zfs/module/spl/spl-kmem.c

1453 lines
38 KiB
C
Raw Normal View History

/*
* This file is part of the SPL: Solaris Porting Layer.
*
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory
* Written by:
* Brian Behlendorf <behlendorf1@llnl.gov>,
* Herb Wartens <wartens2@llnl.gov>,
* Jim Garlick <garlick@llnl.gov>
* UCRL-CODE-235197
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <sys/kmem.h>
#ifdef DEBUG_SUBSYSTEM
# undef DEBUG_SUBSYSTEM
#endif
#define DEBUG_SUBSYSTEM S_KMEM
/*
* Memory allocation interfaces and debugging for basic kmem_*
* and vmem_* style memory allocation. When DEBUG_KMEM is enable
* all allocations will be tracked when they are allocated and
* freed. When the SPL module is unload a list of all leaked
* addresses and where they were allocated will be dumped to the
* console. Enabling this feature has a significant impant on
* performance but it makes finding memory leaks staight forward.
*/
#ifdef DEBUG_KMEM
/* Shim layer memory accounting */
atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
unsigned long long kmem_alloc_max = 0;
atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
unsigned long long vmem_alloc_max = 0;
int kmem_warning_flag = 1;
EXPORT_SYMBOL(kmem_alloc_used);
EXPORT_SYMBOL(kmem_alloc_max);
EXPORT_SYMBOL(vmem_alloc_used);
EXPORT_SYMBOL(vmem_alloc_max);
EXPORT_SYMBOL(kmem_warning_flag);
# ifdef DEBUG_KMEM_TRACKING
/* XXX - Not to surprisingly with debugging enabled the xmem_locks are very
* highly contended particularly on xfree(). If we want to run with this
* detailed debugging enabled for anything other than debugging we need to
* minimize the contention by moving to a lock per xmem_table entry model.
*/
# define KMEM_HASH_BITS 10
# define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
# define VMEM_HASH_BITS 10
# define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
typedef struct kmem_debug {
struct hlist_node kd_hlist; /* Hash node linkage */
struct list_head kd_list; /* List of all allocations */
void *kd_addr; /* Allocation pointer */
size_t kd_size; /* Allocation size */
const char *kd_func; /* Allocation function */
int kd_line; /* Allocation line */
} kmem_debug_t;
spinlock_t kmem_lock;
struct hlist_head kmem_table[KMEM_TABLE_SIZE];
struct list_head kmem_list;
spinlock_t vmem_lock;
struct hlist_head vmem_table[VMEM_TABLE_SIZE];
struct list_head vmem_list;
EXPORT_SYMBOL(kmem_lock);
EXPORT_SYMBOL(kmem_table);
EXPORT_SYMBOL(kmem_list);
EXPORT_SYMBOL(vmem_lock);
EXPORT_SYMBOL(vmem_table);
EXPORT_SYMBOL(vmem_list);
# endif
int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
#else
int kmem_set_warning(int flag) { return 0; }
#endif
EXPORT_SYMBOL(kmem_set_warning);
/*
* Slab allocation interfaces
*
* While the Linux slab implementation was inspired by the Solaris
* implemenation I cannot use it to emulate the Solaris APIs. I
* require two features which are not provided by the Linux slab.
*
* 1) Constructors AND destructors. Recent versions of the Linux
* kernel have removed support for destructors. This is a deal
* breaker for the SPL which contains particularly expensive
* initializers for mutex's, condition variables, etc. We also
* require a minimal level of cleanup for these data types unlike
* many Linux data type which do need to be explicitly destroyed.
*
* 2) Virtual address space backed slab. Callers of the Solaris slab
* expect it to work well for both small are very large allocations.
* Because of memory fragmentation the Linux slab which is backed
* by kmalloc'ed memory performs very badly when confronted with
* large numbers of large allocations. Basing the slab on the
* virtual address space removes the need for contigeous pages
* and greatly improve performance for large allocations.
*
* For these reasons, the SPL has its own slab implementation with
* the needed features. It is not as highly optimized as either the
* Solaris or Linux slabs, but it should get me most of what is
* needed until it can be optimized or obsoleted by another approach.
*
* One serious concern I do have about this method is the relatively
* small virtual address space on 32bit arches. This will seriously
* constrain the size of the slab caches and their performance.
*
* XXX: Implement work requests to keep an eye on each cache and
* shrink them via spl_slab_reclaim() when they are wasting lots
* of space. Currently this process is driven by the reapers.
*
* XXX: Improve the partial slab list by carefully maintaining a
* strict ordering of fullest to emptiest slabs based on
* the slab reference count. This gaurentees the when freeing
* slabs back to the system we need only linearly traverse the
* last N slabs in the list to discover all the freeable slabs.
*
* XXX: NUMA awareness for optionally allocating memory close to a
* particular core. This can be adventageous if you know the slab
* object will be short lived and primarily accessed from one core.
*
* XXX: Slab coloring may also yield performance improvements and would
* be desirable to implement.
*
* XXX: Proper hardware cache alignment would be good too.
*/
struct list_head spl_kmem_cache_list; /* List of caches */
struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
static int spl_cache_flush(spl_kmem_cache_t *skc,
spl_kmem_magazine_t *skm, int flush);
#ifdef HAVE_SET_SHRINKER
static struct shrinker *spl_kmem_cache_shrinker;
#else
static int spl_kmem_cache_generic_shrinker(int nr_to_scan,
unsigned int gfp_mask);
static struct shrinker spl_kmem_cache_shrinker = {
.shrink = spl_kmem_cache_generic_shrinker,
.seeks = KMC_DEFAULT_SEEKS,
};
#endif
#ifdef DEBUG_KMEM
# ifdef DEBUG_KMEM_TRACKING
static kmem_debug_t *
kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits,
void *addr)
{
struct hlist_head *head;
struct hlist_node *node;
struct kmem_debug *p;
unsigned long flags;
ENTRY;
spin_lock_irqsave(lock, flags);
head = &table[hash_ptr(addr, bits)];
hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
if (p->kd_addr == addr) {
hlist_del_init(&p->kd_hlist);
list_del_init(&p->kd_list);
spin_unlock_irqrestore(lock, flags);
return p;
}
}
spin_unlock_irqrestore(lock, flags);
RETURN(NULL);
}
void *
kmem_alloc_track(size_t size, int flags, const char *func, int line,
int node_alloc, int node)
{
void *ptr = NULL;
kmem_debug_t *dptr;
unsigned long irq_flags;
ENTRY;
dptr = (kmem_debug_t *) kmalloc(sizeof(kmem_debug_t),
flags & ~__GFP_ZERO);
if (dptr == NULL) {
CWARN("kmem_alloc(%ld, 0x%x) debug failed\n",
sizeof(kmem_debug_t), flags);
} else {
/* Marked unlikely because we should never be doing this,
* we tolerate to up 2 pages but a single page is best. */
if (unlikely((size) > (PAGE_SIZE * 2)) && kmem_warning_flag)
CWARN("Large kmem_alloc(%llu, 0x%x) (%lld/%llu)\n",
(unsigned long long) size, flags,
atomic64_read(&kmem_alloc_used), kmem_alloc_max);
/* We use kstrdup() below because the string pointed to by
* __FUNCTION__ might not be available by the time we want
* to print it since the module might have been unloaded. */
dptr->kd_func = kstrdup(func, flags & ~__GFP_ZERO);
if (unlikely(dptr->kd_func == NULL)) {
kfree(dptr);
CWARN("kstrdup() failed in kmem_alloc(%llu, 0x%x) "
"(%lld/%llu)\n", (unsigned long long) size, flags,
atomic64_read(&kmem_alloc_used), kmem_alloc_max);
goto out;
}
/* Use the correct allocator */
if (node_alloc) {
ASSERT(!(flags & __GFP_ZERO));
ptr = kmalloc_node(size, flags, node);
} else if (flags & __GFP_ZERO) {
ptr = kzalloc(size, flags & ~__GFP_ZERO);
} else {
ptr = kmalloc(size, flags);
}
if (unlikely(ptr == NULL)) {
kfree(dptr->kd_func);
kfree(dptr);
CWARN("kmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
(unsigned long long) size, flags,
atomic64_read(&kmem_alloc_used), kmem_alloc_max);
goto out;
}
atomic64_add(size, &kmem_alloc_used);
if (unlikely(atomic64_read(&kmem_alloc_used) >
kmem_alloc_max))
kmem_alloc_max =
atomic64_read(&kmem_alloc_used);
INIT_HLIST_NODE(&dptr->kd_hlist);
INIT_LIST_HEAD(&dptr->kd_list);
dptr->kd_addr = ptr;
dptr->kd_size = size;
dptr->kd_line = line;
spin_lock_irqsave(&kmem_lock, irq_flags);
hlist_add_head_rcu(&dptr->kd_hlist,
&kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
list_add_tail(&dptr->kd_list, &kmem_list);
spin_unlock_irqrestore(&kmem_lock, irq_flags);
CDEBUG_LIMIT(D_INFO, "kmem_alloc(%llu, 0x%x) = %p "
"(%lld/%llu)\n", (unsigned long long) size, flags,
ptr, atomic64_read(&kmem_alloc_used),
kmem_alloc_max);
}
out:
RETURN(ptr);
}
EXPORT_SYMBOL(kmem_alloc_track);
void
kmem_free_track(void *ptr, size_t size)
{
kmem_debug_t *dptr;
ENTRY;
ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
(unsigned long long) size);
dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
ASSERT(dptr); /* Must exist in hash due to kmem_alloc() */
/* Size must match */
ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
"kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
(unsigned long long) size, dptr->kd_func, dptr->kd_line);
atomic64_sub(size, &kmem_alloc_used);
CDEBUG_LIMIT(D_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
(unsigned long long) size, atomic64_read(&kmem_alloc_used),
kmem_alloc_max);
kfree(dptr->kd_func);
memset(dptr, 0x5a, sizeof(kmem_debug_t));
kfree(dptr);
memset(ptr, 0x5a, size);
kfree(ptr);
EXIT;
}
EXPORT_SYMBOL(kmem_free_track);
void *
vmem_alloc_track(size_t size, int flags, const char *func, int line)
{
void *ptr = NULL;
kmem_debug_t *dptr;
unsigned long irq_flags;
ENTRY;
ASSERT(flags & KM_SLEEP);
dptr = (kmem_debug_t *) kmalloc(sizeof(kmem_debug_t), flags);
if (dptr == NULL) {
CWARN("vmem_alloc(%ld, 0x%x) debug failed\n",
sizeof(kmem_debug_t), flags);
} else {
/* We use kstrdup() below because the string pointed to by
* __FUNCTION__ might not be available by the time we want
* to print it, since the module might have been unloaded. */
dptr->kd_func = kstrdup(func, flags & ~__GFP_ZERO);
if (unlikely(dptr->kd_func == NULL)) {
kfree(dptr);
CWARN("kstrdup() failed in vmem_alloc(%llu, 0x%x) "
"(%lld/%llu)\n", (unsigned long long) size, flags,
atomic64_read(&vmem_alloc_used), vmem_alloc_max);
goto out;
}
ptr = __vmalloc(size, (flags | __GFP_HIGHMEM) & ~__GFP_ZERO,
PAGE_KERNEL);
if (unlikely(ptr == NULL)) {
kfree(dptr->kd_func);
kfree(dptr);
CWARN("vmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
(unsigned long long) size, flags,
atomic64_read(&vmem_alloc_used), vmem_alloc_max);
goto out;
}
if (flags & __GFP_ZERO)
memset(ptr, 0, size);
atomic64_add(size, &vmem_alloc_used);
if (unlikely(atomic64_read(&vmem_alloc_used) >
vmem_alloc_max))
vmem_alloc_max =
atomic64_read(&vmem_alloc_used);
INIT_HLIST_NODE(&dptr->kd_hlist);
INIT_LIST_HEAD(&dptr->kd_list);
dptr->kd_addr = ptr;
dptr->kd_size = size;
dptr->kd_line = line;
spin_lock_irqsave(&vmem_lock, irq_flags);
hlist_add_head_rcu(&dptr->kd_hlist,
&vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
list_add_tail(&dptr->kd_list, &vmem_list);
spin_unlock_irqrestore(&vmem_lock, irq_flags);
CDEBUG_LIMIT(D_INFO, "vmem_alloc(%llu, 0x%x) = %p "
"(%lld/%llu)\n", (unsigned long long) size, flags,
ptr, atomic64_read(&vmem_alloc_used),
vmem_alloc_max);
}
out:
RETURN(ptr);
}
EXPORT_SYMBOL(vmem_alloc_track);
void
vmem_free_track(void *ptr, size_t size)
{
kmem_debug_t *dptr;
ENTRY;
ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
(unsigned long long) size);
dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
ASSERT(dptr); /* Must exist in hash due to vmem_alloc() */
/* Size must match */
ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
"kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
(unsigned long long) size, dptr->kd_func, dptr->kd_line);
atomic64_sub(size, &vmem_alloc_used);
CDEBUG_LIMIT(D_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
(unsigned long long) size, atomic64_read(&vmem_alloc_used),
vmem_alloc_max);
kfree(dptr->kd_func);
memset(dptr, 0x5a, sizeof(kmem_debug_t));
kfree(dptr);
memset(ptr, 0x5a, size);
vfree(ptr);
EXIT;
}
EXPORT_SYMBOL(vmem_free_track);
# else /* DEBUG_KMEM_TRACKING */
void *
kmem_alloc_debug(size_t size, int flags, const char *func, int line,
int node_alloc, int node)
{
void *ptr;
ENTRY;
/* Marked unlikely because we should never be doing this,
* we tolerate to up 2 pages but a single page is best. */
if (unlikely(size > (PAGE_SIZE * 2)) && kmem_warning_flag)
CWARN("Large kmem_alloc(%llu, 0x%x) (%lld/%llu)\n",
(unsigned long long) size, flags,
atomic64_read(&kmem_alloc_used), kmem_alloc_max);
/* Use the correct allocator */
if (node_alloc) {
ASSERT(!(flags & __GFP_ZERO));
ptr = kmalloc_node(size, flags, node);
} else if (flags & __GFP_ZERO) {
ptr = kzalloc(size, flags & (~__GFP_ZERO));
} else {
ptr = kmalloc(size, flags);
}
if (ptr == NULL) {
CWARN("kmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
(unsigned long long) size, flags,
atomic64_read(&kmem_alloc_used), kmem_alloc_max);
} else {
atomic64_add(size, &kmem_alloc_used);
if (unlikely(atomic64_read(&kmem_alloc_used) > kmem_alloc_max))
kmem_alloc_max = atomic64_read(&kmem_alloc_used);
CDEBUG_LIMIT(D_INFO, "kmem_alloc(%llu, 0x%x) = %p "
"(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
atomic64_read(&kmem_alloc_used), kmem_alloc_max);
}
RETURN(ptr);
}
EXPORT_SYMBOL(kmem_alloc_debug);
void
kmem_free_debug(void *ptr, size_t size)
{
ENTRY;
ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
(unsigned long long) size);
atomic64_sub(size, &kmem_alloc_used);
CDEBUG_LIMIT(D_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
(unsigned long long) size, atomic64_read(&kmem_alloc_used),
kmem_alloc_max);
memset(ptr, 0x5a, size);
kfree(ptr);
EXIT;
}
EXPORT_SYMBOL(kmem_free_debug);
void *
vmem_alloc_debug(size_t size, int flags, const char *func, int line)
{
void *ptr;
ENTRY;
ASSERT(flags & KM_SLEEP);
ptr = __vmalloc(size, (flags | __GFP_HIGHMEM) & ~__GFP_ZERO,
PAGE_KERNEL);
if (ptr == NULL) {
CWARN("vmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
(unsigned long long) size, flags,
atomic64_read(&vmem_alloc_used), vmem_alloc_max);
} else {
if (flags & __GFP_ZERO)
memset(ptr, 0, size);
atomic64_add(size, &vmem_alloc_used);
if (unlikely(atomic64_read(&vmem_alloc_used) > vmem_alloc_max))
vmem_alloc_max = atomic64_read(&vmem_alloc_used);
CDEBUG_LIMIT(D_INFO, "vmem_alloc(%llu, 0x%x) = %p "
"(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
atomic64_read(&vmem_alloc_used), vmem_alloc_max);
}
RETURN(ptr);
}
EXPORT_SYMBOL(vmem_alloc_debug);
void
vmem_free_debug(void *ptr, size_t size)
{
ENTRY;
ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
(unsigned long long) size);
atomic64_sub(size, &vmem_alloc_used);
CDEBUG_LIMIT(D_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
(unsigned long long) size, atomic64_read(&vmem_alloc_used),
vmem_alloc_max);
memset(ptr, 0x5a, size);
vfree(ptr);
EXIT;
}
EXPORT_SYMBOL(vmem_free_debug);
# endif /* DEBUG_KMEM_TRACKING */
#endif /* DEBUG_KMEM */
static void *
kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
{
void *ptr;
if (skc->skc_flags & KMC_KMEM) {
if (size > (2 * PAGE_SIZE)) {
ptr = (void *)__get_free_pages(flags, get_order(size));
} else
ptr = kmem_alloc(size, flags);
} else {
ptr = vmem_alloc(size, flags);
}
return ptr;
}
static void
kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
{
if (skc->skc_flags & KMC_KMEM) {
if (size > (2 * PAGE_SIZE))
free_pages((unsigned long)ptr, get_order(size));
else
kmem_free(ptr, size);
} else {
vmem_free(ptr, size);
}
}
static spl_kmem_slab_t *
spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
{
spl_kmem_slab_t *sks;
spl_kmem_obj_t *sko, *n;
void *base, *obj;
int i, size, rc = 0;
/* It's important that we pack the spl_kmem_obj_t structure
* and the actual objects in to one large address space
* to minimize the number of calls to the allocator. It
* is far better to do a few large allocations and then
* subdivide it ourselves. Now which allocator we use
* requires balancling a few trade offs.
*
* For small objects we use kmem_alloc() because as long
* as you are only requesting a small number of pages
* (ideally just one) its cheap. However, when you start
* requesting multiple pages kmem_alloc() get increasingly
* expensive since it requires contigeous pages. For this
* reason we shift to vmem_alloc() for slabs of large
* objects which removes the need for contigeous pages.
* We do not use vmem_alloc() in all cases because there
* is significant locking overhead in __get_vm_area_node().
* This function takes a single global lock when aquiring
* an available virtual address range which serialize all
* vmem_alloc()'s for all slab caches. Using slightly
* different allocation functions for small and large
* objects should give us the best of both worlds.
*
* sks struct: sizeof(spl_kmem_slab_t)
* obj data: skc->skc_obj_size
* obj struct: sizeof(spl_kmem_obj_t)
* <N obj data + obj structs>
*
* XXX: It would probably be a good idea to more carefully
* align these data structures in memory.
*/
base = kv_alloc(skc, skc->skc_slab_size, flags);
if (base == NULL)
RETURN(NULL);
sks = (spl_kmem_slab_t *)base;
sks->sks_magic = SKS_MAGIC;
sks->sks_objs = skc->skc_slab_objs;
sks->sks_age = jiffies;
sks->sks_cache = skc;
INIT_LIST_HEAD(&sks->sks_list);
INIT_LIST_HEAD(&sks->sks_free_list);
sks->sks_ref = 0;
size = sizeof(spl_kmem_obj_t) + skc->skc_obj_size;
for (i = 0; i < sks->sks_objs; i++) {
if (skc->skc_flags & KMC_OFFSLAB) {
obj = kv_alloc(skc, size, flags);
if (!obj)
GOTO(out, rc = -ENOMEM);
} else {
obj = base + sizeof(spl_kmem_slab_t) + i * size;
}
sko = obj + skc->skc_obj_size;
sko->sko_addr = obj;
sko->sko_magic = SKO_MAGIC;
sko->sko_slab = sks;
INIT_LIST_HEAD(&sko->sko_list);
list_add_tail(&sko->sko_list, &sks->sks_free_list);
}
list_for_each_entry(sko, &sks->sks_free_list, sko_list)
if (skc->skc_ctor)
skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
out:
if (rc) {
if (skc->skc_flags & KMC_OFFSLAB)
list_for_each_entry_safe(sko,n,&sks->sks_free_list,sko_list)
kv_free(skc, sko->sko_addr, size);
kv_free(skc, base, skc->skc_slab_size);
sks = NULL;
}
RETURN(sks);
}
/* Removes slab from complete or partial list, so it must
* be called with the 'skc->skc_lock' held.
*/
static void
spl_slab_free(spl_kmem_slab_t *sks) {
spl_kmem_cache_t *skc;
spl_kmem_obj_t *sko, *n;
int size;
ENTRY;
ASSERT(sks->sks_magic == SKS_MAGIC);
ASSERT(sks->sks_ref == 0);
skc = sks->sks_cache;
ASSERT(skc->skc_magic == SKC_MAGIC);
ASSERT(spin_is_locked(&skc->skc_lock));
skc->skc_obj_total -= sks->sks_objs;
skc->skc_slab_total--;
list_del(&sks->sks_list);
size = sizeof(spl_kmem_obj_t) + skc->skc_obj_size;
/* Run destructors slab is being released */
list_for_each_entry_safe(sko, n, &sks->sks_free_list, sko_list) {
ASSERT(sko->sko_magic == SKO_MAGIC);
if (skc->skc_dtor)
skc->skc_dtor(sko->sko_addr, skc->skc_private);
if (skc->skc_flags & KMC_OFFSLAB)
kv_free(skc, sko->sko_addr, size);
}
kv_free(skc, sks, skc->skc_slab_size);
EXIT;
}
static int
__spl_slab_reclaim(spl_kmem_cache_t *skc)
{
spl_kmem_slab_t *sks, *m;
int rc = 0;
ENTRY;
ASSERT(spin_is_locked(&skc->skc_lock));
/*
* Free empty slabs which have not been touched in skc_delay
* seconds. This delay time is important to avoid thrashing.
* Empty slabs will be at the end of the skc_partial_list.
*/
list_for_each_entry_safe_reverse(sks, m, &skc->skc_partial_list,
sks_list) {
if (sks->sks_ref > 0)
break;
if (time_after(jiffies, sks->sks_age + skc->skc_delay * HZ)) {
spl_slab_free(sks);
rc++;
}
}
/* Returns number of slabs reclaimed */
RETURN(rc);
}
static int
spl_slab_reclaim(spl_kmem_cache_t *skc)
{
int rc;
ENTRY;
spin_lock(&skc->skc_lock);
rc = __spl_slab_reclaim(skc);
spin_unlock(&skc->skc_lock);
RETURN(rc);
}
static int
spl_magazine_size(spl_kmem_cache_t *skc)
{
int size;
ENTRY;
/* Guesses for reasonable magazine sizes, they
* should really adapt based on observed usage. */
if (skc->skc_obj_size > (PAGE_SIZE * 256))
size = 4;
else if (skc->skc_obj_size > (PAGE_SIZE * 32))
size = 16;
else if (skc->skc_obj_size > (PAGE_SIZE))
size = 64;
else if (skc->skc_obj_size > (PAGE_SIZE / 4))
size = 128;
else
size = 512;
RETURN(size);
}
static spl_kmem_magazine_t *
spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
{
spl_kmem_magazine_t *skm;
int size = sizeof(spl_kmem_magazine_t) +
sizeof(void *) * skc->skc_mag_size;
ENTRY;
skm = kmem_alloc_node(size, GFP_KERNEL, node);
if (skm) {
skm->skm_magic = SKM_MAGIC;
skm->skm_avail = 0;
skm->skm_size = skc->skc_mag_size;
skm->skm_refill = skc->skc_mag_refill;
if (!(skc->skc_flags & KMC_NOTOUCH))
skm->skm_age = jiffies;
}
RETURN(skm);
}
static void
spl_magazine_free(spl_kmem_magazine_t *skm)
{
int size = sizeof(spl_kmem_magazine_t) +
sizeof(void *) * skm->skm_size;
ENTRY;
ASSERT(skm->skm_magic == SKM_MAGIC);
ASSERT(skm->skm_avail == 0);
kmem_free(skm, size);
EXIT;
}
static int
spl_magazine_create(spl_kmem_cache_t *skc)
{
int i;
ENTRY;
skc->skc_mag_size = spl_magazine_size(skc);
skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
for_each_online_cpu(i) {
skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
if (!skc->skc_mag[i]) {
for (i--; i >= 0; i--)
spl_magazine_free(skc->skc_mag[i]);
RETURN(-ENOMEM);
}
}
RETURN(0);
}
static void
spl_magazine_destroy(spl_kmem_cache_t *skc)
{
spl_kmem_magazine_t *skm;
int i;
ENTRY;
for_each_online_cpu(i) {
skm = skc->skc_mag[i];
(void)spl_cache_flush(skc, skm, skm->skm_avail);
spl_magazine_free(skm);
}
EXIT;
}
spl_kmem_cache_t *
spl_kmem_cache_create(char *name, size_t size, size_t align,
spl_kmem_ctor_t ctor,
spl_kmem_dtor_t dtor,
spl_kmem_reclaim_t reclaim,
void *priv, void *vmp, int flags)
{
spl_kmem_cache_t *skc;
uint32_t slab_max, slab_size, slab_objs;
int rc, kmem_flags = KM_SLEEP;
ENTRY;
ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
/* We may be called when there is a non-zero preempt_count or
* interrupts are disabled is which case we must not sleep.
*/
if (current_thread_info()->preempt_count || irqs_disabled())
kmem_flags = KM_NOSLEEP;
/* Allocate new cache memory and initialize. */
skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc), kmem_flags);
if (skc == NULL)
RETURN(NULL);
skc->skc_magic = SKC_MAGIC;
skc->skc_name_size = strlen(name) + 1;
skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
if (skc->skc_name == NULL) {
kmem_free(skc, sizeof(*skc));
RETURN(NULL);
}
strncpy(skc->skc_name, name, skc->skc_name_size);
skc->skc_ctor = ctor;
skc->skc_dtor = dtor;
skc->skc_reclaim = reclaim;
skc->skc_private = priv;
skc->skc_vmp = vmp;
skc->skc_flags = flags;
skc->skc_obj_size = size;
skc->skc_delay = SPL_KMEM_CACHE_DELAY;
INIT_LIST_HEAD(&skc->skc_list);
INIT_LIST_HEAD(&skc->skc_complete_list);
INIT_LIST_HEAD(&skc->skc_partial_list);
spin_lock_init(&skc->skc_lock);
skc->skc_slab_fail = 0;
skc->skc_slab_create = 0;
skc->skc_slab_destroy = 0;
skc->skc_slab_total = 0;
skc->skc_slab_alloc = 0;
skc->skc_slab_max = 0;
skc->skc_obj_total = 0;
skc->skc_obj_alloc = 0;
skc->skc_obj_max = 0;
/* If none passed select a cache type based on object size */
if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
if (skc->skc_obj_size < (PAGE_SIZE / 8)) {
skc->skc_flags |= KMC_KMEM;
} else {
skc->skc_flags |= KMC_VMEM;
}
}
/* Size slabs properly so ensure they are not too large */
slab_max = ((uint64_t)1 << (MAX_ORDER - 1)) * PAGE_SIZE;
if (skc->skc_flags & KMC_OFFSLAB) {
skc->skc_slab_objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
skc->skc_slab_size = sizeof(spl_kmem_slab_t);
ASSERT(skc->skc_obj_size < slab_max);
} else {
slab_objs = SPL_KMEM_CACHE_OBJ_PER_SLAB + 1;
do {
slab_objs--;
slab_size = sizeof(spl_kmem_slab_t) + slab_objs *
(skc->skc_obj_size+sizeof(spl_kmem_obj_t));
} while (slab_size > slab_max);
skc->skc_slab_objs = slab_objs;
skc->skc_slab_size = slab_size;
}
rc = spl_magazine_create(skc);
if (rc) {
kmem_free(skc->skc_name, skc->skc_name_size);
kmem_free(skc, sizeof(*skc));
RETURN(NULL);
}
down_write(&spl_kmem_cache_sem);
list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
up_write(&spl_kmem_cache_sem);
RETURN(skc);
}
EXPORT_SYMBOL(spl_kmem_cache_create);
void
spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
{
spl_kmem_slab_t *sks, *m;
ENTRY;
ASSERT(skc->skc_magic == SKC_MAGIC);
down_write(&spl_kmem_cache_sem);
list_del_init(&skc->skc_list);
up_write(&spl_kmem_cache_sem);
spl_magazine_destroy(skc);
spin_lock(&skc->skc_lock);
/* Validate there are no objects in use and free all the
* spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
ASSERT(list_empty(&skc->skc_complete_list));
ASSERT(skc->skc_slab_alloc == 0);
ASSERT(skc->skc_obj_alloc == 0);
list_for_each_entry_safe(sks, m, &skc->skc_partial_list, sks_list)
spl_slab_free(sks);
ASSERT(skc->skc_slab_total == 0);
ASSERT(skc->skc_obj_total == 0);
kmem_free(skc->skc_name, skc->skc_name_size);
spin_unlock(&skc->skc_lock);
kmem_free(skc, sizeof(*skc));
EXIT;
}
EXPORT_SYMBOL(spl_kmem_cache_destroy);
static void *
spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
{
spl_kmem_obj_t *sko;
ASSERT(skc->skc_magic == SKC_MAGIC);
ASSERT(sks->sks_magic == SKS_MAGIC);
ASSERT(spin_is_locked(&skc->skc_lock));
sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
ASSERT(sko->sko_magic == SKO_MAGIC);
ASSERT(sko->sko_addr != NULL);
/* Remove from sks_free_list */
list_del_init(&sko->sko_list);
sks->sks_age = jiffies;
sks->sks_ref++;
skc->skc_obj_alloc++;
/* Track max obj usage statistics */
if (skc->skc_obj_alloc > skc->skc_obj_max)
skc->skc_obj_max = skc->skc_obj_alloc;
/* Track max slab usage statistics */
if (sks->sks_ref == 1) {
skc->skc_slab_alloc++;
if (skc->skc_slab_alloc > skc->skc_slab_max)
skc->skc_slab_max = skc->skc_slab_alloc;
}
return sko->sko_addr;
}
/* No available objects create a new slab. Since this is an
* expensive operation we do it without holding the spinlock
* and only briefly aquire it when we link in the fully
* allocated and constructed slab.
*/
static spl_kmem_slab_t *
spl_cache_grow(spl_kmem_cache_t *skc, int flags)
{
spl_kmem_slab_t *sks;
ENTRY;
ASSERT(skc->skc_magic == SKC_MAGIC);
if (flags & __GFP_WAIT) {
flags |= __GFP_NOFAIL;
local_irq_enable();
might_sleep();
}
sks = spl_slab_alloc(skc, flags);
if (sks == NULL) {
if (flags & __GFP_WAIT)
local_irq_disable();
RETURN(NULL);
}
if (flags & __GFP_WAIT)
local_irq_disable();
/* Link the new empty slab in to the end of skc_partial_list */
spin_lock(&skc->skc_lock);
skc->skc_slab_total++;
skc->skc_obj_total += sks->sks_objs;
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
spin_unlock(&skc->skc_lock);
RETURN(sks);
}
static int
spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
{
spl_kmem_slab_t *sks;
int rc = 0, refill;
ENTRY;
ASSERT(skc->skc_magic == SKC_MAGIC);
ASSERT(skm->skm_magic == SKM_MAGIC);
/* XXX: Check for refill bouncing by age perhaps */
refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
spin_lock(&skc->skc_lock);
while (refill > 0) {
/* No slabs available we must grow the cache */
if (list_empty(&skc->skc_partial_list)) {
spin_unlock(&skc->skc_lock);
sks = spl_cache_grow(skc, flags);
if (!sks)
GOTO(out, rc);
/* Rescheduled to different CPU skm is not local */
if (skm != skc->skc_mag[smp_processor_id()])
GOTO(out, rc);
/* Potentially rescheduled to the same CPU but
* allocations may have occured from this CPU while
* we were sleeping so recalculate max refill. */
refill = MIN(refill, skm->skm_size - skm->skm_avail);
spin_lock(&skc->skc_lock);
continue;
}
/* Grab the next available slab */
sks = list_entry((&skc->skc_partial_list)->next,
spl_kmem_slab_t, sks_list);
ASSERT(sks->sks_magic == SKS_MAGIC);
ASSERT(sks->sks_ref < sks->sks_objs);
ASSERT(!list_empty(&sks->sks_free_list));
/* Consume as many objects as needed to refill the requested
* cache. We must also be careful not to overfill it. */
while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
ASSERT(skm->skm_avail < skm->skm_size);
ASSERT(rc < skm->skm_size);
skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
}
/* Move slab to skc_complete_list when full */
if (sks->sks_ref == sks->sks_objs) {
list_del(&sks->sks_list);
list_add(&sks->sks_list, &skc->skc_complete_list);
}
}
spin_unlock(&skc->skc_lock);
out:
/* Returns the number of entries added to cache */
RETURN(rc);
}
static void
spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
{
spl_kmem_slab_t *sks = NULL;
spl_kmem_obj_t *sko = NULL;
ENTRY;
ASSERT(skc->skc_magic == SKC_MAGIC);
ASSERT(spin_is_locked(&skc->skc_lock));
sko = obj + skc->skc_obj_size;
ASSERT(sko->sko_magic == SKO_MAGIC);
sks = sko->sko_slab;
ASSERT(sks->sks_magic == SKS_MAGIC);
ASSERT(sks->sks_cache == skc);
list_add(&sko->sko_list, &sks->sks_free_list);
sks->sks_age = jiffies;
sks->sks_ref--;
skc->skc_obj_alloc--;
/* Move slab to skc_partial_list when no longer full. Slabs
* are added to the head to keep the partial list is quasi-full
* sorted order. Fuller at the head, emptier at the tail. */
if (sks->sks_ref == (sks->sks_objs - 1)) {
list_del(&sks->sks_list);
list_add(&sks->sks_list, &skc->skc_partial_list);
}
/* Move emply slabs to the end of the partial list so
* they can be easily found and freed during reclamation. */
if (sks->sks_ref == 0) {
list_del(&sks->sks_list);
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
skc->skc_slab_alloc--;
}
EXIT;
}
static int
spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
{
int i, count = MIN(flush, skm->skm_avail);
ENTRY;
ASSERT(skc->skc_magic == SKC_MAGIC);
ASSERT(skm->skm_magic == SKM_MAGIC);
spin_lock(&skc->skc_lock);
for (i = 0; i < count; i++)
spl_cache_shrink(skc, skm->skm_objs[i]);
// __spl_slab_reclaim(skc);
skm->skm_avail -= count;
memmove(skm->skm_objs, &(skm->skm_objs[count]),
sizeof(void *) * skm->skm_avail);
spin_unlock(&skc->skc_lock);
RETURN(count);
}
void *
spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
{
spl_kmem_magazine_t *skm;
unsigned long irq_flags;
void *obj = NULL;
int id;
ENTRY;
ASSERT(skc->skc_magic == SKC_MAGIC);
ASSERT(flags & KM_SLEEP); /* XXX: KM_NOSLEEP not yet supported */
local_irq_save(irq_flags);
restart:
/* Safe to update per-cpu structure without lock, but
* in the restart case we must be careful to reaquire
* the local magazine since this may have changed
* when we need to grow the cache. */
id = smp_processor_id();
ASSERTF(id < 4, "cache=%p smp_processor_id=%d\n", skc, id);
skm = skc->skc_mag[smp_processor_id()];
ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
skm->skm_size, skm->skm_refill, skm->skm_avail);
if (likely(skm->skm_avail)) {
/* Object available in CPU cache, use it */
obj = skm->skm_objs[--skm->skm_avail];
if (!(skc->skc_flags & KMC_NOTOUCH))
skm->skm_age = jiffies;
} else {
/* Per-CPU cache empty, directly allocate from
* the slab and refill the per-CPU cache. */
(void)spl_cache_refill(skc, skm, flags);
GOTO(restart, obj = NULL);
}
local_irq_restore(irq_flags);
ASSERT(obj);
/* Pre-emptively migrate object to CPU L1 cache */
prefetchw(obj);
RETURN(obj);
}
EXPORT_SYMBOL(spl_kmem_cache_alloc);
void
spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
{
spl_kmem_magazine_t *skm;
unsigned long flags;
ENTRY;
ASSERT(skc->skc_magic == SKC_MAGIC);
local_irq_save(flags);
/* Safe to update per-cpu structure without lock, but
* no remote memory allocation tracking is being performed
* it is entirely possible to allocate an object from one
* CPU cache and return it to another. */
skm = skc->skc_mag[smp_processor_id()];
ASSERT(skm->skm_magic == SKM_MAGIC);
/* Per-CPU cache full, flush it to make space */
if (unlikely(skm->skm_avail >= skm->skm_size))
(void)spl_cache_flush(skc, skm, skm->skm_refill);
/* Available space in cache, use it */
skm->skm_objs[skm->skm_avail++] = obj;
local_irq_restore(flags);
EXIT;
}
EXPORT_SYMBOL(spl_kmem_cache_free);
static int
spl_kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
{
spl_kmem_cache_t *skc;
/* Under linux a shrinker is not tightly coupled with a slab
* cache. In fact linux always systematically trys calling all
* registered shrinker callbacks until its target reclamation level
* is reached. Because of this we only register one shrinker
* function in the shim layer for all slab caches. And we always
* attempt to shrink all caches when this generic shrinker is called.
*/
down_read(&spl_kmem_cache_sem);
list_for_each_entry(skc, &spl_kmem_cache_list, skc_list)
spl_kmem_cache_reap_now(skc);
up_read(&spl_kmem_cache_sem);
/* XXX: Under linux we should return the remaining number of
* entries in the cache. We should do this as well.
*/
return 1;
}
void
spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
{
spl_kmem_magazine_t *skm;
int i;
ENTRY;
ASSERT(skc->skc_magic == SKC_MAGIC);
if (skc->skc_reclaim)
skc->skc_reclaim(skc->skc_private);
/* Ensure per-CPU caches which are idle gradually flush */
for_each_online_cpu(i) {
skm = skc->skc_mag[i];
if (time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
(void)spl_cache_flush(skc, skm, skm->skm_refill);
}
spl_slab_reclaim(skc);
EXIT;
}
EXPORT_SYMBOL(spl_kmem_cache_reap_now);
void
spl_kmem_reap(void)
{
spl_kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
}
EXPORT_SYMBOL(spl_kmem_reap);
#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
static char *
spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
{
int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
int i, flag = 1;
ASSERT(str != NULL && len >= 17);
memset(str, 0, len);
/* Check for a fully printable string, and while we are at
* it place the printable characters in the passed buffer. */
for (i = 0; i < size; i++) {
str[i] = ((char *)(kd->kd_addr))[i];
if (isprint(str[i])) {
continue;
} else {
/* Minimum number of printable characters found
* to make it worthwhile to print this as ascii. */
if (i > min)
break;
flag = 0;
break;
}
}
if (!flag) {
sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
*((uint8_t *)kd->kd_addr),
*((uint8_t *)kd->kd_addr + 2),
*((uint8_t *)kd->kd_addr + 4),
*((uint8_t *)kd->kd_addr + 6),
*((uint8_t *)kd->kd_addr + 8),
*((uint8_t *)kd->kd_addr + 10),
*((uint8_t *)kd->kd_addr + 12),
*((uint8_t *)kd->kd_addr + 14));
}
return str;
}
static int
spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
{
int i;
ENTRY;
spin_lock_init(lock);
INIT_LIST_HEAD(list);
for (i = 0; i < size; i++)
INIT_HLIST_HEAD(&kmem_table[i]);
RETURN(0);
}
static void
spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
{
unsigned long flags;
kmem_debug_t *kd;
char str[17];
ENTRY;
spin_lock_irqsave(lock, flags);
if (!list_empty(list))
printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
"size", "data", "func", "line");
list_for_each_entry(kd, list, kd_list)
printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
(int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
kd->kd_func, kd->kd_line);
spin_unlock_irqrestore(lock, flags);
EXIT;
}
#else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
#define spl_kmem_init_tracking(list, lock, size)
#define spl_kmem_fini_tracking(list, lock)
#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
int
spl_kmem_init(void)
{
int rc = 0;
ENTRY;
init_rwsem(&spl_kmem_cache_sem);
INIT_LIST_HEAD(&spl_kmem_cache_list);
#ifdef HAVE_SET_SHRINKER
spl_kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
spl_kmem_cache_generic_shrinker);
if (spl_kmem_cache_shrinker == NULL)
RETURN(rc = -ENOMEM);
#else
register_shrinker(&spl_kmem_cache_shrinker);
#endif
#ifdef DEBUG_KMEM
atomic64_set(&kmem_alloc_used, 0);
atomic64_set(&vmem_alloc_used, 0);
spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
#endif
RETURN(rc);
}
void
spl_kmem_fini(void)
{
#ifdef DEBUG_KMEM
/* Display all unreclaimed memory addresses, including the
* allocation size and the first few bytes of what's located
* at that address to aid in debugging. Performance is not
* a serious concern here since it is module unload time. */
if (atomic64_read(&kmem_alloc_used) != 0)
CWARN("kmem leaked %ld/%ld bytes\n",
atomic64_read(&kmem_alloc_used), kmem_alloc_max);
if (atomic64_read(&vmem_alloc_used) != 0)
CWARN("vmem leaked %ld/%ld bytes\n",
atomic64_read(&vmem_alloc_used), vmem_alloc_max);
spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
#endif /* DEBUG_KMEM */
ENTRY;
#ifdef HAVE_SET_SHRINKER
remove_shrinker(spl_kmem_cache_shrinker);
#else
unregister_shrinker(&spl_kmem_cache_shrinker);
#endif
EXIT;
}