zfs/contrib/coverity/model.c

655 lines
11 KiB
C
Raw Normal View History

/*
* Coverity Scan model
* https://scan.coverity.com/models
*
* This is a modeling file for Coverity Scan.
* Modeling helps to avoid false positives.
*
* - Modeling doesn't need full structs and typedefs. Rudimentary structs
* and similar types are sufficient.
* - An uninitialized local pointer is not an error. It signifies that the
* variable could be either NULL or have some data.
*
* Coverity Scan doesn't pick up modifications automatically. The model file
* must be uploaded by an admin in the analysis settings.
*
* Some of this initially cribbed from:
*
* https://github.com/kees/coverity-linux/blob/trunk/model.c
*
* The below model was based on the original model by Brian Behlendorf for the
* original zfsonlinux/zfs repository. Some inspiration was taken from
* kees/coverity-linux, specifically involving memory copies.
*/
#include <stdarg.h>
#define KM_NOSLEEP 0x0001 /* cannot block for memory; may fail */
#define UMEM_DEFAULT 0x0000 /* normal -- may fail */
#define UMEM_NOFAIL 0x0100 /* Never fails */
#define NULL (0)
typedef enum {
B_FALSE = 0,
B_TRUE = 1
} boolean_t;
typedef unsigned int uint_t;
int condition0, condition1;
int
ddi_copyin(const void *from, void *to, size_t len, int flags)
{
(void) flags;
__coverity_negative_sink__(len);
__coverity_tainted_data_argument__(from);
__coverity_tainted_data_argument__(to);
__coverity_writeall__(to);
}
void *
memset(void *dst, int c, size_t len)
{
__coverity_negative_sink__(len);
if (c == 0)
__coverity_writeall0__(dst);
else
__coverity_writeall__(dst);
return (dst);
}
void *
memmove(void *dst, void *src, size_t len)
{
int first = ((char *)src)[0];
int last = ((char *)src)[len-1];
__coverity_negative_sink__(len);
__coverity_writeall__(dst);
return (dst);
}
void *
memcpy(void *dst, void *src, size_t len)
{
int first = ((char *)src)[0];
int last = ((char *)src)[len-1];
__coverity_negative_sink__(len);
__coverity_writeall__(dst);
return (dst);
}
void *
umem_alloc_aligned(size_t size, size_t align, int kmflags)
{
__coverity_negative_sink__(size);
__coverity_negative_sink__(align);
if (((UMEM_NOFAIL & kmflags) == UMEM_NOFAIL) || condition0) {
void *buf = __coverity_alloc__(size);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "umem_free");
return (buf);
}
return (NULL);
}
void *
umem_alloc(size_t size, int kmflags)
{
__coverity_negative_sink__(size);
if (((UMEM_NOFAIL & kmflags) == UMEM_NOFAIL) || condition0) {
void *buf = __coverity_alloc__(size);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "umem_free");
return (buf);
}
return (NULL);
}
void *
umem_zalloc(size_t size, int kmflags)
{
__coverity_negative_sink__(size);
if (((UMEM_NOFAIL & kmflags) == UMEM_NOFAIL) || condition0) {
void *buf = __coverity_alloc__(size);
__coverity_writeall0__(buf);
__coverity_mark_as_afm_allocated__(buf, "umem_free");
return (buf);
}
return (NULL);
}
void
umem_free(void *buf, size_t size)
{
__coverity_negative_sink__(size);
__coverity_free__(buf);
}
Reduce false positives from Static Analyzers Both Clang's Static Analyzer and Synopsys' Coverity would ignore assertions. Following Clang's advice, we annotate our assertions: https://clang-analyzer.llvm.org/annotations.html#custom_assertions This makes both Clang's Static Analyzer and Coverity properly identify assertions. This change reduced Clang's reported defects from 246 to 180. It also reduced the false positives reported by Coverityi by 10, while enabling Coverity to find 9 more defects that previously were false negatives. A couple examples of this would be CID-1524417 and CID-1524423. After submitting a build to coverity with the modified assertions, CID-1524417 disappeared while the report for CID-1524423 no longer claimed that the assertion tripped. Coincidentally, it turns out that it is possible to more accurately annotate our headers than the Coverity modelling file permits in the case of format strings. Since we can do that and this patch annotates headers whenever `__coverity_panic__()` would have been used in the model file, we drop all models that use `__coverity_panic__()` from the model file. Upon seeing the success in eliminating false positives involving assertions, it occurred to me that we could also modify our headers to eliminate coverity's false positives involving byte swaps. We now have coverity specific byteswap macros, that do nothing, to disable Coverity's false positives when we do byte swaps. This allowed us to also drop the byteswap definitions from the model file. Lastly, a model file update has been done beyond the mentioned deletions: * The definitions of `umem_alloc_aligned()`, `umem_alloc()` andi `umem_zalloc()` were originally implemented in a way that was intended to inform coverity that when KM_SLEEP has been passed these functions, they do not return NULL. A small error in how this was done was found, so we correct it. * Definitions for umem_cache_alloc() and umem_cache_free() have been added. In practice, no false positives were avoided by making these changes, but in the interest of correctness from future coverity builds, we make them anyway. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13902
2022-09-30 22:30:12 +00:00
typedef struct {} umem_cache_t;
void *
umem_cache_alloc(umem_cache_t *skc, int flags)
{
(void) skc;
if (condition1)
__coverity_sleep__();
if (((UMEM_NOFAIL & flags) == UMEM_NOFAIL) || condition0) {
void *buf = __coverity_alloc_nosize__();
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "umem_cache_free");
return (buf);
}
return (NULL);
Reduce false positives from Static Analyzers Both Clang's Static Analyzer and Synopsys' Coverity would ignore assertions. Following Clang's advice, we annotate our assertions: https://clang-analyzer.llvm.org/annotations.html#custom_assertions This makes both Clang's Static Analyzer and Coverity properly identify assertions. This change reduced Clang's reported defects from 246 to 180. It also reduced the false positives reported by Coverityi by 10, while enabling Coverity to find 9 more defects that previously were false negatives. A couple examples of this would be CID-1524417 and CID-1524423. After submitting a build to coverity with the modified assertions, CID-1524417 disappeared while the report for CID-1524423 no longer claimed that the assertion tripped. Coincidentally, it turns out that it is possible to more accurately annotate our headers than the Coverity modelling file permits in the case of format strings. Since we can do that and this patch annotates headers whenever `__coverity_panic__()` would have been used in the model file, we drop all models that use `__coverity_panic__()` from the model file. Upon seeing the success in eliminating false positives involving assertions, it occurred to me that we could also modify our headers to eliminate coverity's false positives involving byte swaps. We now have coverity specific byteswap macros, that do nothing, to disable Coverity's false positives when we do byte swaps. This allowed us to also drop the byteswap definitions from the model file. Lastly, a model file update has been done beyond the mentioned deletions: * The definitions of `umem_alloc_aligned()`, `umem_alloc()` andi `umem_zalloc()` were originally implemented in a way that was intended to inform coverity that when KM_SLEEP has been passed these functions, they do not return NULL. A small error in how this was done was found, so we correct it. * Definitions for umem_cache_alloc() and umem_cache_free() have been added. In practice, no false positives were avoided by making these changes, but in the interest of correctness from future coverity builds, we make them anyway. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13902
2022-09-30 22:30:12 +00:00
}
void
umem_cache_free(umem_cache_t *skc, void *obj)
{
(void) skc;
__coverity_free__(obj);
}
void *
spl_kmem_alloc(size_t sz, int fl, const char *func, int line)
{
(void) func;
(void) line;
__coverity_negative_sink__(sz);
if (condition1)
__coverity_sleep__();
if (((fl & KM_NOSLEEP) != KM_NOSLEEP) || condition0) {
void *buf = __coverity_alloc__(sz);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_kmem_free");
return (buf);
}
return (NULL);
}
void *
spl_kmem_zalloc(size_t sz, int fl, const char *func, int line)
{
(void) func;
(void) line;
__coverity_negative_sink__(sz);
if (condition1)
__coverity_sleep__();
if (((fl & KM_NOSLEEP) != KM_NOSLEEP) || condition0) {
void *buf = __coverity_alloc__(sz);
__coverity_writeall0__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_kmem_free");
return (buf);
}
return (NULL);
}
void
spl_kmem_free(const void *ptr, size_t sz)
{
__coverity_negative_sink__(sz);
__coverity_free__(ptr);
}
char *
kmem_vasprintf(const char *fmt, va_list ap)
{
char *buf = __coverity_alloc_nosize__();
(void) ap;
__coverity_string_null_sink__(fmt);
__coverity_string_size_sink__(fmt);
__coverity_writeall__(buf);
__coverity_mark_as_afm_allocated__(buf, "kmem_strfree");
return (buf);
}
char *
kmem_asprintf(const char *fmt, ...)
{
char *buf = __coverity_alloc_nosize__();
__coverity_string_null_sink__(fmt);
__coverity_string_size_sink__(fmt);
__coverity_writeall__(buf);
__coverity_mark_as_afm_allocated__(buf, "kmem_strfree");
return (buf);
}
char *
kmem_strdup(const char *str)
{
char *buf = __coverity_alloc_nosize__();
__coverity_string_null_sink__(str);
__coverity_string_size_sink__(str);
__coverity_writeall__(buf);
__coverity_mark_as_afm_allocated__(buf, "kmem_strfree");
return (buf);
}
void
kmem_strfree(char *str)
{
__coverity_free__(str);
}
void *
spl_vmem_alloc(size_t sz, int fl, const char *func, int line)
{
(void) func;
(void) line;
__coverity_negative_sink__(sz);
if (condition1)
__coverity_sleep__();
if (((fl & KM_NOSLEEP) != KM_NOSLEEP) || condition0) {
void *buf = __coverity_alloc__(sz);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_vmem_free");
return (buf);
}
return (NULL);
}
void *
spl_vmem_zalloc(size_t sz, int fl, const char *func, int line)
{
(void) func;
(void) line;
if (condition1)
__coverity_sleep__();
if (((fl & KM_NOSLEEP) != KM_NOSLEEP) || condition0) {
void *buf = __coverity_alloc__(sz);
__coverity_writeall0__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_vmem_free");
return (buf);
}
return (NULL);
}
void
spl_vmem_free(const void *ptr, size_t sz)
{
__coverity_negative_sink__(sz);
__coverity_free__(ptr);
}
typedef struct {} spl_kmem_cache_t;
void *
spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
{
(void) skc;
if (condition1)
__coverity_sleep__();
if ((flags == 0) || condition0) {
void *buf = __coverity_alloc_nosize__();
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_kmem_cache_free");
return (buf);
}
}
void
spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
{
(void) skc;
__coverity_free__(obj);
}
typedef struct {} zfsvfs_t;
int
zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
{
(void) osname;
(void) readonly;
if (condition1)
__coverity_sleep__();
if (condition0) {
*zfvp = __coverity_alloc_nosize__();
__coverity_writeall__(*zfvp);
return (0);
}
return (1);
}
void
zfsvfs_free(zfsvfs_t *zfsvfs)
{
__coverity_free__(zfsvfs);
}
typedef struct {} nvlist_t;
int
nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
{
(void) nvflag;
if (condition1)
__coverity_sleep__();
if ((kmflag == 0) || condition0) {
*nvlp = __coverity_alloc_nosize__();
__coverity_mark_as_afm_allocated__(*nvlp, "nvlist_free");
__coverity_writeall__(*nvlp);
return (0);
}
return (-1);
}
int
nvlist_dup(const nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
{
nvlist_t read = *nvl;
if (condition1)
__coverity_sleep__();
if ((kmflag == 0) || condition0) {
nvlist_t *nvl = __coverity_alloc_nosize__();
__coverity_mark_as_afm_allocated__(nvl, "nvlist_free");
__coverity_writeall__(nvl);
*nvlp = nvl;
return (0);
}
return (-1);
}
void
nvlist_free(nvlist_t *nvl)
{
__coverity_free__(nvl);
}
int
nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
int kmflag)
{
(void) nvl;
(void) encoding;
if (*bufp == NULL) {
if (condition1)
__coverity_sleep__();
if ((kmflag == 0) || condition0) {
char *buf = __coverity_alloc_nosize__();
__coverity_writeall__(buf);
/*
* We cannot use __coverity_mark_as_afm_allocated__()
* because the free function varies between the kernel
* and userspace.
*/
*bufp = buf;
return (0);
}
return (-1);
}
/*
* Unfortunately, errors from the buffer being too small are not
* possible to model, so we assume success.
*/
__coverity_negative_sink__(*buflen);
__coverity_writeall__(*bufp);
return (0);
}
int
nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
{
__coverity_negative_sink__(buflen);
if (condition1)
__coverity_sleep__();
if ((kmflag == 0) || condition0) {
nvlist_t *nvl = __coverity_alloc_nosize__();
__coverity_mark_as_afm_allocated__(nvl, "nvlist_free");
__coverity_writeall__(nvl);
*nvlp = nvl;
int first = buf[0];
int last = buf[buflen-1];
return (0);
}
return (-1);
}
void *
malloc(size_t size)
{
void *buf = __coverity_alloc__(size);
if (condition1)
__coverity_sleep__();
__coverity_negative_sink__(size);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "free");
return (buf);
}
void *
calloc(size_t nmemb, size_t size)
{
void *buf = __coverity_alloc__(size * nmemb);
if (condition1)
__coverity_sleep__();
__coverity_negative_sink__(size);
__coverity_writeall0__(buf);
__coverity_mark_as_afm_allocated__(buf, "free");
return (buf);
}
void
free(void *buf)
{
__coverity_free__(buf);
}
int
sched_yield(void)
{
__coverity_sleep__();
}
typedef struct {} kmutex_t;
typedef struct {} krwlock_t;
typedef int krw_t;
/*
* Coverty reportedly does not support macros, so this only works for
* userspace.
*/
void
mutex_enter(kmutex_t *mp)
{
if (condition0)
__coverity_sleep__();
__coverity_exclusive_lock_acquire__(mp);
}
int
mutex_tryenter(kmutex_t *mp)
{
if (condition0) {
__coverity_exclusive_lock_acquire__(mp);
return (1);
}
return (0);
}
void
mutex_exit(kmutex_t *mp)
{
__coverity_exclusive_lock_release__(mp);
}
void
rw_enter(krwlock_t *rwlp, krw_t rw)
{
(void) rw;
if (condition0)
__coverity_sleep__();
__coverity_recursive_lock_acquire__(rwlp);
}
void
rw_exit(krwlock_t *rwlp)
{
__coverity_recursive_lock_release__(rwlp);
}
int
rw_tryenter(krwlock_t *rwlp, krw_t rw)
{
if (condition0) {
__coverity_recursive_lock_acquire__(rwlp);
return (1);
}
return (0);
}
/* Thus, we fallback to the Linux kernel locks */
struct {} mutex;
struct {} rw_semaphore;
void
mutex_lock(struct mutex *lock)
{
if (condition0) {
__coverity_sleep__();
}
__coverity_exclusive_lock_acquire__(lock);
}
void
mutex_unlock(struct mutex *lock)
{
__coverity_exclusive_lock_release__(lock);
}
void
down_read(struct rw_semaphore *sem)
{
if (condition0) {
__coverity_sleep__();
}
__coverity_recursive_lock_acquire__(sem);
}
void
down_write(struct rw_semaphore *sem)
{
if (condition0) {
__coverity_sleep__();
}
__coverity_recursive_lock_acquire__(sem);
}
int
down_read_trylock(struct rw_semaphore *sem)
{
if (condition0) {
__coverity_recursive_lock_acquire__(sem);
return (1);
}
return (0);
}
int
down_write_trylock(struct rw_semaphore *sem)
{
if (condition0) {
__coverity_recursive_lock_acquire__(sem);
return (1);
}
return (0);
}
void
up_read(struct rw_semaphore *sem)
{
__coverity_recursive_lock_release__(sem);
}
void
up_write(struct rw_semaphore *sem)
{
__coverity_recursive_lock_release__(sem);
}
int
__cond_resched(void)
{
if (condition0) {
__coverity_sleep__();
}
}