2018-11-05 19:22:33 +00:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
|
|
*/
|
|
|
|
|
2019-09-30 19:16:06 +00:00
|
|
|
#include <ctype.h>
|
2018-11-05 19:22:33 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <libzutil.h>
|
|
|
|
|
2019-09-30 19:16:06 +00:00
|
|
|
/*
|
|
|
|
* Return B_TRUE if "str" is a number string, B_FALSE otherwise.
|
|
|
|
* Works for integer and floating point numbers.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
zfs_isnumber(const char *str)
|
|
|
|
{
|
|
|
|
for (; *str; str++)
|
|
|
|
if (!(isdigit(*str) || (*str == '.')))
|
|
|
|
return (B_FALSE);
|
|
|
|
|
|
|
|
return (B_TRUE);
|
|
|
|
}
|
|
|
|
|
2018-11-05 19:22:33 +00:00
|
|
|
/*
|
|
|
|
* Convert a number to an appropriately human-readable output.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_nicenum_format(uint64_t num, char *buf, size_t buflen,
|
|
|
|
enum zfs_nicenum_format format)
|
|
|
|
{
|
|
|
|
uint64_t n = num;
|
|
|
|
int index = 0;
|
|
|
|
const char *u;
|
|
|
|
const char *units[3][7] = {
|
|
|
|
[ZFS_NICENUM_1024] = {"", "K", "M", "G", "T", "P", "E"},
|
|
|
|
[ZFS_NICENUM_BYTES] = {"B", "K", "M", "G", "T", "P", "E"},
|
|
|
|
[ZFS_NICENUM_TIME] = {"ns", "us", "ms", "s", "?", "?", "?"}
|
|
|
|
};
|
|
|
|
|
|
|
|
const int units_len[] = {[ZFS_NICENUM_1024] = 6,
|
|
|
|
[ZFS_NICENUM_BYTES] = 6,
|
|
|
|
[ZFS_NICENUM_TIME] = 4};
|
|
|
|
|
|
|
|
const int k_unit[] = { [ZFS_NICENUM_1024] = 1024,
|
|
|
|
[ZFS_NICENUM_BYTES] = 1024,
|
|
|
|
[ZFS_NICENUM_TIME] = 1000};
|
|
|
|
|
|
|
|
double val;
|
|
|
|
|
|
|
|
if (format == ZFS_NICENUM_RAW) {
|
|
|
|
snprintf(buf, buflen, "%llu", (u_longlong_t)num);
|
|
|
|
return;
|
|
|
|
} else if (format == ZFS_NICENUM_RAWTIME && num > 0) {
|
|
|
|
snprintf(buf, buflen, "%llu", (u_longlong_t)num);
|
|
|
|
return;
|
|
|
|
} else if (format == ZFS_NICENUM_RAWTIME && num == 0) {
|
|
|
|
snprintf(buf, buflen, "%s", "-");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (n >= k_unit[format] && index < units_len[format]) {
|
|
|
|
n /= k_unit[format];
|
|
|
|
index++;
|
|
|
|
}
|
|
|
|
|
|
|
|
u = units[format][index];
|
|
|
|
|
|
|
|
/* Don't print zero latencies since they're invalid */
|
|
|
|
if ((format == ZFS_NICENUM_TIME) && (num == 0)) {
|
|
|
|
(void) snprintf(buf, buflen, "-");
|
|
|
|
} else if ((index == 0) || ((num %
|
|
|
|
(uint64_t)powl(k_unit[format], index)) == 0)) {
|
|
|
|
/*
|
|
|
|
* If this is an even multiple of the base, always display
|
|
|
|
* without any decimal precision.
|
|
|
|
*/
|
|
|
|
(void) snprintf(buf, buflen, "%llu%s", (u_longlong_t)n, u);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We want to choose a precision that reflects the best choice
|
|
|
|
* for fitting in 5 characters. This can get rather tricky when
|
|
|
|
* we have numbers that are very close to an order of magnitude.
|
|
|
|
* For example, when displaying 10239 (which is really 9.999K),
|
|
|
|
* we want only a single place of precision for 10.0K. We could
|
|
|
|
* develop some complex heuristics for this, but it's much
|
|
|
|
* easier just to try each combination in turn.
|
|
|
|
*/
|
|
|
|
int i;
|
|
|
|
for (i = 2; i >= 0; i--) {
|
|
|
|
val = (double)num /
|
|
|
|
(uint64_t)powl(k_unit[format], index);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Don't print floating point values for time. Note,
|
|
|
|
* we use floor() instead of round() here, since
|
|
|
|
* round can result in undesirable results. For
|
|
|
|
* example, if "num" is in the range of
|
|
|
|
* 999500-999999, it will print out "1000us". This
|
|
|
|
* doesn't happen if we use floor().
|
|
|
|
*/
|
|
|
|
if (format == ZFS_NICENUM_TIME) {
|
|
|
|
if (snprintf(buf, buflen, "%d%s",
|
|
|
|
(unsigned int) floor(val), u) <= 5)
|
|
|
|
break;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
if (snprintf(buf, buflen, "%.*f%s", i,
|
|
|
|
val, u) <= 5)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a number to an appropriately human-readable output.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_nicenum(uint64_t num, char *buf, size_t buflen)
|
|
|
|
{
|
|
|
|
zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_1024);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a time to an appropriately human-readable output.
|
|
|
|
* @num: Time in nanoseconds
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_nicetime(uint64_t num, char *buf, size_t buflen)
|
|
|
|
{
|
|
|
|
zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_TIME);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Print out a raw number with correct column spacing
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_niceraw(uint64_t num, char *buf, size_t buflen)
|
|
|
|
{
|
|
|
|
zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_RAW);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a number of bytes to an appropriately human-readable output.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_nicebytes(uint64_t num, char *buf, size_t buflen)
|
|
|
|
{
|
|
|
|
zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_BYTES);
|
|
|
|
}
|