni-gcm-x86_64.o \
asm-x86_64/modes/gcm_pclmulqdq.o \ asm-x86_64/modes/gcm_pclmulqdq.o \
asm-x86_64/modes/ghash-x86_64.o \ asm-x86_64/modes/ghash-x86_64.o
asm-x86_64/sha2/sha256_impl.o \
asm-x86_64/sha2/sha512_impl.o
ICP_OBJS_X86 := \ ICP_OBJS_X86 := \
@ -159,13 +156,6 @@ $(addprefix $(obj)/icp/,$(ICP_OBJS) $(ICP_OBJS_X86) $(ICP_OBJS_X86_64) \
# Suppress objtool "return with modified stack frame" warnings. # Suppress objtool "return with modified stack frame" warnings.
OBJECT_FILES_NON_STANDARD_aesni-gcm-x86_64.o := y OBJECT_FILES_NON_STANDARD_aesni-gcm-x86_64.o := y
# Suppress objtool "unsupported stack pointer realignment" warnings. We are
# not using a DRAP register while aligning the stack to a 64 byte boundary.
# See #6950 for the reasoning.
OBJECT_FILES_NON_STANDARD_sha256_impl.o := y
OBJECT_FILES_NON_STANDARD_sha512_impl.o := y
LUA_OBJS := \ LUA_OBJS := \
lapi.o \ lapi.o \
lauxlib.o \ lauxlib.o \
@ -344,7 +334,7 @@ ZFS_OBJS := \
refcount.o \ refcount.o \
rrwlock.o \ rrwlock.o \
sa.o \ sa.o \
sha256.o \ sha2_zfs.o \
skein_zfs.o \ skein_zfs.o \
spa.o \ spa.o \
spa_checkpoint.o \ spa_checkpoint.o \

View File

@ -141,8 +141,6 @@ SRCS+= nvpair.c \
SRCS+= acl_common.c \ SRCS+= acl_common.c \
callb.c \ callb.c \
list.c \ list.c \
sha256c.c \
sha512c.c \
spl_acl.c \ spl_acl.c \
spl_cmn_err.c \ spl_cmn_err.c \
spl_dtrace.c \ spl_dtrace.c \
@ -268,7 +266,7 @@ SRCS+= abd.c \
refcount.c \ refcount.c \
rrwlock.c \ rrwlock.c \
sa.c \ sa.c \
sha256.c \ sha2_zfs.c \
skein_zfs.c \ skein_zfs.c \
spa.c \ spa.c \
spa_checkpoint.c \ spa_checkpoint.c \

View File

@ -1,957 +0,0 @@
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright 2013 Saso Kiselkov. All rights reserved.
*/
/*
* The basic framework for this code came from the reference
* implementation for MD5. That implementation is Copyright (C)
* 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
*
* License to copy and use this software is granted provided that it
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
* Algorithm" in all material mentioning or referencing this software
* or this function.
*
* License is also granted to make and use derivative works provided
* that such works are identified as "derived from the RSA Data
* Security, Inc. MD5 Message-Digest Algorithm" in all material
* mentioning or referencing the derived work.
*
* RSA Data Security, Inc. makes no representations concerning either
* the merchantability of this software or the suitability of this
* software for any particular purpose. It is provided "as is"
* without express or implied warranty of any kind.
*
* These notices must be retained in any copies of any part of this
* documentation and/or software.
*
* NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2
* standard, available at
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
* Not as fast as one would like -- further optimizations are encouraged
* and appreciated.
*/
#include <sys/zfs_context.h>
#define _SHA2_IMPL
#include <sys/sha2.h>
#include <sha2/sha2_consts.h>
#define _RESTRICT_KYWD
#ifdef _ZFS_LITTLE_ENDIAN
#include <sys/byteorder.h>
#define HAVE_HTONL
#endif
#include <sys/isa_defs.h> /* for _ILP32 */
#include <sys/asm_linkage.h>
static void Encode(uint8_t *, uint32_t *, size_t);
static void Encode64(uint8_t *, uint64_t *, size_t);
/* userspace only supports the generic version */
#if defined(__amd64) && defined(_KERNEL)
#define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1)
#define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1)
void ASMABI SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
void ASMABI SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
#else
static void SHA256Transform(SHA2_CTX *, const uint8_t *);
static void SHA512Transform(SHA2_CTX *, const uint8_t *);
#endif /* __amd64 && _KERNEL */
static const uint8_t PADDING[128] = { 0x80, /* all zeros */ };
/*
* The low-level checksum routines use a lot of stack space. On systems where
* small stacks are enforced (like 32-bit kernel builds), insert compiler memory
* barriers to reduce stack frame size. This can reduce the SHA512Transform()
* stack frame usage from 3k to <1k on ARM32, for example.
*/
#if defined(_ILP32) || defined(__powerpc) /* small stack */
#define SMALL_STACK_MEMORY_BARRIER asm volatile("": : :"memory");
#else
#define SMALL_STACK_MEMORY_BARRIER
#endif
/* Ch and Maj are the basic SHA2 functions. */
#define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d)))
#define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
/* Rotates x right n bits. */
#define ROTR(x, n) \
(((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
/* Shift x right n bits */
#define SHR(x, n) ((x) >> (n))
/* SHA256 Functions */
#define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
#define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
#define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3))
#define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10))
#define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \
T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \
d += T1; \
T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \
h = T1 + T2
/* SHA384/512 Functions */
#define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
#define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
#define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
#define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
#define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \
T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \
d += T1; \
T2 = BIGSIGMA0(a) + Maj(a, b, c); \
h = T1 + T2; \
SMALL_STACK_MEMORY_BARRIER;
/*
* sparc optimization:
*
* on the sparc, we can load big endian 32-bit data easily. note that
* special care must be taken to ensure the address is 32-bit aligned.
* in the interest of speed, we don't check to make sure, since
* careful programming can guarantee this for us.
*/
#if defined(_ZFS_BIG_ENDIAN)
#define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
#define LOAD_BIG_64(addr) (*(uint64_t *)(addr))
#elif defined(HAVE_HTONL)
#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
#define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr)))
#else
/* little endian -- will work on big endian, but slowly */
#define LOAD_BIG_32(addr) \
(((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
#define LOAD_BIG_64(addr) \
(((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \
((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \
((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \
((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7])
#endif /* _BIG_ENDIAN */
#if !defined(__amd64) || !defined(_KERNEL)
/* SHA256 Transform */
static void
SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
{
uint32_t a = ctx->state.s32[0];
uint32_t b = ctx->state.s32[1];
uint32_t c = ctx->state.s32[2];
uint32_t d = ctx->state.s32[3];
uint32_t e = ctx->state.s32[4];
uint32_t f = ctx->state.s32[5];
uint32_t g = ctx->state.s32[6];
uint32_t h = ctx->state.s32[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7;
uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
uint32_t T1, T2;
#if defined(__sparc)
static const uint32_t sha256_consts[] = {
SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
SHA256_CONST_63
};
#endif /* __sparc */
if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
memcpy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
blk = (uint8_t *)ctx->buf_un.buf32;
}
/* LINTED E_BAD_PTR_CAST_ALIGN */
w0 = LOAD_BIG_32(blk + 4 * 0);
SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w1 = LOAD_BIG_32(blk + 4 * 1);
SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w2 = LOAD_BIG_32(blk + 4 * 2);
SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w3 = LOAD_BIG_32(blk + 4 * 3);
SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w4 = LOAD_BIG_32(blk + 4 * 4);
SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w5 = LOAD_BIG_32(blk + 4 * 5);
SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w6 = LOAD_BIG_32(blk + 4 * 6);
SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w7 = LOAD_BIG_32(blk + 4 * 7);
SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w8 = LOAD_BIG_32(blk + 4 * 8);
SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w9 = LOAD_BIG_32(blk + 4 * 9);
SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w10 = LOAD_BIG_32(blk + 4 * 10);
SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w11 = LOAD_BIG_32(blk + 4 * 11);
SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w12 = LOAD_BIG_32(blk + 4 * 12);
SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w13 = LOAD_BIG_32(blk + 4 * 13);
SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w14 = LOAD_BIG_32(blk + 4 * 14);
SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w15 = LOAD_BIG_32(blk + 4 * 15);
SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15);
w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0);
w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1);
w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2);
w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3);
w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4);
w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5);
w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6);
w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7);
w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8);
w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9);
w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10);
w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11);
w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12);
w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13);
w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14);
w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15);
w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0);
w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1);
w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2);
w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3);
w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4);
w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5);
w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6);
w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7);
w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8);
w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9);
w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10);
w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11);
w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12);
w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13);
w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14);
w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15);
w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0);
w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1);
w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2);
w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3);
w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4);
w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5);
w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6);
w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7);
w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8);
w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9);
w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10);
w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11);
w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12);
w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13);
w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14);
w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15);
ctx->state.s32[0] += a;
ctx->state.s32[1] += b;
ctx->state.s32[2] += c;
ctx->state.s32[3] += d;
ctx->state.s32[4] += e;
ctx->state.s32[5] += f;
ctx->state.s32[6] += g;
ctx->state.s32[7] += h;
}
/* SHA384 and SHA512 Transform */
static void
SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
{
uint64_t a = ctx->state.s64[0];
uint64_t b = ctx->state.s64[1];
uint64_t c = ctx->state.s64[2];
uint64_t d = ctx->state.s64[3];
uint64_t e = ctx->state.s64[4];
uint64_t f = ctx->state.s64[5];
uint64_t g = ctx->state.s64[6];
uint64_t h = ctx->state.s64[7];
uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
uint64_t T1, T2;
#if defined(__sparc)
static const uint64_t sha512_consts[] = {
SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
SHA512_CONST_78, SHA512_CONST_79
};
#endif /* __sparc */
if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */
memcpy(ctx->buf_un.buf64, blk, sizeof (ctx->buf_un.buf64));
blk = (uint8_t *)ctx->buf_un.buf64;
}
/* LINTED E_BAD_PTR_CAST_ALIGN */
w0 = LOAD_BIG_64(blk + 8 * 0);
SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w1 = LOAD_BIG_64(blk + 8 * 1);
SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w2 = LOAD_BIG_64(blk + 8 * 2);
SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w3 = LOAD_BIG_64(blk + 8 * 3);
SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w4 = LOAD_BIG_64(blk + 8 * 4);
SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w5 = LOAD_BIG_64(blk + 8 * 5);
SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w6 = LOAD_BIG_64(blk + 8 * 6);
SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w7 = LOAD_BIG_64(blk + 8 * 7);
SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w8 = LOAD_BIG_64(blk + 8 * 8);
SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w9 = LOAD_BIG_64(blk + 8 * 9);
SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w10 = LOAD_BIG_64(blk + 8 * 10);
SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w11 = LOAD_BIG_64(blk + 8 * 11);
SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w12 = LOAD_BIG_64(blk + 8 * 12);
SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w13 = LOAD_BIG_64(blk + 8 * 13);
SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w14 = LOAD_BIG_64(blk + 8 * 14);
SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w15 = LOAD_BIG_64(blk + 8 * 15);
SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
ctx->state.s64[0] += a;
ctx->state.s64[1] += b;
ctx->state.s64[2] += c;
ctx->state.s64[3] += d;
ctx->state.s64[4] += e;
ctx->state.s64[5] += f;
ctx->state.s64[6] += g;
ctx->state.s64[7] += h;
}
#endif /* !__amd64 || !_KERNEL */
/*
* Encode()
*
* purpose: to convert a list of numbers from little endian to big endian
* input: uint8_t * : place to store the converted big endian numbers
* uint32_t * : place to get numbers to convert from
* size_t : the length of the input in bytes
* output: void
*/
static void
Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
size_t len)
{
size_t i, j;
#if defined(__sparc)
if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
for (i = 0, j = 0; j < len; i++, j += 4) {
/* LINTED E_BAD_PTR_CAST_ALIGN */
*((uint32_t *)(output + j)) = input[i];
}
} else {
#endif /* little endian -- will work on big endian, but slowly */
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (input[i] >> 24) & 0xff;
output[j + 1] = (input[i] >> 16) & 0xff;
output[j + 2] = (input[i] >> 8) & 0xff;
output[j + 3] = input[i] & 0xff;
}
#if defined(__sparc)
}
#endif
}
static void
Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
size_t len)
{
size_t i, j;
#if defined(__sparc)
if (IS_P2ALIGNED(output, sizeof (uint64_t))) {
for (i = 0, j = 0; j < len; i++, j += 8) {
/* LINTED E_BAD_PTR_CAST_ALIGN */
*((uint64_t *)(output + j)) = input[i];
}
} else {
#endif /* little endian -- will work on big endian, but slowly */
for (i = 0, j = 0; j < len; i++, j += 8) {
output[j] = (input[i] >> 56) & 0xff;
output[j + 1] = (input[i] >> 48) & 0xff;
output[j + 2] = (input[i] >> 40) & 0xff;
output[j + 3] = (input[i] >> 32) & 0xff;
output[j + 4] = (input[i] >> 24) & 0xff;
output[j + 5] = (input[i] >> 16) & 0xff;
output[j + 6] = (input[i] >> 8) & 0xff;
output[j + 7] = input[i] & 0xff;
}
#if defined(__sparc)
}
#endif
}
void
SHA2Init(uint64_t mech, SHA2_CTX *ctx)
{
switch (mech) {
case SHA256_MECH_INFO_TYPE:
case SHA256_HMAC_MECH_INFO_TYPE:
case SHA256_HMAC_GEN_MECH_INFO_TYPE:
ctx->state.s32[0] = 0x6a09e667U;
ctx->state.s32[1] = 0xbb67ae85U;
ctx->state.s32[2] = 0x3c6ef372U;
ctx->state.s32[3] = 0xa54ff53aU;
ctx->state.s32[4] = 0x510e527fU;
ctx->state.s32[5] = 0x9b05688cU;
ctx->state.s32[6] = 0x1f83d9abU;
ctx->state.s32[7] = 0x5be0cd19U;
break;
case SHA384_MECH_INFO_TYPE:
case SHA384_HMAC_MECH_INFO_TYPE:
case SHA384_HMAC_GEN_MECH_INFO_TYPE:
ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
ctx->state.s64[1] = 0x629a292a367cd507ULL;
ctx->state.s64[2] = 0x9159015a3070dd17ULL;
ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
ctx->state.s64[4] = 0x67332667ffc00b31ULL;
ctx->state.s64[5] = 0x8eb44a8768581511ULL;
ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
break;
case SHA512_MECH_INFO_TYPE:
case SHA512_HMAC_MECH_INFO_TYPE:
case SHA512_HMAC_GEN_MECH_INFO_TYPE:
ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
ctx->state.s64[4] = 0x510e527fade682d1ULL;
ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
break;
case SHA512_224_MECH_INFO_TYPE:
ctx->state.s64[0] = 0x8C3D37C819544DA2ULL;
ctx->state.s64[1] = 0x73E1996689DCD4D6ULL;
ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL;
ctx->state.s64[3] = 0x679DD514582F9FCFULL;
ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL;
ctx->state.s64[5] = 0x77E36F7304C48942ULL;
ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL;
ctx->state.s64[7] = 0x1112E6AD91D692A1ULL;
break;
case SHA512_256_MECH_INFO_TYPE:
ctx->state.s64[0] = 0x22312194FC2BF72CULL;
ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL;
ctx->state.s64[2] = 0x2393B86B6F53B151ULL;
ctx->state.s64[3] = 0x963877195940EABDULL;
ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL;
ctx->state.s64[5] = 0xBE5E1E2553863992ULL;
ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL;
ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL;
break;
#ifdef _KERNEL
default:
cmn_err(CE_PANIC,
"sha2_init: failed to find a supported algorithm: 0x%x",
(uint32_t)mech);
#endif /* _KERNEL */
}
ctx->algotype = (uint32_t)mech;
ctx->count.c64[0] = ctx->count.c64[1] = 0;
}
#ifndef _KERNEL
// #pragma inline(SHA256Init, SHA384Init, SHA512Init)
void
SHA256Init(SHA256_CTX *ctx)
{
SHA2Init(SHA256, ctx);
}
void
SHA384Init(SHA384_CTX *ctx)
{
SHA2Init(SHA384, ctx);
}
void
SHA512Init(SHA512_CTX *ctx)
{
SHA2Init(SHA512, ctx);
}
#endif /* _KERNEL */
/*
* SHA2Update()
*
* purpose: continues an sha2 digest operation, using the message block
* to update the context.
* input: SHA2_CTX * : the context to update
* void * : the message block
* size_t : the length of the message block, in bytes
* output: void
*/
void
SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
{
uint32_t i, buf_index, buf_len, buf_limit;
const uint8_t *input = inptr;
uint32_t algotype = ctx->algotype;
/* check for noop */
if (input_len == 0)
return;
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
buf_limit = 64;
/* compute number of bytes mod 64 */
buf_index = (ctx->count.c32[1] >> 3) & 0x3F;
/* update number of bits */
if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3))
ctx->count.c32[0]++;
ctx->count.c32[0] += (input_len >> 29);
} else {
buf_limit = 128;
/* compute number of bytes mod 128 */
buf_index = (ctx->count.c64[1] >> 3) & 0x7F;
/* update number of bits */
if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3))
ctx->count.c64[0]++;
ctx->count.c64[0] += (input_len >> 29);
}
buf_len = buf_limit - buf_index;
/* transform as many times as possible */
i = 0;
if (input_len >= buf_len) {
/*
* general optimization:
*
* only do initial memcpy() and SHA2Transform() if
* buf_index != 0. if buf_index == 0, we're just
* wasting our time doing the memcpy() since there
* wasn't any data left over from a previous call to
* SHA2Update().
*/
if (buf_index) {
memcpy(&ctx->buf_un.buf8[buf_index], input, buf_len);
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
SHA256Transform(ctx, ctx->buf_un.buf8);
else
SHA512Transform(ctx, ctx->buf_un.buf8);
i = buf_len;
}
#if !defined(__amd64) || !defined(_KERNEL)
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
for (; i + buf_limit - 1 < input_len; i += buf_limit) {
SHA256Transform(ctx, &input[i]);
}
} else {
for (; i + buf_limit - 1 < input_len; i += buf_limit) {
SHA512Transform(ctx, &input[i]);
}
}
#else
uint32_t block_count;
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
block_count = (input_len - i) >> 6;
if (block_count > 0) {
SHA256TransformBlocks(ctx, &input[i],
block_count);
i += block_count << 6;
}
} else {
block_count = (input_len - i) >> 7;
if (block_count > 0) {
SHA512TransformBlocks(ctx, &input[i],
block_count);
i += block_count << 7;
}
}
#endif /* !__amd64 || !_KERNEL */
/*
* general optimization:
*
* if i and input_len are the same, return now instead
* of calling memcpy(), since the memcpy() in this case
* will be an expensive noop.
*/
if (input_len == i)
return;
buf_index = 0;
}
/* buffer remaining input */
memcpy(&ctx->buf_un.buf8[buf_index], &input[i], input_len - i);
}
/*
* SHA2Final()
*
* purpose: ends an sha2 digest operation, finalizing the message digest and
* zeroing the context.
* input: uchar_t * : a buffer to store the digest
* : The function actually uses void* because many
* : callers pass things other than uchar_t here.
* SHA2_CTX * : the context to finalize, save, and zero
* output: void
*/
void
SHA2Final(void *digest, SHA2_CTX *ctx)
{
uint8_t bitcount_be[sizeof (ctx->count.c32)];
uint8_t bitcount_be64[sizeof (ctx->count.c64)];
uint32_t index;
uint32_t algotype = ctx->algotype;
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
index = (ctx->count.c32[1] >> 3) & 0x3f;
Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be));
SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
} else {
index = (ctx->count.c64[1] >> 3) & 0x7f;
Encode64(bitcount_be64, ctx->count.c64,
sizeof (bitcount_be64));
SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
ctx->state.s64[6] = ctx->state.s64[7] = 0;
Encode64(digest, ctx->state.s64,
sizeof (uint64_t) * 6);
} else if (algotype == SHA512_224_MECH_INFO_TYPE) {
uint8_t last[sizeof (uint64_t)];
/*
* Since SHA-512/224 doesn't align well to 64-bit
* boundaries, we must do the encoding in three steps:
* 1) encode the three 64-bit words that fit neatly
* 2) encode the last 64-bit word to a temp buffer
* 3) chop out the lower 32-bits from the temp buffer
* and append them to the digest
*/
Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3);
Encode64(last, &ctx->state.s64[3], sizeof (uint64_t));
memcpy((uint8_t *)digest + 24, last, 4);
} else if (algotype == SHA512_256_MECH_INFO_TYPE) {
Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4);
} else {
Encode64(digest, ctx->state.s64,
sizeof (ctx->state.s64));
}
}
/* zeroize sensitive information */
memset(ctx, 0, sizeof (*ctx));
}
#ifdef _KERNEL
EXPORT_SYMBOL(SHA2Init);
EXPORT_SYMBOL(SHA2Update);
EXPORT_SYMBOL(SHA2Final);
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,219 +0,0 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _SYS_SHA2_CONSTS_H
#define _SYS_SHA2_CONSTS_H
#ifdef __cplusplus
extern "C" {
#endif
/*
* Loading 32-bit constants on a sparc is expensive since it involves both
* a `sethi' and an `or'. thus, we instead use `ld' to load the constants
* from an array called `sha2_consts'. however, on intel (and perhaps other
* processors), it is cheaper to load the constant directly. thus, the c
* code in SHA transform functions uses the macro SHA2_CONST() which either
* expands to a constant or an array reference, depending on
* the architecture the code is being compiled for.
*
* SHA512 constants are used for SHA384
*/
#include <sys/types.h> /* uint32_t */
extern const uint32_t sha256_consts[];
extern const uint64_t sha512_consts[];
#if defined(__sparc)
#define SHA256_CONST(x) (sha256_consts[x])
#define SHA512_CONST(x) (sha512_consts[x])
#else
#define SHA256_CONST(x) (SHA256_CONST_ ## x)
#define SHA512_CONST(x) (SHA512_CONST_ ## x)
#endif
/* constants, as provided in FIPS 180-2 */
#define SHA256_CONST_0 0x428a2f98U
#define SHA256_CONST_1 0x71374491U
#define SHA256_CONST_2 0xb5c0fbcfU
#define SHA256_CONST_3 0xe9b5dba5U
#define SHA256_CONST_4 0x3956c25bU
#define SHA256_CONST_5 0x59f111f1U
#define SHA256_CONST_6 0x923f82a4U
#define SHA256_CONST_7 0xab1c5ed5U
#define SHA256_CONST_8 0xd807aa98U
#define SHA256_CONST_9 0x12835b01U
#define SHA256_CONST_10 0x243185beU
#define SHA256_CONST_11 0x550c7dc3U
#define SHA256_CONST_12 0x72be5d74U
#define SHA256_CONST_13 0x80deb1feU
#define SHA256_CONST_14 0x9bdc06a7U
#define SHA256_CONST_15 0xc19bf174U
#define SHA256_CONST_16 0xe49b69c1U
#define SHA256_CONST_17 0xefbe4786U
#define SHA256_CONST_18 0x0fc19dc6U
#define SHA256_CONST_19 0x240ca1ccU
#define SHA256_CONST_20 0x2de92c6fU
#define SHA256_CONST_21 0x4a7484aaU
#define SHA256_CONST_22 0x5cb0a9dcU
#define SHA256_CONST_23 0x76f988daU
#define SHA256_CONST_24 0x983e5152U
#define SHA256_CONST_25 0xa831c66dU
#define SHA256_CONST_26 0xb00327c8U
#define SHA256_CONST_27 0xbf597fc7U
#define SHA256_CONST_28 0xc6e00bf3U
#define SHA256_CONST_29 0xd5a79147U
#define SHA256_CONST_30 0x06ca6351U
#define SHA256_CONST_31 0x14292967U
#define SHA256_CONST_32 0x27b70a85U
#define SHA256_CONST_33 0x2e1b2138U
#define SHA256_CONST_34 0x4d2c6dfcU
#define SHA256_CONST_35 0x53380d13U
#define SHA256_CONST_36 0x650a7354U
#define SHA256_CONST_37 0x766a0abbU
#define SHA256_CONST_38 0x81c2c92eU
#define SHA256_CONST_39 0x92722c85U
#define SHA256_CONST_40 0xa2bfe8a1U
#define SHA256_CONST_41 0xa81a664bU
#define SHA256_CONST_42 0xc24b8b70U
#define SHA256_CONST_43 0xc76c51a3U
#define SHA256_CONST_44 0xd192e819U
#define SHA256_CONST_45 0xd6990624U
#define SHA256_CONST_46 0xf40e3585U
#define SHA256_CONST_47 0x106aa070U
#define SHA256_CONST_48 0x19a4c116U
#define SHA256_CONST_49 0x1e376c08U
#define SHA256_CONST_50 0x2748774cU
#define SHA256_CONST_51 0x34b0bcb5U
#define SHA256_CONST_52 0x391c0cb3U
#define SHA256_CONST_53 0x4ed8aa4aU
#define SHA256_CONST_54 0x5b9cca4fU
#define SHA256_CONST_55 0x682e6ff3U
#define SHA256_CONST_56 0x748f82eeU
#define SHA256_CONST_57 0x78a5636fU
#define SHA256_CONST_58 0x84c87814U
#define SHA256_CONST_59 0x8cc70208U
#define SHA256_CONST_60 0x90befffaU
#define SHA256_CONST_61 0xa4506cebU
#define SHA256_CONST_62 0xbef9a3f7U
#define SHA256_CONST_63 0xc67178f2U
#define SHA512_CONST_0 0x428a2f98d728ae22ULL
#define SHA512_CONST_1 0x7137449123ef65cdULL
#define SHA512_CONST_2 0xb5c0fbcfec4d3b2fULL
#define SHA512_CONST_3 0xe9b5dba58189dbbcULL
#define SHA512_CONST_4 0x3956c25bf348b538ULL
#define SHA512_CONST_5 0x59f111f1b605d019ULL
#define SHA512_CONST_6 0x923f82a4af194f9bULL
#define SHA512_CONST_7 0xab1c5ed5da6d8118ULL
#define SHA512_CONST_8 0xd807aa98a3030242ULL
#define SHA512_CONST_9 0x12835b0145706fbeULL
#define SHA512_CONST_10 0x243185be4ee4b28cULL
#define SHA512_CONST_11 0x550c7dc3d5ffb4e2ULL
#define SHA512_CONST_12 0x72be5d74f27b896fULL
#define SHA512_CONST_13 0x80deb1fe3b1696b1ULL
#define SHA512_CONST_14 0x9bdc06a725c71235ULL
#define SHA512_CONST_15 0xc19bf174cf692694ULL
#define SHA512_CONST_16 0xe49b69c19ef14ad2ULL
#define SHA512_CONST_17 0xefbe4786384f25e3ULL
#define SHA512_CONST_18 0x0fc19dc68b8cd5b5ULL
#define SHA512_CONST_19 0x240ca1cc77ac9c65ULL
#define SHA512_CONST_20 0x2de92c6f592b0275ULL
#define SHA512_CONST_21 0x4a7484aa6ea6e483ULL
#define SHA512_CONST_22 0x5cb0a9dcbd41fbd4ULL
#define SHA512_CONST_23 0x76f988da831153b5ULL
#define SHA512_CONST_24 0x983e5152ee66dfabULL
#define SHA512_CONST_25 0xa831c66d2db43210ULL
#define SHA512_CONST_26 0xb00327c898fb213fULL
#define SHA512_CONST_27 0xbf597fc7beef0ee4ULL
#define SHA512_CONST_28 0xc6e00bf33da88fc2ULL
#define SHA512_CONST_29 0xd5a79147930aa725ULL
#define SHA512_CONST_30 0x06ca6351e003826fULL
#define SHA512_CONST_31 0x142929670a0e6e70ULL
#define SHA512_CONST_32 0x27b70a8546d22ffcULL
#define SHA512_CONST_33 0x2e1b21385c26c926ULL
#define SHA512_CONST_34 0x4d2c6dfc5ac42aedULL
#define SHA512_CONST_35 0x53380d139d95b3dfULL
#define SHA512_CONST_36 0x650a73548baf63deULL
#define SHA512_CONST_37 0x766a0abb3c77b2a8ULL
#define SHA512_CONST_38 0x81c2c92e47edaee6ULL
#define SHA512_CONST_39 0x92722c851482353bULL
#define SHA512_CONST_40 0xa2bfe8a14cf10364ULL
#define SHA512_CONST_41 0xa81a664bbc423001ULL
#define SHA512_CONST_42 0xc24b8b70d0f89791ULL
#define SHA512_CONST_43 0xc76c51a30654be30ULL
#define SHA512_CONST_44 0xd192e819d6ef5218ULL
#define SHA512_CONST_45 0xd69906245565a910ULL
#define SHA512_CONST_46 0xf40e35855771202aULL
#define SHA512_CONST_47 0x106aa07032bbd1b8ULL
#define SHA512_CONST_48 0x19a4c116b8d2d0c8ULL
#define SHA512_CONST_49 0x1e376c085141ab53ULL
#define SHA512_CONST_50 0x2748774cdf8eeb99ULL
#define SHA512_CONST_51 0x34b0bcb5e19b48a8ULL
#define SHA512_CONST_52 0x391c0cb3c5c95a63ULL
#define SHA512_CONST_53 0x4ed8aa4ae3418acbULL
#define SHA512_CONST_54 0x5b9cca4f7763e373ULL
#define SHA512_CONST_55 0x682e6ff3d6b2b8a3ULL
#define SHA512_CONST_56 0x748f82ee5defb2fcULL
#define SHA512_CONST_57 0x78a5636f43172f60ULL
#define SHA512_CONST_58 0x84c87814a1f0ab72ULL
#define SHA512_CONST_59 0x8cc702081a6439ecULL
#define SHA512_CONST_60 0x90befffa23631e28ULL
#define SHA512_CONST_61 0xa4506cebde82bde9ULL
#define SHA512_CONST_62 0xbef9a3f7b2c67915ULL
#define SHA512_CONST_63 0xc67178f2e372532bULL
#define SHA512_CONST_64 0xca273eceea26619cULL
#define SHA512_CONST_65 0xd186b8c721c0c207ULL
#define SHA512_CONST_66 0xeada7dd6cde0eb1eULL
#define SHA512_CONST_67 0xf57d4f7fee6ed178ULL
#define SHA512_CONST_68 0x06f067aa72176fbaULL
#define SHA512_CONST_69 0x0a637dc5a2c898a6ULL
#define SHA512_CONST_70 0x113f9804bef90daeULL
#define SHA512_CONST_71 0x1b710b35131c471bULL
#define SHA512_CONST_72 0x28db77f523047d84ULL
#define SHA512_CONST_73 0x32caab7b40c72493ULL
#define SHA512_CONST_74 0x3c9ebe0a15c9bebcULL
#define SHA512_CONST_75 0x431d67c49c100d4cULL
#define SHA512_CONST_76 0x4cc5d4becb3e42b6ULL
#define SHA512_CONST_77 0x597f299cfc657e2aULL
#define SHA512_CONST_78 0x5fcb6fab3ad6faecULL
#define SHA512_CONST_79 0x6c44198c4a475817ULL
#ifdef __cplusplus
}
#endif
#endif /* _SYS_SHA2_CONSTS_H */

View File

@ -1,96 +0,0 @@
/*
* Copyright 2005 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _SHA224_H_
#define _SHA224_H_
#ifndef _KERNEL
#include <sys/types.h>
#endif
#define SHA224_BLOCK_LENGTH 64
#define SHA224_DIGEST_LENGTH 28
#define SHA224_DIGEST_STRING_LENGTH (SHA224_DIGEST_LENGTH * 2 + 1)
typedef struct SHA224Context {
uint32_t state[8];
uint64_t count;
uint8_t buf[SHA224_BLOCK_LENGTH];
} SHA224_CTX;
__BEGIN_DECLS
/* Ensure libmd symbols do not clash with libcrypto */
#ifndef SHA224_Init
#define SHA224_Init _libmd_SHA224_Init
#endif
#ifndef SHA224_Update
#define SHA224_Update _libmd_SHA224_Update
#endif
#ifndef SHA224_Final
#define SHA224_Final _libmd_SHA224_Final
#endif
#ifndef SHA224_End
#define SHA224_End _libmd_SHA224_End
#endif
#ifndef SHA224_Fd
#define SHA224_Fd _libmd_SHA224_Fd
#endif
#ifndef SHA224_FdChunk
#define SHA224_FdChunk _libmd_SHA224_FdChunk
#endif
#ifndef SHA224_File
#define SHA224_File _libmd_SHA224_File
#endif
#ifndef SHA224_FileChunk
#define SHA224_FileChunk _libmd_SHA224_FileChunk
#endif
#ifndef SHA224_Data
#define SHA224_Data _libmd_SHA224_Data
#endif
#ifndef SHA224_version
#define SHA224_version _libmd_SHA224_version
#endif
void SHA224_Init(SHA224_CTX *);
void SHA224_Update(SHA224_CTX *, const void *, size_t);
void SHA224_Final(unsigned char [__min_size(SHA224_DIGEST_LENGTH)],
SHA224_CTX *);
#ifndef _KERNEL
char *SHA224_End(SHA224_CTX *, char *);
char *SHA224_Data(const void *, unsigned int, char *);
char *SHA224_Fd(int, char *);
char *SHA224_FdChunk(int, char *, off_t, off_t);
char *SHA224_File(const char *, char *);
char *SHA224_FileChunk(const char *, char *, off_t, off_t);
#endif
__END_DECLS
#endif /* !_SHA224_H_ */

View File

@ -1,99 +0,0 @@
/*
* Copyright 2005 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _SHA256_H_
#define _SHA256_H_
#ifndef _KERNEL
#include <sys/types.h>
#endif
#define SHA256_BLOCK_LENGTH 64
#define SHA256_DIGEST_LENGTH 32
#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
typedef struct SHA256Context {
uint32_t state[8];
uint64_t count;
uint8_t buf[SHA256_BLOCK_LENGTH];
} SHA256_CTX;
__BEGIN_DECLS
/* Ensure libmd symbols do not clash with libcrypto */
#ifndef SHA256_Init
#define SHA256_Init _libmd_SHA256_Init
#endif
#ifndef SHA256_Update
#define SHA256_Update _libmd_SHA256_Update
#endif
#ifndef SHA256_Final
#define SHA256_Final _libmd_SHA256_Final
#endif
#ifndef SHA256_End
#define SHA256_End _libmd_SHA256_End
#endif
#ifndef SHA256_Fd
#define SHA256_Fd _libmd_SHA256_Fd
#endif
#ifndef SHA256_FdChunk
#define SHA256_FdChunk _libmd_SHA256_FdChunk
#endif
#ifndef SHA256_File
#define SHA256_File _libmd_SHA256_File
#endif
#ifndef SHA256_FileChunk
#define SHA256_FileChunk _libmd_SHA256_FileChunk
#endif
#ifndef SHA256_Data
#define SHA256_Data _libmd_SHA256_Data
#endif
#ifndef SHA256_Transform
#define SHA256_Transform _libmd_SHA256_Transform
#endif
#ifndef SHA256_version
#define SHA256_version _libmd_SHA256_version
#endif
void SHA256_Init(SHA256_CTX *);
void SHA256_Update(SHA256_CTX *, const void *, size_t);
void SHA256_Final(unsigned char [__min_size(SHA256_DIGEST_LENGTH)],
SHA256_CTX *);
#ifndef _KERNEL
char *SHA256_End(SHA256_CTX *, char *);
char *SHA256_Data(const void *, unsigned int, char *);
char *SHA256_Fd(int, char *);
char *SHA256_FdChunk(int, char *, off_t, off_t);
char *SHA256_File(const char *, char *);
char *SHA256_FileChunk(const char *, char *, off_t, off_t);
#endif
__END_DECLS
#endif /* !_SHA256_H_ */

View File

@ -1,378 +0,0 @@
/*
* Copyright 2005 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#ifdef _KERNEL
#include <sys/systm.h>
#else
#include <string.h>
#endif
#include <sys/byteorder.h>
#include <sys/endian.h>
#include "sha224.h"
#include "sha256.h"
#if BYTE_ORDER == BIG_ENDIAN
/* Copy a vector of big-endian uint32_t into a vector of bytes */
#define be32enc_vect(dst, src, len) \
memcpy((void *)dst, (const void *)src, (size_t)len)
/* Copy a vector of bytes into a vector of big-endian uint32_t */
#define be32dec_vect(dst, src, len) \
memcpy((void *)dst, (const void *)src, (size_t)len)
#else /* BYTE_ORDER != BIG_ENDIAN */
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
}
#endif /* BYTE_ORDER != BIG_ENDIAN */
/* SHA256 round constants. */
static const uint32_t K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
h += S1(e) + Ch(e, f, g) + k; \
d += h; \
h += S0(a) + Maj(a, b, c);
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i + ii] + K[i + ii])
/* Message schedule computation */
#define MSCH(W, ii, i) \
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + \
s0(W[i + ii + 1]) + W[i + ii]
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t *state, const unsigned char block[64])
{
uint32_t W[64];
uint32_t S[8];
int i;
/* 1. Prepare the first part of the message schedule W. */
be32dec_vect(W, block, 64);
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
for (i = 0; i < 64; i += 16) {
RNDr(S, W, 0, i);
RNDr(S, W, 1, i);
RNDr(S, W, 2, i);
RNDr(S, W, 3, i);
RNDr(S, W, 4, i);
RNDr(S, W, 5, i);
RNDr(S, W, 6, i);
RNDr(S, W, 7, i);
RNDr(S, W, 8, i);
RNDr(S, W, 9, i);
RNDr(S, W, 10, i);
RNDr(S, W, 11, i);
RNDr(S, W, 12, i);
RNDr(S, W, 13, i);
RNDr(S, W, 14, i);
RNDr(S, W, 15, i);
if (i == 48)
break;
MSCH(W, 0, i);
MSCH(W, 1, i);
MSCH(W, 2, i);
MSCH(W, 3, i);
MSCH(W, 4, i);
MSCH(W, 5, i);
MSCH(W, 6, i);
MSCH(W, 7, i);
MSCH(W, 8, i);
MSCH(W, 9, i);
MSCH(W, 10, i);
MSCH(W, 11, i);
MSCH(W, 12, i);
MSCH(W, 13, i);
MSCH(W, 14, i);
MSCH(W, 15, i);
}
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx)
{
size_t r;
/* Figure out how many bytes we have buffered. */
r = (ctx->count >> 3) & 0x3f;
/* Pad to 56 mod 64, transforming if we finish a block en route. */
if (r < 56) {
/* Pad to 56 mod 64. */
memcpy(&ctx->buf[r], PAD, 56 - r);
} else {
/* Finish the current block and mix. */
memcpy(&ctx->buf[r], PAD, 64 - r);
SHA256_Transform(ctx->state, ctx->buf);
/* The start of the final block is all zeroes. */
memset(&ctx->buf[0], 0, 56);
}
/* Add the terminating bit-count. */
be64enc(&ctx->buf[56], ctx->count);
/* Mix in the final block. */
SHA256_Transform(ctx->state, ctx->buf);
}
/* SHA-256 initialization. Begins a SHA-256 operation. */
void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
void
SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
{
uint64_t bitlen;
uint32_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen = len << 3;
/* Update number of bits */
ctx->count += bitlen;
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
while (len >= 64) {
SHA256_Transform(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
void
SHA256_Final(unsigned char digest[static SHA256_DIGEST_LENGTH], SHA256_CTX *ctx)
{
/* Add padding */
SHA256_Pad(ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, SHA256_DIGEST_LENGTH);
/* Clear the context state */
memset(ctx, 0, sizeof (*ctx));
}
/* SHA-224: ******************************************************* */
/*
* the SHA224 and SHA256 transforms are identical
*/
/* SHA-224 initialization. Begins a SHA-224 operation. */
void
SHA224_Init(SHA224_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count = 0;
/* Magic initialization constants */
ctx->state[0] = 0xC1059ED8;
ctx->state[1] = 0x367CD507;
ctx->state[2] = 0x3070DD17;
ctx->state[3] = 0xF70E5939;
ctx->state[4] = 0xFFC00B31;
ctx->state[5] = 0x68581511;
ctx->state[6] = 0x64f98FA7;
ctx->state[7] = 0xBEFA4FA4;
}
/* Add bytes into the SHA-224 hash */
void
SHA224_Update(SHA224_CTX * ctx, const void *in, size_t len)
{
SHA256_Update((SHA256_CTX *)ctx, in, len);
}
/*
* SHA-224 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
void
SHA224_Final(unsigned char digest[static SHA224_DIGEST_LENGTH], SHA224_CTX *ctx)
{
/* Add padding */
SHA256_Pad((SHA256_CTX *)ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, SHA224_DIGEST_LENGTH);
/* Clear the context state */
memset(ctx, 0, sizeof (*ctx));
}
#ifdef WEAK_REFS
/*
* When building libmd, provide weak references. Note: this is not
* activated in the context of compiling these sources for internal
* use in libcrypt.
*/
#undef SHA256_Init
__weak_reference(_libmd_SHA256_Init, SHA256_Init);
#undef SHA256_Update
__weak_reference(_libmd_SHA256_Update, SHA256_Update);
#undef SHA256_Final
__weak_reference(_libmd_SHA256_Final, SHA256_Final);
#undef SHA256_Transform
__weak_reference(_libmd_SHA256_Transform, SHA256_Transform);
#undef SHA224_Init
__weak_reference(_libmd_SHA224_Init, SHA224_Init);
#undef SHA224_Update
__weak_reference(_libmd_SHA224_Update, SHA224_Update);
#undef SHA224_Final
__weak_reference(_libmd_SHA224_Final, SHA224_Final);
#endif

View File

@ -1,96 +0,0 @@
/*
* Copyright 2005 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _SHA384_H_
#define _SHA384_H_
#ifndef _KERNEL
#include <sys/types.h>
#endif
#define SHA384_BLOCK_LENGTH 128
#define SHA384_DIGEST_LENGTH 48
#define SHA384_DIGEST_STRING_LENGTH (SHA384_DIGEST_LENGTH * 2 + 1)
typedef struct SHA384Context {
uint64_t state[8];
uint64_t count[2];
uint8_t buf[SHA384_BLOCK_LENGTH];
} SHA384_CTX;
__BEGIN_DECLS
/* Ensure libmd symbols do not clash with libcrypto */
#ifndef SHA384_Init
#define SHA384_Init _libmd_SHA384_Init
#endif
#ifndef SHA384_Update
#define SHA384_Update _libmd_SHA384_Update
#endif
#ifndef SHA384_Final
#define SHA384_Final _libmd_SHA384_Final
#endif
#ifndef SHA384_End
#define SHA384_End _libmd_SHA384_End
#endif
#ifndef SHA384_Fd
#define SHA384_Fd _libmd_SHA384_Fd
#endif
#ifndef SHA384_FdChunk
#define SHA384_FdChunk _libmd_SHA384_FdChunk
#endif
#ifndef SHA384_File
#define SHA384_File _libmd_SHA384_File
#endif
#ifndef SHA384_FileChunk
#define SHA384_FileChunk _libmd_SHA384_FileChunk
#endif
#ifndef SHA384_Data
#define SHA384_Data _libmd_SHA384_Data
#endif
#ifndef SHA384_version
#define SHA384_version _libmd_SHA384_version
#endif
void SHA384_Init(SHA384_CTX *);
void SHA384_Update(SHA384_CTX *, const void *, size_t);
void SHA384_Final(unsigned char [__min_size(SHA384_DIGEST_LENGTH)],
SHA384_CTX *);
#ifndef _KERNEL
char *SHA384_End(SHA384_CTX *, char *);
char *SHA384_Data(const void *, unsigned int, char *);
char *SHA384_Fd(int, char *);
char *SHA384_FdChunk(int, char *, off_t, off_t);
char *SHA384_File(const char *, char *);
char *SHA384_FileChunk(const char *, char *, off_t, off_t);
#endif
__END_DECLS
#endif /* !_SHA384_H_ */

View File

@ -1,101 +0,0 @@
/*
* Copyright 2005 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _SHA512_H_
#define _SHA512_H_
#ifndef _KERNEL
#include <sys/types.h>
#endif
#define SHA512_BLOCK_LENGTH 128
#define SHA512_DIGEST_LENGTH 64
#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1)
typedef struct SHA512Context {
uint64_t state[8];
uint64_t count[2];
uint8_t buf[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
__BEGIN_DECLS
/* Ensure libmd symbols do not clash with libcrypto */
#if 0
#ifndef SHA512_Init
#define SHA512_Init _libmd_SHA512_Init
#endif
#ifndef SHA512_Update
#define SHA512_Update _libmd_SHA512_Update
#endif
#ifndef SHA512_Final
#define SHA512_Final _libmd_SHA512_Final
#endif
#endif
#ifndef SHA512_End
#define SHA512_End _libmd_SHA512_End
#endif
#ifndef SHA512_Fd
#define SHA512_Fd _libmd_SHA512_Fd
#endif
#ifndef SHA512_FdChunk
#define SHA512_FdChunk _libmd_SHA512_FdChunk
#endif
#ifndef SHA512_File
#define SHA512_File _libmd_SHA512_File
#endif
#ifndef SHA512_FileChunk
#define SHA512_FileChunk _libmd_SHA512_FileChunk
#endif
#ifndef SHA512_Data
#define SHA512_Data _libmd_SHA512_Data
#endif
#ifndef SHA512_Transform
#define SHA512_Transform _libmd_SHA512_Transform
#endif
#ifndef SHA512_version
#define SHA512_version _libmd_SHA512_version
#endif
void SHA512_Init(SHA512_CTX *);
void SHA512_Update(SHA512_CTX *, const void *, size_t);
void SHA512_Final(unsigned char [__min_size(SHA512_DIGEST_LENGTH)],
SHA512_CTX *);
#ifndef _KERNEL
char *SHA512_End(SHA512_CTX *, char *);
char *SHA512_Data(const void *, unsigned int, char *);
char *SHA512_Fd(int, char *);
char *SHA512_FdChunk(int, char *, off_t, off_t);
char *SHA512_File(const char *, char *);
char *SHA512_FileChunk(const char *, char *, off_t, off_t);
#endif
__END_DECLS
#endif /* !_SHA512_H_ */

View File

@ -1,508 +0,0 @@
/*
* Copyright 2005 Colin Percival
* Copyright (c) 2015 Allan Jude <allanjude@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/endian.h>
#include <sys/types.h>
#ifdef _KERNEL
#include <sys/systm.h>
#else
#include <string.h>
#endif
#include "sha512.h"
#include "sha512t.h"
#include "sha384.h"
#if BYTE_ORDER == BIG_ENDIAN
/* Copy a vector of big-endian uint64_t into a vector of bytes */
#define be64enc_vect(dst, src, len) \
memcpy((void *)dst, (const void *)src, (size_t)len)
/* Copy a vector of bytes into a vector of big-endian uint64_t */
#define be64dec_vect(dst, src, len) \
memcpy((void *)dst, (const void *)src, (size_t)len)
#else /* BYTE_ORDER != BIG_ENDIAN */
/*
* Encode a length len/4 vector of (uint64_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 8.
*/
static void
be64enc_vect(unsigned char *dst, const uint64_t *src, size_t len)
{
size_t i;
for (i = 0; i < len / 8; i++)
be64enc(dst + i * 8, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint64_t). Assumes len is a multiple of 8.
*/
static void
be64dec_vect(uint64_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 8; i++)
dst[i] = be64dec(src + i * 8);
}
#endif /* BYTE_ORDER != BIG_ENDIAN */
/* SHA512 round constants. */
static const uint64_t K[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Elementary functions used by SHA512 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (64 - n)))
#define S0(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39))
#define S1(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41))
#define s0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x, 7))
#define s1(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHR(x, 6))
/* SHA512 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
h += S1(e) + Ch(e, f, g) + k; \
d += h; \
h += S0(a) + Maj(a, b, c);
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii) \
RND(S[(80 - i) % 8], S[(81 - i) % 8], \
S[(82 - i) % 8], S[(83 - i) % 8], \
S[(84 - i) % 8], S[(85 - i) % 8], \
S[(86 - i) % 8], S[(87 - i) % 8], \
W[i + ii] + K[i + ii])
/* Message schedule computation */
#define MSCH(W, ii, i) \
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + \
s0(W[i + ii + 1]) + W[i + ii]
/*
* SHA512 block compression function. The 512-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA512_Transform(uint64_t *state,
const unsigned char block[SHA512_BLOCK_LENGTH])
{
uint64_t W[80];
uint64_t S[8];
int i;
/* 1. Prepare the first part of the message schedule W. */
be64dec_vect(W, block, SHA512_BLOCK_LENGTH);
/* 2. Initialize working variables. */
memcpy(S, state, SHA512_DIGEST_LENGTH);
/* 3. Mix. */
for (i = 0; i < 80; i += 16) {
RNDr(S, W, 0, i);
RNDr(S, W, 1, i);
RNDr(S, W, 2, i);
RNDr(S, W, 3, i);
RNDr(S, W, 4, i);
RNDr(S, W, 5, i);
RNDr(S, W, 6, i);
RNDr(S, W, 7, i);
RNDr(S, W, 8, i);
RNDr(S, W, 9, i);
RNDr(S, W, 10, i);
RNDr(S, W, 11, i);
RNDr(S, W, 12, i);
RNDr(S, W, 13, i);
RNDr(S, W, 14, i);
RNDr(S, W, 15, i);
if (i == 64)
break;
MSCH(W, 0, i);
MSCH(W, 1, i);
MSCH(W, 2, i);
MSCH(W, 3, i);
MSCH(W, 4, i);
MSCH(W, 5, i);
MSCH(W, 6, i);
MSCH(W, 7, i);
MSCH(W, 8, i);
MSCH(W, 9, i);
MSCH(W, 10, i);
MSCH(W, 11, i);
MSCH(W, 12, i);
MSCH(W, 13, i);
MSCH(W, 14, i);
MSCH(W, 15, i);
}
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
static unsigned char PAD[SHA512_BLOCK_LENGTH] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void
SHA512_Pad(SHA512_CTX * ctx)
{
size_t r;
/* Figure out how many bytes we have buffered. */
r = (ctx->count[1] >> 3) & 0x7f;
/* Pad to 112 mod 128, transforming if we finish a block en route. */
if (r < 112) {
/* Pad to 112 mod 128. */
memcpy(&ctx->buf[r], PAD, 112 - r);
} else {
/* Finish the current block and mix. */
memcpy(&ctx->buf[r], PAD, 128 - r);
SHA512_Transform(ctx->state, ctx->buf);
/* The start of the final block is all zeroes. */
memset(&ctx->buf[0], 0, 112);
}
/* Add the terminating bit-count. */
be64enc_vect(&ctx->buf[112], ctx->count, 16);
/* Mix in the final block. */
SHA512_Transform(ctx->state, ctx->buf);
}
/* SHA-512 initialization. Begins a SHA-512 operation. */
void
SHA512_Init(SHA512_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6a09e667f3bcc908ULL;
ctx->state[1] = 0xbb67ae8584caa73bULL;
ctx->state[2] = 0x3c6ef372fe94f82bULL;
ctx->state[3] = 0xa54ff53a5f1d36f1ULL;
ctx->state[4] = 0x510e527fade682d1ULL;
ctx->state[5] = 0x9b05688c2b3e6c1fULL;
ctx->state[6] = 0x1f83d9abfb41bd6bULL;
ctx->state[7] = 0x5be0cd19137e2179ULL;
}
/* Add bytes into the hash */
void
SHA512_Update(SHA512_CTX * ctx, const void *in, size_t len)
{
uint64_t bitlen[2];
uint64_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count[1] >> 3) & 0x7f;
/* Convert the length into a number of bits */
bitlen[1] = ((uint64_t)len) << 3;
bitlen[0] = ((uint64_t)len) >> 61;
/* Update number of bits */
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/* Handle the case where we don't need to perform any transforms */
if (len < SHA512_BLOCK_LENGTH - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, SHA512_BLOCK_LENGTH - r);
SHA512_Transform(ctx->state, ctx->buf);
src += SHA512_BLOCK_LENGTH - r;
len -= SHA512_BLOCK_LENGTH - r;
/* Perform complete blocks */
while (len >= SHA512_BLOCK_LENGTH) {
SHA512_Transform(ctx->state, src);
src += SHA512_BLOCK_LENGTH;
len -= SHA512_BLOCK_LENGTH;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/*
* SHA-512 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
void
SHA512_Final(unsigned char digest[static SHA512_DIGEST_LENGTH], SHA512_CTX *ctx)
{
/* Add padding */
SHA512_Pad(ctx);
/* Write the hash */
be64enc_vect(digest, ctx->state, SHA512_DIGEST_LENGTH);
/* Clear the context state */
memset(ctx, 0, sizeof (*ctx));
}
/* SHA-512t: ******************************************************** */
/*
* the SHA512t transforms are identical to SHA512 so reuse the existing function
*/
void
SHA512_224_Init(SHA512_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x8c3d37c819544da2ULL;
ctx->state[1] = 0x73e1996689dcd4d6ULL;
ctx->state[2] = 0x1dfab7ae32ff9c82ULL;
ctx->state[3] = 0x679dd514582f9fcfULL;
ctx->state[4] = 0x0f6d2b697bd44da8ULL;
ctx->state[5] = 0x77e36f7304c48942ULL;
ctx->state[6] = 0x3f9d85a86a1d36c8ULL;
ctx->state[7] = 0x1112e6ad91d692a1ULL;
}
void
SHA512_224_Update(SHA512_CTX * ctx, const void *in, size_t len)
{
SHA512_Update(ctx, in, len);
}
void
SHA512_224_Final(unsigned char digest[static SHA512_224_DIGEST_LENGTH],
SHA512_CTX *ctx)
{
/* Add padding */
SHA512_Pad(ctx);
/* Write the hash */
be64enc_vect(digest, ctx->state, SHA512_224_DIGEST_LENGTH);
/* Clear the context state */
memset(ctx, 0, sizeof (*ctx));
}
void
SHA512_256_Init(SHA512_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x22312194fc2bf72cULL;
ctx->state[1] = 0x9f555fa3c84c64c2ULL;
ctx->state[2] = 0x2393b86b6f53b151ULL;
ctx->state[3] = 0x963877195940eabdULL;
ctx->state[4] = 0x96283ee2a88effe3ULL;
ctx->state[5] = 0xbe5e1e2553863992ULL;
ctx->state[6] = 0x2b0199fc2c85b8aaULL;
ctx->state[7] = 0x0eb72ddc81c52ca2ULL;
}
void
SHA512_256_Update(SHA512_CTX * ctx, const void *in, size_t len)
{
SHA512_Update(ctx, in, len);
}
void
SHA512_256_Final(unsigned char digest[static SHA512_256_DIGEST_LENGTH],
SHA512_CTX * ctx)
{
/* Add padding */
SHA512_Pad(ctx);
/* Write the hash */
be64enc_vect(digest, ctx->state, SHA512_256_DIGEST_LENGTH);
/* Clear the context state */
memset(ctx, 0, sizeof (*ctx));
}
/* ** SHA-384: ******************************************************** */
/*
* the SHA384 and SHA512 transforms are identical, so SHA384 is skipped
*/
/* SHA-384 initialization. Begins a SHA-384 operation. */
void
SHA384_Init(SHA384_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0xcbbb9d5dc1059ed8ULL;
ctx->state[1] = 0x629a292a367cd507ULL;
ctx->state[2] = 0x9159015a3070dd17ULL;
ctx->state[3] = 0x152fecd8f70e5939ULL;
ctx->state[4] = 0x67332667ffc00b31ULL;
ctx->state[5] = 0x8eb44a8768581511ULL;
ctx->state[6] = 0xdb0c2e0d64f98fa7ULL;
ctx->state[7] = 0x47b5481dbefa4fa4ULL;
}
/* Add bytes into the SHA-384 hash */
void
SHA384_Update(SHA384_CTX * ctx, const void *in, size_t len)
{
SHA512_Update((SHA512_CTX *)ctx, in, len);
}
/*
* SHA-384 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
void
SHA384_Final(unsigned char digest[static SHA384_DIGEST_LENGTH], SHA384_CTX *ctx)
{
/* Add padding */
SHA512_Pad((SHA512_CTX *)ctx);
/* Write the hash */
be64enc_vect(digest, ctx->state, SHA384_DIGEST_LENGTH);
/* Clear the context state */
memset(ctx, 0, sizeof (*ctx));
}
#if 0
/*
* When building libmd, provide weak references. Note: this is not
* activated in the context of compiling these sources for internal
* use in libcrypt.
*/
#undef SHA512_Init
__weak_reference(_libmd_SHA512_Init, SHA512_Init);
#undef SHA512_Update
__weak_reference(_libmd_SHA512_Update, SHA512_Update);
#undef SHA512_Final
__weak_reference(_libmd_SHA512_Final, SHA512_Final);
#undef SHA512_Transform
__weak_reference(_libmd_SHA512_Transform, SHA512_Transform);
#undef SHA512_224_Init
__weak_reference(_libmd_SHA512_224_Init, SHA512_224_Init);
#undef SHA512_224_Update
__weak_reference(_libmd_SHA512_224_Update, SHA512_224_Update);
#undef SHA512_224_Final
__weak_reference(_libmd_SHA512_224_Final, SHA512_224_Final);
#undef SHA512_256_Init
__weak_reference(_libmd_SHA512_256_Init, SHA512_256_Init);
#undef SHA512_256_Update
__weak_reference(_libmd_SHA512_256_Update, SHA512_256_Update);
#undef SHA512_256_Final
__weak_reference(_libmd_SHA512_256_Final, SHA512_256_Final);
#undef SHA384_Init
__weak_reference(_libmd_SHA384_Init, SHA384_Init);
#undef SHA384_Update
__weak_reference(_libmd_SHA384_Update, SHA384_Update);
#undef SHA384_Final
__weak_reference(_libmd_SHA384_Final, SHA384_Final);
#endif

View File

@ -1,143 +0,0 @@
/*
* Copyright (c) 2015 Allan Jude <allanjude@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _SHA512T_H_
#define _SHA512T_H_
#include "sha512.h"
#ifndef _KERNEL
#include <sys/types.h>
#endif
#define SHA512_224_DIGEST_LENGTH 28
#define SHA512_224_DIGEST_STRING_LENGTH (SHA512_224_DIGEST_LENGTH * 2 + 1)
#define SHA512_256_DIGEST_LENGTH 32
#define SHA512_256_DIGEST_STRING_LENGTH (SHA512_256_DIGEST_LENGTH * 2 + 1)
__BEGIN_DECLS
/* Ensure libmd symbols do not clash with libcrypto */
#ifndef SHA512_224_Init
#define SHA512_224_Init _libmd_SHA512_224_Init
#endif
#ifndef SHA512_224_Update
#define SHA512_224_Update _libmd_SHA512_224_Update
#endif
#ifndef SHA512_224_Final
#define SHA512_224_Final _libmd_SHA512_224_Final
#endif
#ifndef SHA512_224_End
#define SHA512_224_End _libmd_SHA512_224_End
#endif
#ifndef SHA512_224_Fd
#define SHA512_224_Fd _libmd_SHA512_224_Fd
#endif
#ifndef SHA512_224_FdChunk
#define SHA512_224_FdChunk _libmd_SHA512_224_FdChunk
#endif
#ifndef SHA512_224_File
#define SHA512_224_File _libmd_SHA512_224_File
#endif
#ifndef SHA512_224_FileChunk
#define SHA512_224_FileChunk _libmd_SHA512_224_FileChunk
#endif
#ifndef SHA512_224_Data
#define SHA512_224_Data _libmd_SHA512_224_Data
#endif
#ifndef SHA512_224_Transform
#define SHA512_224_Transform _libmd_SHA512_224_Transform
#endif
#ifndef SHA512_224_version
#define SHA512_224_version _libmd_SHA512_224_version
#endif
#ifndef SHA512_256_Init
#define SHA512_256_Init _libmd_SHA512_256_Init
#endif
#ifndef SHA512_256_Update
#define SHA512_256_Update _libmd_SHA512_256_Update
#endif
#ifndef SHA512_256_Final
#define SHA512_256_Final _libmd_SHA512_256_Final
#endif
#ifndef SHA512_256_End
#define SHA512_256_End _libmd_SHA512_256_End
#endif
#ifndef SHA512_256_Fd
#define SHA512_256_Fd _libmd_SHA512_256_Fd
#endif
#ifndef SHA512_256_FdChunk
#define SHA512_256_FdChunk _libmd_SHA512_256_FdChunk
#endif
#ifndef SHA512_256_File
#define SHA512_256_File _libmd_SHA512_256_File
#endif
#ifndef SHA512_256_FileChunk
#define SHA512_256_FileChunk _libmd_SHA512_256_FileChunk
#endif
#ifndef SHA512_256_Data
#define SHA512_256_Data _libmd_SHA512_256_Data
#endif
#ifndef SHA512_256_Transform
#define SHA512_256_Transform _libmd_SHA512_256_Transform
#endif
#ifndef SHA512_256_version
#define SHA512_256_version _libmd_SHA512_256_version
#endif
void SHA512_224_Init(SHA512_CTX *);
void SHA512_224_Update(SHA512_CTX *, const void *, size_t);
void SHA512_224_Final(unsigned char [__min_size(SHA512_224_DIGEST_LENGTH)],
SHA512_CTX *);
#ifndef _KERNEL
char *SHA512_224_End(SHA512_CTX *, char *);
char *SHA512_224_Data(const void *, unsigned int, char *);
char *SHA512_224_Fd(int, char *);
char *SHA512_224_FdChunk(int, char *, off_t, off_t);
char *SHA512_224_File(const char *, char *);
char *SHA512_224_FileChunk(const char *, char *, off_t, off_t);
#endif
void SHA512_256_Init(SHA512_CTX *);
void SHA512_256_Update(SHA512_CTX *, const void *, size_t);
void SHA512_256_Final(unsigned char [__min_size(SHA512_256_DIGEST_LENGTH)],
SHA512_CTX *);
#ifndef _KERNEL
char *SHA512_256_End(SHA512_CTX *, char *);
char *SHA512_256_Data(const void *, unsigned int, char *);
char *SHA512_256_Fd(int, char *);
char *SHA512_256_FdChunk(int, char *, off_t, off_t);
char *SHA512_256_File(const char *, char *);
char *SHA512_256_FileChunk(const char *, char *, off_t, off_t);
#endif
__END_DECLS
#endif /* !_SHA512T_H_ */