zfs/module/zfs/sa.c

2083 lines
53 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_objset.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/sunddi.h>
#include <sys/sa_impl.h>
#include <sys/dnode.h>
#include <sys/errno.h>
#include <sys/zfs_context.h>
/*
* ZFS System attributes:
*
* A generic mechanism to allow for arbitrary attributes
* to be stored in a dnode. The data will be stored in the bonus buffer of
* the dnode and if necessary a special "spill" block will be used to handle
* overflow situations. The spill block will be sized to fit the data
* from 512 - 128K. When a spill block is used the BP (blkptr_t) for the
* spill block is stored at the end of the current bonus buffer. Any
* attributes that would be in the way of the blkptr_t will be relocated
* into the spill block.
*
* Attribute registration:
*
* Stored persistently on a per dataset basis
* a mapping between attribute "string" names and their actual attribute
* numeric values, length, and byteswap function. The names are only used
* during registration. All attributes are known by their unique attribute
* id value. If an attribute can have a variable size then the value
* 0 will be used to indicate this.
*
* Attribute Layout:
*
* Attribute layouts are a way to compactly store multiple attributes, but
* without taking the overhead associated with managing each attribute
* individually. Since you will typically have the same set of attributes
* stored in the same order a single table will be used to represent that
* layout. The ZPL for example will usually have only about 10 different
* layouts (regular files, device files, symlinks,
* regular files + scanstamp, files/dir with extended attributes, and then
* you have the possibility of all of those minus ACL, because it would
* be kicked out into the spill block)
*
* Layouts are simply an array of the attributes and their
* ordering i.e. [0, 1, 4, 5, 2]
*
* Each distinct layout is given a unique layout number and that is whats
* stored in the header at the beginning of the SA data buffer.
*
* A layout only covers a single dbuf (bonus or spill). If a set of
* attributes is split up between the bonus buffer and a spill buffer then
* two different layouts will be used. This allows us to byteswap the
* spill without looking at the bonus buffer and keeps the on disk format of
* the bonus and spill buffer the same.
*
* Adding a single attribute will cause the entire set of attributes to
* be rewritten and could result in a new layout number being constructed
* as part of the rewrite if no such layout exists for the new set of
* attribues. The new attribute will be appended to the end of the already
* existing attributes.
*
* Both the attribute registration and attribute layout information are
* stored in normal ZAP attributes. Their should be a small number of
* known layouts and the set of attributes is assumed to typically be quite
* small.
*
* The registered attributes and layout "table" information is maintained
* in core and a special "sa_os_t" is attached to the objset_t.
*
* A special interface is provided to allow for quickly applying
* a large set of attributes at once. sa_replace_all_by_template() is
* used to set an array of attributes. This is used by the ZPL when
* creating a brand new file. The template that is passed into the function
* specifies the attribute, size for variable length attributes, location of
* data and special "data locator" function if the data isn't in a contiguous
* location.
*
* Byteswap implications:
* Since the SA attributes are not entirely self describing we can't do
* the normal byteswap processing. The special ZAP layout attribute and
* attribute registration attributes define the byteswap function and the
* size of the attributes, unless it is variable sized.
* The normal ZFS byteswapping infrastructure assumes you don't need
* to read any objects in order to do the necessary byteswapping. Whereas
* SA attributes can only be properly byteswapped if the dataset is opened
* and the layout/attribute ZAP attributes are available. Because of this
* the SA attributes will be byteswapped when they are first accessed by
* the SA code that will read the SA data.
*/
typedef void (sa_iterfunc_t)(void *hdr, void *addr, sa_attr_type_t,
uint16_t length, int length_idx, boolean_t, void *userp);
static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype);
static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab);
static void *sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype,
void *data);
static void sa_idx_tab_rele(objset_t *os, void *arg);
static void sa_copy_data(sa_data_locator_t *func, void *start, void *target,
int buflen);
static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr,
sa_data_op_t action, sa_data_locator_t *locator, void *datastart,
uint16_t buflen, dmu_tx_t *tx);
arc_byteswap_func_t sa_bswap_table[] = {
byteswap_uint64_array,
byteswap_uint32_array,
byteswap_uint16_array,
byteswap_uint8_array,
zfs_acl_byteswap,
};
#define SA_COPY_DATA(f, s, t, l) \
{ \
if (f == NULL) { \
if (l == 8) { \
*(uint64_t *)t = *(uint64_t *)s; \
} else if (l == 16) { \
*(uint64_t *)t = *(uint64_t *)s; \
*(uint64_t *)((uintptr_t)t + 8) = \
*(uint64_t *)((uintptr_t)s + 8); \
} else { \
bcopy(s, t, l); \
} \
} else \
sa_copy_data(f, s, t, l); \
}
/*
* This table is fixed and cannot be changed. Its purpose is to
* allow the SA code to work with both old/new ZPL file systems.
* It contains the list of legacy attributes. These attributes aren't
* stored in the "attribute" registry zap objects, since older ZPL file systems
* won't have the registry. Only objsets of type ZFS_TYPE_FILESYSTEM will
* use this static table.
*/
sa_attr_reg_t sa_legacy_attrs[] = {
{"ZPL_ATIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 0},
{"ZPL_MTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 1},
{"ZPL_CTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 2},
{"ZPL_CRTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 3},
{"ZPL_GEN", sizeof (uint64_t), SA_UINT64_ARRAY, 4},
{"ZPL_MODE", sizeof (uint64_t), SA_UINT64_ARRAY, 5},
{"ZPL_SIZE", sizeof (uint64_t), SA_UINT64_ARRAY, 6},
{"ZPL_PARENT", sizeof (uint64_t), SA_UINT64_ARRAY, 7},
{"ZPL_LINKS", sizeof (uint64_t), SA_UINT64_ARRAY, 8},
{"ZPL_XATTR", sizeof (uint64_t), SA_UINT64_ARRAY, 9},
{"ZPL_RDEV", sizeof (uint64_t), SA_UINT64_ARRAY, 10},
{"ZPL_FLAGS", sizeof (uint64_t), SA_UINT64_ARRAY, 11},
{"ZPL_UID", sizeof (uint64_t), SA_UINT64_ARRAY, 12},
{"ZPL_GID", sizeof (uint64_t), SA_UINT64_ARRAY, 13},
{"ZPL_PAD", sizeof (uint64_t) * 4, SA_UINT64_ARRAY, 14},
{"ZPL_ZNODE_ACL", 88, SA_UINT8_ARRAY, 15},
};
/*
* ZPL legacy layout
* This is only used for objects of type DMU_OT_ZNODE
*/
sa_attr_type_t sa_legacy_zpl_layout[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
/*
* Special dummy layout used for buffers with no attributes.
*/
sa_attr_type_t sa_dummy_zpl_layout[] = { 0 };
static int sa_legacy_attr_count = 16;
static kmem_cache_t *sa_cache = NULL;
Implement SA based xattrs The current ZFS implementation stores xattrs on disk using a hidden directory. In this directory a file name represents the xattr name and the file contexts are the xattr binary data. This approach is very flexible and allows for arbitrarily large xattrs. However, it also suffers from a significant performance penalty. Accessing a single xattr can requires up to three disk seeks. 1) Lookup the dnode object. 2) Lookup the dnodes's xattr directory object. 3) Lookup the xattr object in the directory. To avoid this performance penalty Linux filesystems such as ext3 and xfs try to store the xattr as part of the inode on disk. When the xattr is to large to store in the inode then a single external block is allocated for them. In practice most xattrs are small and this approach works well. The addition of System Attributes (SA) to zfs provides us a clean way to make this optimization. When the dataset property 'xattr=sa' is set then xattrs will be preferentially stored as System Attributes. This allows tiny xattrs (~100 bytes) to be stored with the dnode and up to 64k of xattrs to be stored in the spill block. If additional xattr space is required, which is unlikely under Linux, they will be stored using the traditional directory approach. This optimization results in roughly a 3x performance improvement when accessing xattrs which brings zfs roughly to parity with ext4 and xfs (see table below). When multiple xattrs are stored per-file the performance improvements are even greater because all of the xattrs stored in the spill block will be cached. However, by default SA based xattrs are disabled in the Linux port to maximize compatibility with other implementations. If you do enable SA based xattrs then they will not be visible on platforms which do not support this feature. ---------------------------------------------------------------------- Time in seconds to get/set one xattr of N bytes on 100,000 files ------+--------------------------------+------------------------------ | setxattr | getxattr bytes | ext4 xfs zfs-dir zfs-sa | ext4 xfs zfs-dir zfs-sa ------+--------------------------------+------------------------------ 1 | 2.33 31.88 21.50 4.57 | 2.35 2.64 6.29 2.43 32 | 2.79 30.68 21.98 4.60 | 2.44 2.59 6.78 2.48 256 | 3.25 31.99 21.36 5.92 | 2.32 2.71 6.22 3.14 1024 | 3.30 32.61 22.83 8.45 | 2.40 2.79 6.24 3.27 4096 | 3.57 317.46 22.52 10.73 | 2.78 28.62 6.90 3.94 16384 | n/a 2342.39 34.30 19.20 | n/a 45.44 145.90 7.55 65536 | n/a 2941.39 128.15 131.32* | n/a 141.92 256.85 262.12* Legend: * ext4 - Stock RHEL6.1 ext4 mounted with '-o user_xattr'. * xfs - Stock RHEL6.1 xfs mounted with default options. * zfs-dir - Directory based xattrs only. * zfs-sa - Prefer SAs but spill in to directories as needed, a trailing * indicates overflow in to directories occured. NOTE: Ext4 supports 4096 bytes of xattr name/value pairs per file. NOTE: XFS and ZFS have no limit on xattr name/value pairs per file. NOTE: Linux limits individual name/value pairs to 65536 bytes. NOTE: All setattr/getattr's were done after dropping the cache. NOTE: All tests were run against a single hard drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #443
2011-10-24 23:55:20 +00:00
static kmem_cache_t *spill_cache = NULL;
/*ARGSUSED*/
static int
sa_cache_constructor(void *buf, void *unused, int kmflag)
{
sa_handle_t *hdl = buf;
hdl->sa_bonus_tab = NULL;
hdl->sa_spill_tab = NULL;
hdl->sa_os = NULL;
hdl->sa_userp = NULL;
hdl->sa_bonus = NULL;
hdl->sa_spill = NULL;
mutex_init(&hdl->sa_lock, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
/*ARGSUSED*/
static void
sa_cache_destructor(void *buf, void *unused)
{
sa_handle_t *hdl = buf;
mutex_destroy(&hdl->sa_lock);
}
void
sa_cache_init(void)
{
sa_cache = kmem_cache_create("sa_cache",
sizeof (sa_handle_t), 0, sa_cache_constructor,
sa_cache_destructor, NULL, NULL, NULL, 0);
Implement SA based xattrs The current ZFS implementation stores xattrs on disk using a hidden directory. In this directory a file name represents the xattr name and the file contexts are the xattr binary data. This approach is very flexible and allows for arbitrarily large xattrs. However, it also suffers from a significant performance penalty. Accessing a single xattr can requires up to three disk seeks. 1) Lookup the dnode object. 2) Lookup the dnodes's xattr directory object. 3) Lookup the xattr object in the directory. To avoid this performance penalty Linux filesystems such as ext3 and xfs try to store the xattr as part of the inode on disk. When the xattr is to large to store in the inode then a single external block is allocated for them. In practice most xattrs are small and this approach works well. The addition of System Attributes (SA) to zfs provides us a clean way to make this optimization. When the dataset property 'xattr=sa' is set then xattrs will be preferentially stored as System Attributes. This allows tiny xattrs (~100 bytes) to be stored with the dnode and up to 64k of xattrs to be stored in the spill block. If additional xattr space is required, which is unlikely under Linux, they will be stored using the traditional directory approach. This optimization results in roughly a 3x performance improvement when accessing xattrs which brings zfs roughly to parity with ext4 and xfs (see table below). When multiple xattrs are stored per-file the performance improvements are even greater because all of the xattrs stored in the spill block will be cached. However, by default SA based xattrs are disabled in the Linux port to maximize compatibility with other implementations. If you do enable SA based xattrs then they will not be visible on platforms which do not support this feature. ---------------------------------------------------------------------- Time in seconds to get/set one xattr of N bytes on 100,000 files ------+--------------------------------+------------------------------ | setxattr | getxattr bytes | ext4 xfs zfs-dir zfs-sa | ext4 xfs zfs-dir zfs-sa ------+--------------------------------+------------------------------ 1 | 2.33 31.88 21.50 4.57 | 2.35 2.64 6.29 2.43 32 | 2.79 30.68 21.98 4.60 | 2.44 2.59 6.78 2.48 256 | 3.25 31.99 21.36 5.92 | 2.32 2.71 6.22 3.14 1024 | 3.30 32.61 22.83 8.45 | 2.40 2.79 6.24 3.27 4096 | 3.57 317.46 22.52 10.73 | 2.78 28.62 6.90 3.94 16384 | n/a 2342.39 34.30 19.20 | n/a 45.44 145.90 7.55 65536 | n/a 2941.39 128.15 131.32* | n/a 141.92 256.85 262.12* Legend: * ext4 - Stock RHEL6.1 ext4 mounted with '-o user_xattr'. * xfs - Stock RHEL6.1 xfs mounted with default options. * zfs-dir - Directory based xattrs only. * zfs-sa - Prefer SAs but spill in to directories as needed, a trailing * indicates overflow in to directories occured. NOTE: Ext4 supports 4096 bytes of xattr name/value pairs per file. NOTE: XFS and ZFS have no limit on xattr name/value pairs per file. NOTE: Linux limits individual name/value pairs to 65536 bytes. NOTE: All setattr/getattr's were done after dropping the cache. NOTE: All tests were run against a single hard drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #443
2011-10-24 23:55:20 +00:00
spill_cache = kmem_cache_create("spill_cache",
SPA_MAXBLOCKSIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
}
void
sa_cache_fini(void)
{
if (sa_cache)
kmem_cache_destroy(sa_cache);
Implement SA based xattrs The current ZFS implementation stores xattrs on disk using a hidden directory. In this directory a file name represents the xattr name and the file contexts are the xattr binary data. This approach is very flexible and allows for arbitrarily large xattrs. However, it also suffers from a significant performance penalty. Accessing a single xattr can requires up to three disk seeks. 1) Lookup the dnode object. 2) Lookup the dnodes's xattr directory object. 3) Lookup the xattr object in the directory. To avoid this performance penalty Linux filesystems such as ext3 and xfs try to store the xattr as part of the inode on disk. When the xattr is to large to store in the inode then a single external block is allocated for them. In practice most xattrs are small and this approach works well. The addition of System Attributes (SA) to zfs provides us a clean way to make this optimization. When the dataset property 'xattr=sa' is set then xattrs will be preferentially stored as System Attributes. This allows tiny xattrs (~100 bytes) to be stored with the dnode and up to 64k of xattrs to be stored in the spill block. If additional xattr space is required, which is unlikely under Linux, they will be stored using the traditional directory approach. This optimization results in roughly a 3x performance improvement when accessing xattrs which brings zfs roughly to parity with ext4 and xfs (see table below). When multiple xattrs are stored per-file the performance improvements are even greater because all of the xattrs stored in the spill block will be cached. However, by default SA based xattrs are disabled in the Linux port to maximize compatibility with other implementations. If you do enable SA based xattrs then they will not be visible on platforms which do not support this feature. ---------------------------------------------------------------------- Time in seconds to get/set one xattr of N bytes on 100,000 files ------+--------------------------------+------------------------------ | setxattr | getxattr bytes | ext4 xfs zfs-dir zfs-sa | ext4 xfs zfs-dir zfs-sa ------+--------------------------------+------------------------------ 1 | 2.33 31.88 21.50 4.57 | 2.35 2.64 6.29 2.43 32 | 2.79 30.68 21.98 4.60 | 2.44 2.59 6.78 2.48 256 | 3.25 31.99 21.36 5.92 | 2.32 2.71 6.22 3.14 1024 | 3.30 32.61 22.83 8.45 | 2.40 2.79 6.24 3.27 4096 | 3.57 317.46 22.52 10.73 | 2.78 28.62 6.90 3.94 16384 | n/a 2342.39 34.30 19.20 | n/a 45.44 145.90 7.55 65536 | n/a 2941.39 128.15 131.32* | n/a 141.92 256.85 262.12* Legend: * ext4 - Stock RHEL6.1 ext4 mounted with '-o user_xattr'. * xfs - Stock RHEL6.1 xfs mounted with default options. * zfs-dir - Directory based xattrs only. * zfs-sa - Prefer SAs but spill in to directories as needed, a trailing * indicates overflow in to directories occured. NOTE: Ext4 supports 4096 bytes of xattr name/value pairs per file. NOTE: XFS and ZFS have no limit on xattr name/value pairs per file. NOTE: Linux limits individual name/value pairs to 65536 bytes. NOTE: All setattr/getattr's were done after dropping the cache. NOTE: All tests were run against a single hard drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #443
2011-10-24 23:55:20 +00:00
if (spill_cache)
kmem_cache_destroy(spill_cache);
}
void *
sa_spill_alloc(int flags)
{
return kmem_cache_alloc(spill_cache, flags);
}
void
sa_spill_free(void *obj)
{
kmem_cache_free(spill_cache, obj);
}
static int
layout_num_compare(const void *arg1, const void *arg2)
{
const sa_lot_t *node1 = arg1;
const sa_lot_t *node2 = arg2;
if (node1->lot_num > node2->lot_num)
return (1);
else if (node1->lot_num < node2->lot_num)
return (-1);
return (0);
}
static int
layout_hash_compare(const void *arg1, const void *arg2)
{
const sa_lot_t *node1 = arg1;
const sa_lot_t *node2 = arg2;
if (node1->lot_hash > node2->lot_hash)
return (1);
if (node1->lot_hash < node2->lot_hash)
return (-1);
if (node1->lot_instance > node2->lot_instance)
return (1);
if (node1->lot_instance < node2->lot_instance)
return (-1);
return (0);
}
boolean_t
sa_layout_equal(sa_lot_t *tbf, sa_attr_type_t *attrs, int count)
{
int i;
if (count != tbf->lot_attr_count)
return (1);
for (i = 0; i != count; i++) {
if (attrs[i] != tbf->lot_attrs[i])
return (1);
}
return (0);
}
#define SA_ATTR_HASH(attr) (zfs_crc64_table[(-1ULL ^ attr) & 0xFF])
static uint64_t
sa_layout_info_hash(sa_attr_type_t *attrs, int attr_count)
{
int i;
uint64_t crc = -1ULL;
for (i = 0; i != attr_count; i++)
crc ^= SA_ATTR_HASH(attrs[i]);
return (crc);
}
static int
sa_get_spill(sa_handle_t *hdl)
{
int rc;
if (hdl->sa_spill == NULL) {
if ((rc = dmu_spill_hold_existing(hdl->sa_bonus, NULL,
&hdl->sa_spill)) == 0)
VERIFY(0 == sa_build_index(hdl, SA_SPILL));
} else {
rc = 0;
}
return (rc);
}
/*
* Main attribute lookup/update function
* returns 0 for success or non zero for failures
*
* Operates on bulk array, first failure will abort further processing
*/
int
sa_attr_op(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count,
sa_data_op_t data_op, dmu_tx_t *tx)
{
sa_os_t *sa = hdl->sa_os->os_sa;
int i;
int error = 0;
sa_buf_type_t buftypes;
buftypes = 0;
ASSERT(count > 0);
for (i = 0; i != count; i++) {
ASSERT(bulk[i].sa_attr <= hdl->sa_os->os_sa->sa_num_attrs);
bulk[i].sa_addr = NULL;
/* First check the bonus buffer */
if (hdl->sa_bonus_tab && TOC_ATTR_PRESENT(
hdl->sa_bonus_tab->sa_idx_tab[bulk[i].sa_attr])) {
SA_ATTR_INFO(sa, hdl->sa_bonus_tab,
SA_GET_HDR(hdl, SA_BONUS),
bulk[i].sa_attr, bulk[i], SA_BONUS, hdl);
if (tx && !(buftypes & SA_BONUS)) {
dmu_buf_will_dirty(hdl->sa_bonus, tx);
buftypes |= SA_BONUS;
}
}
if (bulk[i].sa_addr == NULL &&
((error = sa_get_spill(hdl)) == 0)) {
if (TOC_ATTR_PRESENT(
hdl->sa_spill_tab->sa_idx_tab[bulk[i].sa_attr])) {
SA_ATTR_INFO(sa, hdl->sa_spill_tab,
SA_GET_HDR(hdl, SA_SPILL),
bulk[i].sa_attr, bulk[i], SA_SPILL, hdl);
if (tx && !(buftypes & SA_SPILL) &&
bulk[i].sa_size == bulk[i].sa_length) {
dmu_buf_will_dirty(hdl->sa_spill, tx);
buftypes |= SA_SPILL;
}
}
}
if (error && error != ENOENT) {
return ((error == ECKSUM) ? EIO : error);
}
switch (data_op) {
case SA_LOOKUP:
if (bulk[i].sa_addr == NULL)
return (SET_ERROR(ENOENT));
if (bulk[i].sa_data) {
SA_COPY_DATA(bulk[i].sa_data_func,
bulk[i].sa_addr, bulk[i].sa_data,
bulk[i].sa_size);
}
continue;
case SA_UPDATE:
/* existing rewrite of attr */
if (bulk[i].sa_addr &&
bulk[i].sa_size == bulk[i].sa_length) {
SA_COPY_DATA(bulk[i].sa_data_func,
bulk[i].sa_data, bulk[i].sa_addr,
bulk[i].sa_length);
continue;
} else if (bulk[i].sa_addr) { /* attr size change */
error = sa_modify_attrs(hdl, bulk[i].sa_attr,
SA_REPLACE, bulk[i].sa_data_func,
bulk[i].sa_data, bulk[i].sa_length, tx);
} else { /* adding new attribute */
error = sa_modify_attrs(hdl, bulk[i].sa_attr,
SA_ADD, bulk[i].sa_data_func,
bulk[i].sa_data, bulk[i].sa_length, tx);
}
if (error)
return (error);
break;
default:
break;
}
}
return (error);
}
static sa_lot_t *
sa_add_layout_entry(objset_t *os, sa_attr_type_t *attrs, int attr_count,
uint64_t lot_num, uint64_t hash, boolean_t zapadd, dmu_tx_t *tx)
{
sa_os_t *sa = os->os_sa;
sa_lot_t *tb, *findtb;
int i;
avl_index_t loc;
ASSERT(MUTEX_HELD(&sa->sa_lock));
tb = kmem_zalloc(sizeof (sa_lot_t), KM_PUSHPAGE);
tb->lot_attr_count = attr_count;
tb->lot_attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count,
KM_PUSHPAGE);
bcopy(attrs, tb->lot_attrs, sizeof (sa_attr_type_t) * attr_count);
tb->lot_num = lot_num;
tb->lot_hash = hash;
tb->lot_instance = 0;
if (zapadd) {
char attr_name[8];
if (sa->sa_layout_attr_obj == 0) {
sa->sa_layout_attr_obj = zap_create_link(os,
DMU_OT_SA_ATTR_LAYOUTS,
sa->sa_master_obj, SA_LAYOUTS, tx);
}
(void) snprintf(attr_name, sizeof (attr_name),
"%d", (int)lot_num);
VERIFY(0 == zap_update(os, os->os_sa->sa_layout_attr_obj,
attr_name, 2, attr_count, attrs, tx));
}
list_create(&tb->lot_idx_tab, sizeof (sa_idx_tab_t),
offsetof(sa_idx_tab_t, sa_next));
for (i = 0; i != attr_count; i++) {
if (sa->sa_attr_table[tb->lot_attrs[i]].sa_length == 0)
tb->lot_var_sizes++;
}
avl_add(&sa->sa_layout_num_tree, tb);
/* verify we don't have a hash collision */
if ((findtb = avl_find(&sa->sa_layout_hash_tree, tb, &loc)) != NULL) {
for (; findtb && findtb->lot_hash == hash;
findtb = AVL_NEXT(&sa->sa_layout_hash_tree, findtb)) {
if (findtb->lot_instance != tb->lot_instance)
break;
tb->lot_instance++;
}
}
avl_add(&sa->sa_layout_hash_tree, tb);
return (tb);
}
static void
sa_find_layout(objset_t *os, uint64_t hash, sa_attr_type_t *attrs,
int count, dmu_tx_t *tx, sa_lot_t **lot)
{
sa_lot_t *tb, tbsearch;
avl_index_t loc;
sa_os_t *sa = os->os_sa;
boolean_t found = B_FALSE;
mutex_enter(&sa->sa_lock);
tbsearch.lot_hash = hash;
tbsearch.lot_instance = 0;
tb = avl_find(&sa->sa_layout_hash_tree, &tbsearch, &loc);
if (tb) {
for (; tb && tb->lot_hash == hash;
tb = AVL_NEXT(&sa->sa_layout_hash_tree, tb)) {
if (sa_layout_equal(tb, attrs, count) == 0) {
found = B_TRUE;
break;
}
}
}
if (!found) {
tb = sa_add_layout_entry(os, attrs, count,
avl_numnodes(&sa->sa_layout_num_tree), hash, B_TRUE, tx);
}
mutex_exit(&sa->sa_lock);
*lot = tb;
}
static int
sa_resize_spill(sa_handle_t *hdl, uint32_t size, dmu_tx_t *tx)
{
int error;
uint32_t blocksize;
if (size == 0) {
blocksize = SPA_MINBLOCKSIZE;
} else if (size > SPA_MAXBLOCKSIZE) {
ASSERT(0);
return (SET_ERROR(EFBIG));
} else {
blocksize = P2ROUNDUP_TYPED(size, SPA_MINBLOCKSIZE, uint32_t);
}
error = dbuf_spill_set_blksz(hdl->sa_spill, blocksize, tx);
ASSERT(error == 0);
return (error);
}
static void
sa_copy_data(sa_data_locator_t *func, void *datastart, void *target, int buflen)
{
if (func == NULL) {
bcopy(datastart, target, buflen);
} else {
boolean_t start;
int bytes;
void *dataptr;
void *saptr = target;
uint32_t length;
start = B_TRUE;
bytes = 0;
while (bytes < buflen) {
func(&dataptr, &length, buflen, start, datastart);
bcopy(dataptr, saptr, length);
saptr = (void *)((caddr_t)saptr + length);
bytes += length;
start = B_FALSE;
}
}
}
/*
* Determine several different sizes
* first the sa header size
* the number of bytes to be stored
* if spill would occur the index in the attribute array is returned
*
* the boolean will_spill will be set when spilling is necessary. It
* is only set when the buftype is SA_BONUS
*/
static int
sa_find_sizes(sa_os_t *sa, sa_bulk_attr_t *attr_desc, int attr_count,
dmu_buf_t *db, sa_buf_type_t buftype, int *index, int *total,
boolean_t *will_spill)
{
int var_size = 0;
int i;
Fix mismatch between SA header size and layout When a system attribute layout is created an inconsistency may occur between the system attribute header (sa_hdr_phys_t) size and the variable-sized attribute count stored in the layout. The inconsistency results in the following failed assertion when SA_HDR_SIZE_MATCH_LAYOUT returns false: SPLError: 11315:0:(sa.c:1541:sa_find_idx_tab()) ASSERTION((IS_SA_BONUSTYPE(bonustype) && SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb)) || !IS_SA_BONUSTYPE(bonustype) || (IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0)) failed The bug originates in this snippet from sa_find_sizes(). if (is_var_sz && var_size > 1) { if (P2ROUNDUP(hdrsize + sizeof (uint16_t), *total < full_space) { hdrsize += sizeof (uint16_t); This assumes that the current variable-sized attribute will be stored in the current buffer and accounts for the space needed to store its size in the sa_hdr_phys_t. However if the next attribute spills over we need to store a blkptr_t at the end of the bonus buffer to point to the spill block. If the current attribute is in the way of the blkptr_t then it too will be relocated into the spill block. But since we've already accounted for it in the header size we get the inconsistency described above. To avoid this, record the index of the last variable-sized attribute that prompted a hdrsize increase, and reverse the increase if we later determine that that attribute will be relocated to the spill block. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1250
2013-01-30 17:48:57 +00:00
int j = -1;
int full_space;
int hdrsize;
boolean_t done = B_FALSE;
if (buftype == SA_BONUS && sa->sa_force_spill) {
*total = 0;
*index = 0;
*will_spill = B_TRUE;
return (0);
}
*index = -1;
*total = 0;
if (buftype == SA_BONUS)
*will_spill = B_FALSE;
hdrsize = (SA_BONUSTYPE_FROM_DB(db) == DMU_OT_ZNODE) ? 0 :
sizeof (sa_hdr_phys_t);
full_space = (buftype == SA_BONUS) ? DN_MAX_BONUSLEN : db->db_size;
Fix rounding discrepancy in sa_find_sizes() A rounding discrepancy exists between how sa_build_layouts() and sa_find_sizes() calculate when the spill block needs to be kicked in. This results in a narrow size range where sa_build_layouts() believes there must be a spill block allocated but due to the discrepancy there isn't. A panic then occurs when the hdl->sa_spill NULL pointer is dereferenced. The following reproducer for this bug was isolated: truncate -s 128m /tmp/tank zpool create tank /tmp/tank zfs create -o xattr=sa tank/fish ln -s `perl -e 'print "z" x 41'` /tank/fish/z setfattr -hn trusted.foo -v`perl -e 'print "z"x45'` /tank/fish/z This test results in roughly the following system attribute (SA) layout: 176 bytes - "standard" SA's 41 bytes - name of symbolic link target 100 bytes - XDR encoded nvlist for xattr --- 317 bytes - total Because 317 is less than DN_MAX_BONUSLEN (320), sa_find_sizes() decides no spill block is needed. But sa_build_layouts() rounds 41 up to 48 when computing the space requirements so it tries to switch to the spill block. Note that we were only able to reproduce this bug using a combination of symbolic links and the Linux-specific xattr=sa dataset property. So while this issue is not technically Linux-specific, it may be difficult or impossible to hit the narrow size range needed to reproduce it on other platforms. To fix the discrepancy, round the running total in sa_find_sizes() up to an 8-byte boundary before accounting for each SA, since this is how they will be stored in the bonus and (possibly) spill buffers. To make the intent of the code more clear, explicitly assert key assumptions about expected alignment of data and whether spill-over will occur. Signed-off-by: Matthew Ahrens <mahrens@delphix.com Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1240
2013-01-29 23:49:15 +00:00
ASSERT(IS_P2ALIGNED(full_space, 8));
for (i = 0; i != attr_count; i++) {
boolean_t is_var_sz;
Fix rounding discrepancy in sa_find_sizes() A rounding discrepancy exists between how sa_build_layouts() and sa_find_sizes() calculate when the spill block needs to be kicked in. This results in a narrow size range where sa_build_layouts() believes there must be a spill block allocated but due to the discrepancy there isn't. A panic then occurs when the hdl->sa_spill NULL pointer is dereferenced. The following reproducer for this bug was isolated: truncate -s 128m /tmp/tank zpool create tank /tmp/tank zfs create -o xattr=sa tank/fish ln -s `perl -e 'print "z" x 41'` /tank/fish/z setfattr -hn trusted.foo -v`perl -e 'print "z"x45'` /tank/fish/z This test results in roughly the following system attribute (SA) layout: 176 bytes - "standard" SA's 41 bytes - name of symbolic link target 100 bytes - XDR encoded nvlist for xattr --- 317 bytes - total Because 317 is less than DN_MAX_BONUSLEN (320), sa_find_sizes() decides no spill block is needed. But sa_build_layouts() rounds 41 up to 48 when computing the space requirements so it tries to switch to the spill block. Note that we were only able to reproduce this bug using a combination of symbolic links and the Linux-specific xattr=sa dataset property. So while this issue is not technically Linux-specific, it may be difficult or impossible to hit the narrow size range needed to reproduce it on other platforms. To fix the discrepancy, round the running total in sa_find_sizes() up to an 8-byte boundary before accounting for each SA, since this is how they will be stored in the bonus and (possibly) spill buffers. To make the intent of the code more clear, explicitly assert key assumptions about expected alignment of data and whether spill-over will occur. Signed-off-by: Matthew Ahrens <mahrens@delphix.com Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1240
2013-01-29 23:49:15 +00:00
*total = P2ROUNDUP(*total, 8);
*total += attr_desc[i].sa_length;
if (done)
goto next;
is_var_sz = (SA_REGISTERED_LEN(sa, attr_desc[i].sa_attr) == 0);
if (is_var_sz) {
var_size++;
}
if (is_var_sz && var_size > 1) {
if (P2ROUNDUP(hdrsize + sizeof (uint16_t), 8) +
*total < full_space) {
Fix mismatch between SA header size and layout When a system attribute layout is created an inconsistency may occur between the system attribute header (sa_hdr_phys_t) size and the variable-sized attribute count stored in the layout. The inconsistency results in the following failed assertion when SA_HDR_SIZE_MATCH_LAYOUT returns false: SPLError: 11315:0:(sa.c:1541:sa_find_idx_tab()) ASSERTION((IS_SA_BONUSTYPE(bonustype) && SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb)) || !IS_SA_BONUSTYPE(bonustype) || (IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0)) failed The bug originates in this snippet from sa_find_sizes(). if (is_var_sz && var_size > 1) { if (P2ROUNDUP(hdrsize + sizeof (uint16_t), *total < full_space) { hdrsize += sizeof (uint16_t); This assumes that the current variable-sized attribute will be stored in the current buffer and accounts for the space needed to store its size in the sa_hdr_phys_t. However if the next attribute spills over we need to store a blkptr_t at the end of the bonus buffer to point to the spill block. If the current attribute is in the way of the blkptr_t then it too will be relocated into the spill block. But since we've already accounted for it in the header size we get the inconsistency described above. To avoid this, record the index of the last variable-sized attribute that prompted a hdrsize increase, and reverse the increase if we later determine that that attribute will be relocated to the spill block. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1250
2013-01-30 17:48:57 +00:00
/*
* Account for header space used by array of
* optional sizes of variable-length attributes.
* Record the index in case this increase needs
* to be reversed due to spill-over.
*/
hdrsize += sizeof (uint16_t);
Fix mismatch between SA header size and layout When a system attribute layout is created an inconsistency may occur between the system attribute header (sa_hdr_phys_t) size and the variable-sized attribute count stored in the layout. The inconsistency results in the following failed assertion when SA_HDR_SIZE_MATCH_LAYOUT returns false: SPLError: 11315:0:(sa.c:1541:sa_find_idx_tab()) ASSERTION((IS_SA_BONUSTYPE(bonustype) && SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb)) || !IS_SA_BONUSTYPE(bonustype) || (IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0)) failed The bug originates in this snippet from sa_find_sizes(). if (is_var_sz && var_size > 1) { if (P2ROUNDUP(hdrsize + sizeof (uint16_t), *total < full_space) { hdrsize += sizeof (uint16_t); This assumes that the current variable-sized attribute will be stored in the current buffer and accounts for the space needed to store its size in the sa_hdr_phys_t. However if the next attribute spills over we need to store a blkptr_t at the end of the bonus buffer to point to the spill block. If the current attribute is in the way of the blkptr_t then it too will be relocated into the spill block. But since we've already accounted for it in the header size we get the inconsistency described above. To avoid this, record the index of the last variable-sized attribute that prompted a hdrsize increase, and reverse the increase if we later determine that that attribute will be relocated to the spill block. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1250
2013-01-30 17:48:57 +00:00
j = i;
} else {
done = B_TRUE;
*index = i;
if (buftype == SA_BONUS)
*will_spill = B_TRUE;
continue;
}
}
/*
* find index of where spill *could* occur.
* Then continue to count of remainder attribute
* space. The sum is used later for sizing bonus
* and spill buffer.
*/
if (buftype == SA_BONUS && *index == -1 &&
(*total + P2ROUNDUP(hdrsize, 8)) >
(full_space - sizeof (blkptr_t))) {
*index = i;
done = B_TRUE;
}
next:
if ((*total + P2ROUNDUP(hdrsize, 8)) > full_space &&
buftype == SA_BONUS)
*will_spill = B_TRUE;
}
Fix mismatch between SA header size and layout When a system attribute layout is created an inconsistency may occur between the system attribute header (sa_hdr_phys_t) size and the variable-sized attribute count stored in the layout. The inconsistency results in the following failed assertion when SA_HDR_SIZE_MATCH_LAYOUT returns false: SPLError: 11315:0:(sa.c:1541:sa_find_idx_tab()) ASSERTION((IS_SA_BONUSTYPE(bonustype) && SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb)) || !IS_SA_BONUSTYPE(bonustype) || (IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0)) failed The bug originates in this snippet from sa_find_sizes(). if (is_var_sz && var_size > 1) { if (P2ROUNDUP(hdrsize + sizeof (uint16_t), *total < full_space) { hdrsize += sizeof (uint16_t); This assumes that the current variable-sized attribute will be stored in the current buffer and accounts for the space needed to store its size in the sa_hdr_phys_t. However if the next attribute spills over we need to store a blkptr_t at the end of the bonus buffer to point to the spill block. If the current attribute is in the way of the blkptr_t then it too will be relocated into the spill block. But since we've already accounted for it in the header size we get the inconsistency described above. To avoid this, record the index of the last variable-sized attribute that prompted a hdrsize increase, and reverse the increase if we later determine that that attribute will be relocated to the spill block. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1250
2013-01-30 17:48:57 +00:00
/*
* j holds the index of the last variable-sized attribute for
* which hdrsize was increased. Reverse the increase if that
* attribute will be relocated to the spill block.
*/
if (*will_spill && j == *index)
hdrsize -= sizeof (uint16_t);
hdrsize = P2ROUNDUP(hdrsize, 8);
return (hdrsize);
}
#define BUF_SPACE_NEEDED(total, header) (total + header)
/*
* Find layout that corresponds to ordering of attributes
* If not found a new layout number is created and added to
* persistent layout tables.
*/
static int
sa_build_layouts(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count,
dmu_tx_t *tx)
{
sa_os_t *sa = hdl->sa_os->os_sa;
uint64_t hash;
sa_buf_type_t buftype;
sa_hdr_phys_t *sahdr;
void *data_start;
int buf_space;
sa_attr_type_t *attrs, *attrs_start;
int i, lot_count;
int hdrsize;
int spillhdrsize = 0;
int used;
dmu_object_type_t bonustype;
sa_lot_t *lot;
int len_idx;
int spill_used;
boolean_t spilling;
dmu_buf_will_dirty(hdl->sa_bonus, tx);
bonustype = SA_BONUSTYPE_FROM_DB(hdl->sa_bonus);
/* first determine bonus header size and sum of all attributes */
hdrsize = sa_find_sizes(sa, attr_desc, attr_count, hdl->sa_bonus,
SA_BONUS, &i, &used, &spilling);
if (used > SPA_MAXBLOCKSIZE)
return (SET_ERROR(EFBIG));
VERIFY(0 == dmu_set_bonus(hdl->sa_bonus, spilling ?
MIN(DN_MAX_BONUSLEN - sizeof (blkptr_t), used + hdrsize) :
used + hdrsize, tx));
ASSERT((bonustype == DMU_OT_ZNODE && spilling == 0) ||
bonustype == DMU_OT_SA);
/* setup and size spill buffer when needed */
if (spilling) {
boolean_t dummy;
if (hdl->sa_spill == NULL) {
VERIFY(dmu_spill_hold_by_bonus(hdl->sa_bonus, NULL,
&hdl->sa_spill) == 0);
}
dmu_buf_will_dirty(hdl->sa_spill, tx);
spillhdrsize = sa_find_sizes(sa, &attr_desc[i],
attr_count - i, hdl->sa_spill, SA_SPILL, &i,
&spill_used, &dummy);
if (spill_used > SPA_MAXBLOCKSIZE)
return (SET_ERROR(EFBIG));
buf_space = hdl->sa_spill->db_size - spillhdrsize;
if (BUF_SPACE_NEEDED(spill_used, spillhdrsize) >
hdl->sa_spill->db_size)
VERIFY(0 == sa_resize_spill(hdl,
BUF_SPACE_NEEDED(spill_used, spillhdrsize), tx));
}
/* setup starting pointers to lay down data */
data_start = (void *)((uintptr_t)hdl->sa_bonus->db_data + hdrsize);
sahdr = (sa_hdr_phys_t *)hdl->sa_bonus->db_data;
buftype = SA_BONUS;
if (spilling)
buf_space = (sa->sa_force_spill) ?
0 : SA_BLKPTR_SPACE - hdrsize;
else
buf_space = hdl->sa_bonus->db_size - hdrsize;
attrs_start = attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count,
KM_PUSHPAGE);
lot_count = 0;
for (i = 0, len_idx = 0, hash = -1ULL; i != attr_count; i++) {
uint16_t length;
Fix rounding discrepancy in sa_find_sizes() A rounding discrepancy exists between how sa_build_layouts() and sa_find_sizes() calculate when the spill block needs to be kicked in. This results in a narrow size range where sa_build_layouts() believes there must be a spill block allocated but due to the discrepancy there isn't. A panic then occurs when the hdl->sa_spill NULL pointer is dereferenced. The following reproducer for this bug was isolated: truncate -s 128m /tmp/tank zpool create tank /tmp/tank zfs create -o xattr=sa tank/fish ln -s `perl -e 'print "z" x 41'` /tank/fish/z setfattr -hn trusted.foo -v`perl -e 'print "z"x45'` /tank/fish/z This test results in roughly the following system attribute (SA) layout: 176 bytes - "standard" SA's 41 bytes - name of symbolic link target 100 bytes - XDR encoded nvlist for xattr --- 317 bytes - total Because 317 is less than DN_MAX_BONUSLEN (320), sa_find_sizes() decides no spill block is needed. But sa_build_layouts() rounds 41 up to 48 when computing the space requirements so it tries to switch to the spill block. Note that we were only able to reproduce this bug using a combination of symbolic links and the Linux-specific xattr=sa dataset property. So while this issue is not technically Linux-specific, it may be difficult or impossible to hit the narrow size range needed to reproduce it on other platforms. To fix the discrepancy, round the running total in sa_find_sizes() up to an 8-byte boundary before accounting for each SA, since this is how they will be stored in the bonus and (possibly) spill buffers. To make the intent of the code more clear, explicitly assert key assumptions about expected alignment of data and whether spill-over will occur. Signed-off-by: Matthew Ahrens <mahrens@delphix.com Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1240
2013-01-29 23:49:15 +00:00
ASSERT(IS_P2ALIGNED(data_start, 8));
ASSERT(IS_P2ALIGNED(buf_space, 8));
attrs[i] = attr_desc[i].sa_attr;
length = SA_REGISTERED_LEN(sa, attrs[i]);
if (length == 0)
length = attr_desc[i].sa_length;
if (buf_space < length) { /* switch to spill buffer */
Fix rounding discrepancy in sa_find_sizes() A rounding discrepancy exists between how sa_build_layouts() and sa_find_sizes() calculate when the spill block needs to be kicked in. This results in a narrow size range where sa_build_layouts() believes there must be a spill block allocated but due to the discrepancy there isn't. A panic then occurs when the hdl->sa_spill NULL pointer is dereferenced. The following reproducer for this bug was isolated: truncate -s 128m /tmp/tank zpool create tank /tmp/tank zfs create -o xattr=sa tank/fish ln -s `perl -e 'print "z" x 41'` /tank/fish/z setfattr -hn trusted.foo -v`perl -e 'print "z"x45'` /tank/fish/z This test results in roughly the following system attribute (SA) layout: 176 bytes - "standard" SA's 41 bytes - name of symbolic link target 100 bytes - XDR encoded nvlist for xattr --- 317 bytes - total Because 317 is less than DN_MAX_BONUSLEN (320), sa_find_sizes() decides no spill block is needed. But sa_build_layouts() rounds 41 up to 48 when computing the space requirements so it tries to switch to the spill block. Note that we were only able to reproduce this bug using a combination of symbolic links and the Linux-specific xattr=sa dataset property. So while this issue is not technically Linux-specific, it may be difficult or impossible to hit the narrow size range needed to reproduce it on other platforms. To fix the discrepancy, round the running total in sa_find_sizes() up to an 8-byte boundary before accounting for each SA, since this is how they will be stored in the bonus and (possibly) spill buffers. To make the intent of the code more clear, explicitly assert key assumptions about expected alignment of data and whether spill-over will occur. Signed-off-by: Matthew Ahrens <mahrens@delphix.com Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1240
2013-01-29 23:49:15 +00:00
VERIFY(spilling);
VERIFY(bonustype == DMU_OT_SA);
if (buftype == SA_BONUS && !sa->sa_force_spill) {
sa_find_layout(hdl->sa_os, hash, attrs_start,
lot_count, tx, &lot);
SA_SET_HDR(sahdr, lot->lot_num, hdrsize);
}
buftype = SA_SPILL;
hash = -1ULL;
len_idx = 0;
sahdr = (sa_hdr_phys_t *)hdl->sa_spill->db_data;
sahdr->sa_magic = SA_MAGIC;
data_start = (void *)((uintptr_t)sahdr +
spillhdrsize);
attrs_start = &attrs[i];
buf_space = hdl->sa_spill->db_size - spillhdrsize;
lot_count = 0;
}
hash ^= SA_ATTR_HASH(attrs[i]);
attr_desc[i].sa_addr = data_start;
attr_desc[i].sa_size = length;
SA_COPY_DATA(attr_desc[i].sa_data_func, attr_desc[i].sa_data,
data_start, length);
if (sa->sa_attr_table[attrs[i]].sa_length == 0) {
sahdr->sa_lengths[len_idx++] = length;
}
data_start = (void *)P2ROUNDUP(((uintptr_t)data_start +
length), 8);
buf_space -= P2ROUNDUP(length, 8);
lot_count++;
}
sa_find_layout(hdl->sa_os, hash, attrs_start, lot_count, tx, &lot);
/*
* Verify that old znodes always have layout number 0.
* Must be DMU_OT_SA for arbitrary layouts
*/
VERIFY((bonustype == DMU_OT_ZNODE && lot->lot_num == 0) ||
(bonustype == DMU_OT_SA && lot->lot_num > 1));
if (bonustype == DMU_OT_SA) {
SA_SET_HDR(sahdr, lot->lot_num,
buftype == SA_BONUS ? hdrsize : spillhdrsize);
}
kmem_free(attrs, sizeof (sa_attr_type_t) * attr_count);
if (hdl->sa_bonus_tab) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab);
hdl->sa_bonus_tab = NULL;
}
if (!sa->sa_force_spill)
VERIFY(0 == sa_build_index(hdl, SA_BONUS));
if (hdl->sa_spill) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
if (!spilling) {
/*
* remove spill block that is no longer needed.
*/
dmu_buf_rele(hdl->sa_spill, NULL);
hdl->sa_spill = NULL;
hdl->sa_spill_tab = NULL;
VERIFY(0 == dmu_rm_spill(hdl->sa_os,
sa_handle_object(hdl), tx));
} else {
VERIFY(0 == sa_build_index(hdl, SA_SPILL));
}
}
return (0);
}
static void
sa_free_attr_table(sa_os_t *sa)
{
int i;
if (sa->sa_attr_table == NULL)
return;
for (i = 0; i != sa->sa_num_attrs; i++) {
if (sa->sa_attr_table[i].sa_name)
kmem_free(sa->sa_attr_table[i].sa_name,
strlen(sa->sa_attr_table[i].sa_name) + 1);
}
kmem_free(sa->sa_attr_table,
sizeof (sa_attr_table_t) * sa->sa_num_attrs);
sa->sa_attr_table = NULL;
}
static int
sa_attr_table_setup(objset_t *os, sa_attr_reg_t *reg_attrs, int count)
{
sa_os_t *sa = os->os_sa;
uint64_t sa_attr_count = 0;
uint64_t sa_reg_count = 0;
int error = 0;
uint64_t attr_value;
sa_attr_table_t *tb;
zap_cursor_t zc;
zap_attribute_t za;
int registered_count = 0;
int i;
dmu_objset_type_t ostype = dmu_objset_type(os);
sa->sa_user_table =
kmem_zalloc(count * sizeof (sa_attr_type_t), KM_PUSHPAGE);
sa->sa_user_table_sz = count * sizeof (sa_attr_type_t);
if (sa->sa_reg_attr_obj != 0) {
error = zap_count(os, sa->sa_reg_attr_obj,
&sa_attr_count);
/*
* Make sure we retrieved a count and that it isn't zero
*/
if (error || (error == 0 && sa_attr_count == 0)) {
if (error == 0)
error = SET_ERROR(EINVAL);
goto bail;
}
sa_reg_count = sa_attr_count;
}
if (ostype == DMU_OST_ZFS && sa_attr_count == 0)
sa_attr_count += sa_legacy_attr_count;
/* Allocate attribute numbers for attributes that aren't registered */
for (i = 0; i != count; i++) {
boolean_t found = B_FALSE;
int j;
if (ostype == DMU_OST_ZFS) {
for (j = 0; j != sa_legacy_attr_count; j++) {
if (strcmp(reg_attrs[i].sa_name,
sa_legacy_attrs[j].sa_name) == 0) {
sa->sa_user_table[i] =
sa_legacy_attrs[j].sa_attr;
found = B_TRUE;
}
}
}
if (found)
continue;
if (sa->sa_reg_attr_obj)
error = zap_lookup(os, sa->sa_reg_attr_obj,
reg_attrs[i].sa_name, 8, 1, &attr_value);
else
error = SET_ERROR(ENOENT);
switch (error) {
case ENOENT:
sa->sa_user_table[i] = (sa_attr_type_t)sa_attr_count;
sa_attr_count++;
break;
case 0:
sa->sa_user_table[i] = ATTR_NUM(attr_value);
break;
default:
goto bail;
}
}
sa->sa_num_attrs = sa_attr_count;
tb = sa->sa_attr_table =
kmem_zalloc(sizeof (sa_attr_table_t) * sa_attr_count, KM_PUSHPAGE);
/*
* Attribute table is constructed from requested attribute list,
* previously foreign registered attributes, and also the legacy
* ZPL set of attributes.
*/
if (sa->sa_reg_attr_obj) {
for (zap_cursor_init(&zc, os, sa->sa_reg_attr_obj);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
uint64_t value;
value = za.za_first_integer;
registered_count++;
tb[ATTR_NUM(value)].sa_attr = ATTR_NUM(value);
tb[ATTR_NUM(value)].sa_length = ATTR_LENGTH(value);
tb[ATTR_NUM(value)].sa_byteswap = ATTR_BSWAP(value);
tb[ATTR_NUM(value)].sa_registered = B_TRUE;
if (tb[ATTR_NUM(value)].sa_name) {
continue;
}
tb[ATTR_NUM(value)].sa_name =
kmem_zalloc(strlen(za.za_name) +1, KM_PUSHPAGE);
(void) strlcpy(tb[ATTR_NUM(value)].sa_name, za.za_name,
strlen(za.za_name) +1);
}
zap_cursor_fini(&zc);
/*
* Make sure we processed the correct number of registered
* attributes
*/
if (registered_count != sa_reg_count) {
ASSERT(error != 0);
goto bail;
}
}
if (ostype == DMU_OST_ZFS) {
for (i = 0; i != sa_legacy_attr_count; i++) {
if (tb[i].sa_name)
continue;
tb[i].sa_attr = sa_legacy_attrs[i].sa_attr;
tb[i].sa_length = sa_legacy_attrs[i].sa_length;
tb[i].sa_byteswap = sa_legacy_attrs[i].sa_byteswap;
tb[i].sa_registered = B_FALSE;
tb[i].sa_name =
kmem_zalloc(strlen(sa_legacy_attrs[i].sa_name) +1,
KM_PUSHPAGE);
(void) strlcpy(tb[i].sa_name,
sa_legacy_attrs[i].sa_name,
strlen(sa_legacy_attrs[i].sa_name) + 1);
}
}
for (i = 0; i != count; i++) {
sa_attr_type_t attr_id;
attr_id = sa->sa_user_table[i];
if (tb[attr_id].sa_name)
continue;
tb[attr_id].sa_length = reg_attrs[i].sa_length;
tb[attr_id].sa_byteswap = reg_attrs[i].sa_byteswap;
tb[attr_id].sa_attr = attr_id;
tb[attr_id].sa_name =
kmem_zalloc(strlen(reg_attrs[i].sa_name) + 1, KM_PUSHPAGE);
(void) strlcpy(tb[attr_id].sa_name, reg_attrs[i].sa_name,
strlen(reg_attrs[i].sa_name) + 1);
}
sa->sa_need_attr_registration =
(sa_attr_count != registered_count);
return (0);
bail:
kmem_free(sa->sa_user_table, count * sizeof (sa_attr_type_t));
sa->sa_user_table = NULL;
sa_free_attr_table(sa);
return ((error != 0) ? error : EINVAL);
}
int
sa_setup(objset_t *os, uint64_t sa_obj, sa_attr_reg_t *reg_attrs, int count,
sa_attr_type_t **user_table)
{
zap_cursor_t zc;
zap_attribute_t za;
sa_os_t *sa;
dmu_objset_type_t ostype = dmu_objset_type(os);
sa_attr_type_t *tb;
int error;
mutex_enter(&os->os_user_ptr_lock);
if (os->os_sa) {
mutex_enter(&os->os_sa->sa_lock);
mutex_exit(&os->os_user_ptr_lock);
tb = os->os_sa->sa_user_table;
mutex_exit(&os->os_sa->sa_lock);
*user_table = tb;
return (0);
}
sa = kmem_zalloc(sizeof (sa_os_t), KM_PUSHPAGE);
mutex_init(&sa->sa_lock, NULL, MUTEX_DEFAULT, NULL);
sa->sa_master_obj = sa_obj;
os->os_sa = sa;
mutex_enter(&sa->sa_lock);
mutex_exit(&os->os_user_ptr_lock);
avl_create(&sa->sa_layout_num_tree, layout_num_compare,
sizeof (sa_lot_t), offsetof(sa_lot_t, lot_num_node));
avl_create(&sa->sa_layout_hash_tree, layout_hash_compare,
sizeof (sa_lot_t), offsetof(sa_lot_t, lot_hash_node));
if (sa_obj) {
error = zap_lookup(os, sa_obj, SA_LAYOUTS,
8, 1, &sa->sa_layout_attr_obj);
if (error != 0 && error != ENOENT)
goto fail;
error = zap_lookup(os, sa_obj, SA_REGISTRY,
8, 1, &sa->sa_reg_attr_obj);
if (error != 0 && error != ENOENT)
goto fail;
}
if ((error = sa_attr_table_setup(os, reg_attrs, count)) != 0)
goto fail;
if (sa->sa_layout_attr_obj != 0) {
uint64_t layout_count;
error = zap_count(os, sa->sa_layout_attr_obj,
&layout_count);
/*
* Layout number count should be > 0
*/
if (error || (error == 0 && layout_count == 0)) {
if (error == 0)
error = SET_ERROR(EINVAL);
goto fail;
}
for (zap_cursor_init(&zc, os, sa->sa_layout_attr_obj);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
sa_attr_type_t *lot_attrs;
uint64_t lot_num;
lot_attrs = kmem_zalloc(sizeof (sa_attr_type_t) *
za.za_num_integers, KM_PUSHPAGE);
if ((error = (zap_lookup(os, sa->sa_layout_attr_obj,
za.za_name, 2, za.za_num_integers,
lot_attrs))) != 0) {
kmem_free(lot_attrs, sizeof (sa_attr_type_t) *
za.za_num_integers);
break;
}
VERIFY(ddi_strtoull(za.za_name, NULL, 10,
(unsigned long long *)&lot_num) == 0);
(void) sa_add_layout_entry(os, lot_attrs,
za.za_num_integers, lot_num,
sa_layout_info_hash(lot_attrs,
za.za_num_integers), B_FALSE, NULL);
kmem_free(lot_attrs, sizeof (sa_attr_type_t) *
za.za_num_integers);
}
zap_cursor_fini(&zc);
/*
* Make sure layout count matches number of entries added
* to AVL tree
*/
if (avl_numnodes(&sa->sa_layout_num_tree) != layout_count) {
ASSERT(error != 0);
goto fail;
}
}
/* Add special layout number for old ZNODES */
if (ostype == DMU_OST_ZFS) {
(void) sa_add_layout_entry(os, sa_legacy_zpl_layout,
sa_legacy_attr_count, 0,
sa_layout_info_hash(sa_legacy_zpl_layout,
sa_legacy_attr_count), B_FALSE, NULL);
(void) sa_add_layout_entry(os, sa_dummy_zpl_layout, 0, 1,
0, B_FALSE, NULL);
}
*user_table = os->os_sa->sa_user_table;
mutex_exit(&sa->sa_lock);
return (0);
fail:
os->os_sa = NULL;
sa_free_attr_table(sa);
if (sa->sa_user_table)
kmem_free(sa->sa_user_table, sa->sa_user_table_sz);
mutex_exit(&sa->sa_lock);
kmem_free(sa, sizeof (sa_os_t));
return ((error == ECKSUM) ? EIO : error);
}
void
sa_tear_down(objset_t *os)
{
sa_os_t *sa = os->os_sa;
sa_lot_t *layout;
void *cookie;
kmem_free(sa->sa_user_table, sa->sa_user_table_sz);
/* Free up attr table */
sa_free_attr_table(sa);
cookie = NULL;
while ((layout = avl_destroy_nodes(&sa->sa_layout_hash_tree, &cookie))){
sa_idx_tab_t *tab;
while ((tab = list_head(&layout->lot_idx_tab))) {
ASSERT(refcount_count(&tab->sa_refcount));
sa_idx_tab_rele(os, tab);
}
}
cookie = NULL;
while ((layout = avl_destroy_nodes(&sa->sa_layout_num_tree, &cookie))){
kmem_free(layout->lot_attrs,
sizeof (sa_attr_type_t) * layout->lot_attr_count);
kmem_free(layout, sizeof (sa_lot_t));
}
avl_destroy(&sa->sa_layout_hash_tree);
avl_destroy(&sa->sa_layout_num_tree);
kmem_free(sa, sizeof (sa_os_t));
os->os_sa = NULL;
}
void
sa_build_idx_tab(void *hdr, void *attr_addr, sa_attr_type_t attr,
uint16_t length, int length_idx, boolean_t var_length, void *userp)
{
sa_idx_tab_t *idx_tab = userp;
if (var_length) {
ASSERT(idx_tab->sa_variable_lengths);
idx_tab->sa_variable_lengths[length_idx] = length;
}
TOC_ATTR_ENCODE(idx_tab->sa_idx_tab[attr], length_idx,
(uint32_t)((uintptr_t)attr_addr - (uintptr_t)hdr));
}
static void
sa_attr_iter(objset_t *os, sa_hdr_phys_t *hdr, dmu_object_type_t type,
sa_iterfunc_t func, sa_lot_t *tab, void *userp)
{
void *data_start;
sa_lot_t *tb = tab;
sa_lot_t search;
avl_index_t loc;
sa_os_t *sa = os->os_sa;
int i;
uint16_t *length_start = NULL;
uint8_t length_idx = 0;
if (tab == NULL) {
search.lot_num = SA_LAYOUT_NUM(hdr, type);
tb = avl_find(&sa->sa_layout_num_tree, &search, &loc);
ASSERT(tb);
}
if (IS_SA_BONUSTYPE(type)) {
data_start = (void *)P2ROUNDUP(((uintptr_t)hdr +
offsetof(sa_hdr_phys_t, sa_lengths) +
(sizeof (uint16_t) * tb->lot_var_sizes)), 8);
length_start = hdr->sa_lengths;
} else {
data_start = hdr;
}
for (i = 0; i != tb->lot_attr_count; i++) {
int attr_length, reg_length;
uint8_t idx_len;
reg_length = sa->sa_attr_table[tb->lot_attrs[i]].sa_length;
if (reg_length) {
attr_length = reg_length;
idx_len = 0;
} else {
attr_length = length_start[length_idx];
idx_len = length_idx++;
}
func(hdr, data_start, tb->lot_attrs[i], attr_length,
idx_len, reg_length == 0 ? B_TRUE : B_FALSE, userp);
data_start = (void *)P2ROUNDUP(((uintptr_t)data_start +
attr_length), 8);
}
}
/*ARGSUSED*/
void
sa_byteswap_cb(void *hdr, void *attr_addr, sa_attr_type_t attr,
uint16_t length, int length_idx, boolean_t variable_length, void *userp)
{
sa_handle_t *hdl = userp;
sa_os_t *sa = hdl->sa_os->os_sa;
sa_bswap_table[sa->sa_attr_table[attr].sa_byteswap](attr_addr, length);
}
void
sa_byteswap(sa_handle_t *hdl, sa_buf_type_t buftype)
{
sa_hdr_phys_t *sa_hdr_phys = SA_GET_HDR(hdl, buftype);
dmu_buf_impl_t *db;
int num_lengths = 1;
int i;
ASSERTV(sa_os_t *sa = hdl->sa_os->os_sa);
ASSERT(MUTEX_HELD(&sa->sa_lock));
if (sa_hdr_phys->sa_magic == SA_MAGIC)
return;
db = SA_GET_DB(hdl, buftype);
if (buftype == SA_SPILL) {
arc_release(db->db_buf, NULL);
arc_buf_thaw(db->db_buf);
}
sa_hdr_phys->sa_magic = BSWAP_32(sa_hdr_phys->sa_magic);
sa_hdr_phys->sa_layout_info = BSWAP_16(sa_hdr_phys->sa_layout_info);
/*
* Determine number of variable lenghts in header
* The standard 8 byte header has one for free and a
* 16 byte header would have 4 + 1;
*/
if (SA_HDR_SIZE(sa_hdr_phys) > 8)
num_lengths += (SA_HDR_SIZE(sa_hdr_phys) - 8) >> 1;
for (i = 0; i != num_lengths; i++)
sa_hdr_phys->sa_lengths[i] =
BSWAP_16(sa_hdr_phys->sa_lengths[i]);
sa_attr_iter(hdl->sa_os, sa_hdr_phys, DMU_OT_SA,
sa_byteswap_cb, NULL, hdl);
if (buftype == SA_SPILL)
arc_buf_freeze(((dmu_buf_impl_t *)hdl->sa_spill)->db_buf);
}
static int
sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype)
{
sa_hdr_phys_t *sa_hdr_phys;
dmu_buf_impl_t *db = SA_GET_DB(hdl, buftype);
dmu_object_type_t bonustype = SA_BONUSTYPE_FROM_DB(db);
sa_os_t *sa = hdl->sa_os->os_sa;
sa_idx_tab_t *idx_tab;
sa_hdr_phys = SA_GET_HDR(hdl, buftype);
mutex_enter(&sa->sa_lock);
/* Do we need to byteswap? */
/* only check if not old znode */
if (IS_SA_BONUSTYPE(bonustype) && sa_hdr_phys->sa_magic != SA_MAGIC &&
sa_hdr_phys->sa_magic != 0) {
VERIFY(BSWAP_32(sa_hdr_phys->sa_magic) == SA_MAGIC);
sa_byteswap(hdl, buftype);
}
idx_tab = sa_find_idx_tab(hdl->sa_os, bonustype, sa_hdr_phys);
if (buftype == SA_BONUS)
hdl->sa_bonus_tab = idx_tab;
else
hdl->sa_spill_tab = idx_tab;
mutex_exit(&sa->sa_lock);
return (0);
}
/*ARGSUSED*/
void
sa_evict(dmu_buf_t *db, void *sap)
{
panic("evicting sa dbuf %p\n", (void *)db);
}
static void
sa_idx_tab_rele(objset_t *os, void *arg)
{
sa_os_t *sa = os->os_sa;
sa_idx_tab_t *idx_tab = arg;
if (idx_tab == NULL)
return;
mutex_enter(&sa->sa_lock);
if (refcount_remove(&idx_tab->sa_refcount, NULL) == 0) {
list_remove(&idx_tab->sa_layout->lot_idx_tab, idx_tab);
if (idx_tab->sa_variable_lengths)
kmem_free(idx_tab->sa_variable_lengths,
sizeof (uint16_t) *
idx_tab->sa_layout->lot_var_sizes);
refcount_destroy(&idx_tab->sa_refcount);
kmem_free(idx_tab->sa_idx_tab,
sizeof (uint32_t) * sa->sa_num_attrs);
kmem_free(idx_tab, sizeof (sa_idx_tab_t));
}
mutex_exit(&sa->sa_lock);
}
static void
sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab)
{
ASSERTV(sa_os_t *sa = os->os_sa);
ASSERT(MUTEX_HELD(&sa->sa_lock));
(void) refcount_add(&idx_tab->sa_refcount, NULL);
}
void
sa_spill_rele(sa_handle_t *hdl)
{
mutex_enter(&hdl->sa_lock);
if (hdl->sa_spill) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
dmu_buf_rele(hdl->sa_spill, NULL);
hdl->sa_spill = NULL;
hdl->sa_spill_tab = NULL;
}
mutex_exit(&hdl->sa_lock);
}
void
sa_handle_destroy(sa_handle_t *hdl)
{
mutex_enter(&hdl->sa_lock);
(void) dmu_buf_update_user((dmu_buf_t *)hdl->sa_bonus, hdl,
NULL, NULL, NULL);
if (hdl->sa_bonus_tab) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab);
hdl->sa_bonus_tab = NULL;
}
if (hdl->sa_spill_tab) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
hdl->sa_spill_tab = NULL;
}
dmu_buf_rele(hdl->sa_bonus, NULL);
if (hdl->sa_spill)
dmu_buf_rele((dmu_buf_t *)hdl->sa_spill, NULL);
mutex_exit(&hdl->sa_lock);
kmem_cache_free(sa_cache, hdl);
}
int
sa_handle_get_from_db(objset_t *os, dmu_buf_t *db, void *userp,
sa_handle_type_t hdl_type, sa_handle_t **handlepp)
{
int error = 0;
sa_handle_t *handle;
#ifdef ZFS_DEBUG
dmu_object_info_t doi;
dmu_object_info_from_db(db, &doi);
ASSERT(doi.doi_bonus_type == DMU_OT_SA ||
doi.doi_bonus_type == DMU_OT_ZNODE);
#endif
/* find handle, if it exists */
/* if one doesn't exist then create a new one, and initialize it */
handle = (hdl_type == SA_HDL_SHARED) ? dmu_buf_get_user(db) : NULL;
if (handle == NULL) {
sa_handle_t *newhandle;
handle = kmem_cache_alloc(sa_cache, KM_SLEEP);
handle->sa_userp = userp;
handle->sa_bonus = db;
handle->sa_os = os;
handle->sa_spill = NULL;
error = sa_build_index(handle, SA_BONUS);
newhandle = (hdl_type == SA_HDL_SHARED) ?
dmu_buf_set_user_ie(db, handle,
NULL, sa_evict) : NULL;
if (newhandle != NULL) {
kmem_cache_free(sa_cache, handle);
handle = newhandle;
}
}
*handlepp = handle;
return (error);
}
int
sa_handle_get(objset_t *objset, uint64_t objid, void *userp,
sa_handle_type_t hdl_type, sa_handle_t **handlepp)
{
dmu_buf_t *db;
int error;
if ((error = dmu_bonus_hold(objset, objid, NULL, &db)))
return (error);
return (sa_handle_get_from_db(objset, db, userp, hdl_type,
handlepp));
}
int
sa_buf_hold(objset_t *objset, uint64_t obj_num, void *tag, dmu_buf_t **db)
{
return (dmu_bonus_hold(objset, obj_num, tag, db));
}
void
sa_buf_rele(dmu_buf_t *db, void *tag)
{
dmu_buf_rele(db, tag);
}
int
sa_lookup_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count)
{
ASSERT(hdl);
ASSERT(MUTEX_HELD(&hdl->sa_lock));
return (sa_attr_op(hdl, bulk, count, SA_LOOKUP, NULL));
}
int
sa_lookup(sa_handle_t *hdl, sa_attr_type_t attr, void *buf, uint32_t buflen)
{
int error;
sa_bulk_attr_t bulk;
bulk.sa_attr = attr;
bulk.sa_data = buf;
bulk.sa_length = buflen;
bulk.sa_data_func = NULL;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
error = sa_lookup_impl(hdl, &bulk, 1);
mutex_exit(&hdl->sa_lock);
return (error);
}
#ifdef _KERNEL
int
sa_lookup_uio(sa_handle_t *hdl, sa_attr_type_t attr, uio_t *uio)
{
int error;
sa_bulk_attr_t bulk;
bulk.sa_data = NULL;
bulk.sa_attr = attr;
bulk.sa_data_func = NULL;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) == 0) {
error = uiomove((void *)bulk.sa_addr, MIN(bulk.sa_size,
uio->uio_resid), UIO_READ, uio);
}
mutex_exit(&hdl->sa_lock);
return (error);
}
#endif
void *
sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype, void *data)
{
sa_idx_tab_t *idx_tab;
sa_hdr_phys_t *hdr = (sa_hdr_phys_t *)data;
sa_os_t *sa = os->os_sa;
sa_lot_t *tb, search;
avl_index_t loc;
/*
* Deterimine layout number. If SA node and header == 0 then
* force the index table to the dummy "1" empty layout.
*
* The layout number would only be zero for a newly created file
* that has not added any attributes yet, or with crypto enabled which
* doesn't write any attributes to the bonus buffer.
*/
search.lot_num = SA_LAYOUT_NUM(hdr, bonustype);
tb = avl_find(&sa->sa_layout_num_tree, &search, &loc);
/* Verify header size is consistent with layout information */
ASSERT(tb);
ASSERT((IS_SA_BONUSTYPE(bonustype) &&
SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb)) || !IS_SA_BONUSTYPE(bonustype) ||
(IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0));
/*
* See if any of the already existing TOC entries can be reused?
*/
for (idx_tab = list_head(&tb->lot_idx_tab); idx_tab;
idx_tab = list_next(&tb->lot_idx_tab, idx_tab)) {
boolean_t valid_idx = B_TRUE;
int i;
if (tb->lot_var_sizes != 0 &&
idx_tab->sa_variable_lengths != NULL) {
for (i = 0; i != tb->lot_var_sizes; i++) {
if (hdr->sa_lengths[i] !=
idx_tab->sa_variable_lengths[i]) {
valid_idx = B_FALSE;
break;
}
}
}
if (valid_idx) {
sa_idx_tab_hold(os, idx_tab);
return (idx_tab);
}
}
/* No such luck, create a new entry */
idx_tab = kmem_zalloc(sizeof (sa_idx_tab_t), KM_PUSHPAGE);
idx_tab->sa_idx_tab =
kmem_zalloc(sizeof (uint32_t) * sa->sa_num_attrs, KM_PUSHPAGE);
idx_tab->sa_layout = tb;
refcount_create(&idx_tab->sa_refcount);
if (tb->lot_var_sizes)
idx_tab->sa_variable_lengths = kmem_alloc(sizeof (uint16_t) *
tb->lot_var_sizes, KM_PUSHPAGE);
sa_attr_iter(os, hdr, bonustype, sa_build_idx_tab,
tb, idx_tab);
sa_idx_tab_hold(os, idx_tab); /* one hold for consumer */
sa_idx_tab_hold(os, idx_tab); /* one for layout */
list_insert_tail(&tb->lot_idx_tab, idx_tab);
return (idx_tab);
}
void
sa_default_locator(void **dataptr, uint32_t *len, uint32_t total_len,
boolean_t start, void *userdata)
{
ASSERT(start);
*dataptr = userdata;
*len = total_len;
}
static void
sa_attr_register_sync(sa_handle_t *hdl, dmu_tx_t *tx)
{
uint64_t attr_value = 0;
sa_os_t *sa = hdl->sa_os->os_sa;
sa_attr_table_t *tb = sa->sa_attr_table;
int i;
mutex_enter(&sa->sa_lock);
if (!sa->sa_need_attr_registration || sa->sa_master_obj == 0) {
mutex_exit(&sa->sa_lock);
return;
}
if (sa->sa_reg_attr_obj == 0) {
sa->sa_reg_attr_obj = zap_create_link(hdl->sa_os,
DMU_OT_SA_ATTR_REGISTRATION,
sa->sa_master_obj, SA_REGISTRY, tx);
}
for (i = 0; i != sa->sa_num_attrs; i++) {
if (sa->sa_attr_table[i].sa_registered)
continue;
ATTR_ENCODE(attr_value, tb[i].sa_attr, tb[i].sa_length,
tb[i].sa_byteswap);
VERIFY(0 == zap_update(hdl->sa_os, sa->sa_reg_attr_obj,
tb[i].sa_name, 8, 1, &attr_value, tx));
tb[i].sa_registered = B_TRUE;
}
sa->sa_need_attr_registration = B_FALSE;
mutex_exit(&sa->sa_lock);
}
/*
* Replace all attributes with attributes specified in template.
* If dnode had a spill buffer then those attributes will be
* also be replaced, possibly with just an empty spill block
*
* This interface is intended to only be used for bulk adding of
* attributes for a new file. It will also be used by the ZPL
* when converting and old formatted znode to native SA support.
*/
int
sa_replace_all_by_template_locked(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc,
int attr_count, dmu_tx_t *tx)
{
sa_os_t *sa = hdl->sa_os->os_sa;
if (sa->sa_need_attr_registration)
sa_attr_register_sync(hdl, tx);
return (sa_build_layouts(hdl, attr_desc, attr_count, tx));
}
int
sa_replace_all_by_template(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc,
int attr_count, dmu_tx_t *tx)
{
int error;
mutex_enter(&hdl->sa_lock);
error = sa_replace_all_by_template_locked(hdl, attr_desc,
attr_count, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
/*
* add/remove/replace a single attribute and then rewrite the entire set
* of attributes.
*/
static int
sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr,
sa_data_op_t action, sa_data_locator_t *locator, void *datastart,
uint16_t buflen, dmu_tx_t *tx)
{
sa_os_t *sa = hdl->sa_os->os_sa;
dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
dnode_t *dn;
sa_bulk_attr_t *attr_desc;
void *old_data[2];
int bonus_attr_count = 0;
Implement SA based xattrs The current ZFS implementation stores xattrs on disk using a hidden directory. In this directory a file name represents the xattr name and the file contexts are the xattr binary data. This approach is very flexible and allows for arbitrarily large xattrs. However, it also suffers from a significant performance penalty. Accessing a single xattr can requires up to three disk seeks. 1) Lookup the dnode object. 2) Lookup the dnodes's xattr directory object. 3) Lookup the xattr object in the directory. To avoid this performance penalty Linux filesystems such as ext3 and xfs try to store the xattr as part of the inode on disk. When the xattr is to large to store in the inode then a single external block is allocated for them. In practice most xattrs are small and this approach works well. The addition of System Attributes (SA) to zfs provides us a clean way to make this optimization. When the dataset property 'xattr=sa' is set then xattrs will be preferentially stored as System Attributes. This allows tiny xattrs (~100 bytes) to be stored with the dnode and up to 64k of xattrs to be stored in the spill block. If additional xattr space is required, which is unlikely under Linux, they will be stored using the traditional directory approach. This optimization results in roughly a 3x performance improvement when accessing xattrs which brings zfs roughly to parity with ext4 and xfs (see table below). When multiple xattrs are stored per-file the performance improvements are even greater because all of the xattrs stored in the spill block will be cached. However, by default SA based xattrs are disabled in the Linux port to maximize compatibility with other implementations. If you do enable SA based xattrs then they will not be visible on platforms which do not support this feature. ---------------------------------------------------------------------- Time in seconds to get/set one xattr of N bytes on 100,000 files ------+--------------------------------+------------------------------ | setxattr | getxattr bytes | ext4 xfs zfs-dir zfs-sa | ext4 xfs zfs-dir zfs-sa ------+--------------------------------+------------------------------ 1 | 2.33 31.88 21.50 4.57 | 2.35 2.64 6.29 2.43 32 | 2.79 30.68 21.98 4.60 | 2.44 2.59 6.78 2.48 256 | 3.25 31.99 21.36 5.92 | 2.32 2.71 6.22 3.14 1024 | 3.30 32.61 22.83 8.45 | 2.40 2.79 6.24 3.27 4096 | 3.57 317.46 22.52 10.73 | 2.78 28.62 6.90 3.94 16384 | n/a 2342.39 34.30 19.20 | n/a 45.44 145.90 7.55 65536 | n/a 2941.39 128.15 131.32* | n/a 141.92 256.85 262.12* Legend: * ext4 - Stock RHEL6.1 ext4 mounted with '-o user_xattr'. * xfs - Stock RHEL6.1 xfs mounted with default options. * zfs-dir - Directory based xattrs only. * zfs-sa - Prefer SAs but spill in to directories as needed, a trailing * indicates overflow in to directories occured. NOTE: Ext4 supports 4096 bytes of xattr name/value pairs per file. NOTE: XFS and ZFS have no limit on xattr name/value pairs per file. NOTE: Linux limits individual name/value pairs to 65536 bytes. NOTE: All setattr/getattr's were done after dropping the cache. NOTE: All tests were run against a single hard drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #443
2011-10-24 23:55:20 +00:00
int bonus_data_size = 0;
int spill_attr_count = 0;
int error;
uint16_t length;
int i, j, k, length_idx;
sa_hdr_phys_t *hdr;
sa_idx_tab_t *idx_tab;
int attr_count;
int count;
ASSERT(MUTEX_HELD(&hdl->sa_lock));
/* First make of copy of the old data */
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
if (dn->dn_bonuslen != 0) {
bonus_data_size = hdl->sa_bonus->db_size;
old_data[0] = kmem_alloc(bonus_data_size, KM_SLEEP);
bcopy(hdl->sa_bonus->db_data, old_data[0],
hdl->sa_bonus->db_size);
bonus_attr_count = hdl->sa_bonus_tab->sa_layout->lot_attr_count;
} else {
old_data[0] = NULL;
}
DB_DNODE_EXIT(db);
/* Bring spill buffer online if it isn't currently */
if ((error = sa_get_spill(hdl)) == 0) {
Implement SA based xattrs The current ZFS implementation stores xattrs on disk using a hidden directory. In this directory a file name represents the xattr name and the file contexts are the xattr binary data. This approach is very flexible and allows for arbitrarily large xattrs. However, it also suffers from a significant performance penalty. Accessing a single xattr can requires up to three disk seeks. 1) Lookup the dnode object. 2) Lookup the dnodes's xattr directory object. 3) Lookup the xattr object in the directory. To avoid this performance penalty Linux filesystems such as ext3 and xfs try to store the xattr as part of the inode on disk. When the xattr is to large to store in the inode then a single external block is allocated for them. In practice most xattrs are small and this approach works well. The addition of System Attributes (SA) to zfs provides us a clean way to make this optimization. When the dataset property 'xattr=sa' is set then xattrs will be preferentially stored as System Attributes. This allows tiny xattrs (~100 bytes) to be stored with the dnode and up to 64k of xattrs to be stored in the spill block. If additional xattr space is required, which is unlikely under Linux, they will be stored using the traditional directory approach. This optimization results in roughly a 3x performance improvement when accessing xattrs which brings zfs roughly to parity with ext4 and xfs (see table below). When multiple xattrs are stored per-file the performance improvements are even greater because all of the xattrs stored in the spill block will be cached. However, by default SA based xattrs are disabled in the Linux port to maximize compatibility with other implementations. If you do enable SA based xattrs then they will not be visible on platforms which do not support this feature. ---------------------------------------------------------------------- Time in seconds to get/set one xattr of N bytes on 100,000 files ------+--------------------------------+------------------------------ | setxattr | getxattr bytes | ext4 xfs zfs-dir zfs-sa | ext4 xfs zfs-dir zfs-sa ------+--------------------------------+------------------------------ 1 | 2.33 31.88 21.50 4.57 | 2.35 2.64 6.29 2.43 32 | 2.79 30.68 21.98 4.60 | 2.44 2.59 6.78 2.48 256 | 3.25 31.99 21.36 5.92 | 2.32 2.71 6.22 3.14 1024 | 3.30 32.61 22.83 8.45 | 2.40 2.79 6.24 3.27 4096 | 3.57 317.46 22.52 10.73 | 2.78 28.62 6.90 3.94 16384 | n/a 2342.39 34.30 19.20 | n/a 45.44 145.90 7.55 65536 | n/a 2941.39 128.15 131.32* | n/a 141.92 256.85 262.12* Legend: * ext4 - Stock RHEL6.1 ext4 mounted with '-o user_xattr'. * xfs - Stock RHEL6.1 xfs mounted with default options. * zfs-dir - Directory based xattrs only. * zfs-sa - Prefer SAs but spill in to directories as needed, a trailing * indicates overflow in to directories occured. NOTE: Ext4 supports 4096 bytes of xattr name/value pairs per file. NOTE: XFS and ZFS have no limit on xattr name/value pairs per file. NOTE: Linux limits individual name/value pairs to 65536 bytes. NOTE: All setattr/getattr's were done after dropping the cache. NOTE: All tests were run against a single hard drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #443
2011-10-24 23:55:20 +00:00
ASSERT3U(hdl->sa_spill->db_size, <=, SPA_MAXBLOCKSIZE);
old_data[1] = sa_spill_alloc(KM_SLEEP);
bcopy(hdl->sa_spill->db_data, old_data[1],
hdl->sa_spill->db_size);
spill_attr_count =
hdl->sa_spill_tab->sa_layout->lot_attr_count;
} else if (error && error != ENOENT) {
if (old_data[0])
kmem_free(old_data[0], bonus_data_size);
return (error);
} else {
old_data[1] = NULL;
}
/* build descriptor of all attributes */
attr_count = bonus_attr_count + spill_attr_count;
if (action == SA_ADD)
attr_count++;
else if (action == SA_REMOVE)
attr_count--;
attr_desc = kmem_zalloc(sizeof (sa_bulk_attr_t) * attr_count, KM_SLEEP);
/*
* loop through bonus and spill buffer if it exists, and
* build up new attr_descriptor to reset the attributes
*/
k = j = 0;
count = bonus_attr_count;
hdr = SA_GET_HDR(hdl, SA_BONUS);
idx_tab = SA_IDX_TAB_GET(hdl, SA_BONUS);
for (; k != 2; k++) {
/* iterate over each attribute in layout */
for (i = 0, length_idx = 0; i != count; i++) {
sa_attr_type_t attr;
attr = idx_tab->sa_layout->lot_attrs[i];
if (attr == newattr) {
if (action == SA_REMOVE) {
j++;
continue;
}
ASSERT(SA_REGISTERED_LEN(sa, attr) == 0);
ASSERT(action == SA_REPLACE);
SA_ADD_BULK_ATTR(attr_desc, j, attr,
locator, datastart, buflen);
} else {
length = SA_REGISTERED_LEN(sa, attr);
if (length == 0) {
length = hdr->sa_lengths[length_idx++];
}
SA_ADD_BULK_ATTR(attr_desc, j, attr,
NULL, (void *)
(TOC_OFF(idx_tab->sa_idx_tab[attr]) +
(uintptr_t)old_data[k]), length);
}
}
if (k == 0 && hdl->sa_spill) {
hdr = SA_GET_HDR(hdl, SA_SPILL);
idx_tab = SA_IDX_TAB_GET(hdl, SA_SPILL);
count = spill_attr_count;
} else {
break;
}
}
if (action == SA_ADD) {
length = SA_REGISTERED_LEN(sa, newattr);
if (length == 0) {
length = buflen;
}
SA_ADD_BULK_ATTR(attr_desc, j, newattr, locator,
datastart, buflen);
}
error = sa_build_layouts(hdl, attr_desc, attr_count, tx);
if (old_data[0])
kmem_free(old_data[0], bonus_data_size);
if (old_data[1])
Implement SA based xattrs The current ZFS implementation stores xattrs on disk using a hidden directory. In this directory a file name represents the xattr name and the file contexts are the xattr binary data. This approach is very flexible and allows for arbitrarily large xattrs. However, it also suffers from a significant performance penalty. Accessing a single xattr can requires up to three disk seeks. 1) Lookup the dnode object. 2) Lookup the dnodes's xattr directory object. 3) Lookup the xattr object in the directory. To avoid this performance penalty Linux filesystems such as ext3 and xfs try to store the xattr as part of the inode on disk. When the xattr is to large to store in the inode then a single external block is allocated for them. In practice most xattrs are small and this approach works well. The addition of System Attributes (SA) to zfs provides us a clean way to make this optimization. When the dataset property 'xattr=sa' is set then xattrs will be preferentially stored as System Attributes. This allows tiny xattrs (~100 bytes) to be stored with the dnode and up to 64k of xattrs to be stored in the spill block. If additional xattr space is required, which is unlikely under Linux, they will be stored using the traditional directory approach. This optimization results in roughly a 3x performance improvement when accessing xattrs which brings zfs roughly to parity with ext4 and xfs (see table below). When multiple xattrs are stored per-file the performance improvements are even greater because all of the xattrs stored in the spill block will be cached. However, by default SA based xattrs are disabled in the Linux port to maximize compatibility with other implementations. If you do enable SA based xattrs then they will not be visible on platforms which do not support this feature. ---------------------------------------------------------------------- Time in seconds to get/set one xattr of N bytes on 100,000 files ------+--------------------------------+------------------------------ | setxattr | getxattr bytes | ext4 xfs zfs-dir zfs-sa | ext4 xfs zfs-dir zfs-sa ------+--------------------------------+------------------------------ 1 | 2.33 31.88 21.50 4.57 | 2.35 2.64 6.29 2.43 32 | 2.79 30.68 21.98 4.60 | 2.44 2.59 6.78 2.48 256 | 3.25 31.99 21.36 5.92 | 2.32 2.71 6.22 3.14 1024 | 3.30 32.61 22.83 8.45 | 2.40 2.79 6.24 3.27 4096 | 3.57 317.46 22.52 10.73 | 2.78 28.62 6.90 3.94 16384 | n/a 2342.39 34.30 19.20 | n/a 45.44 145.90 7.55 65536 | n/a 2941.39 128.15 131.32* | n/a 141.92 256.85 262.12* Legend: * ext4 - Stock RHEL6.1 ext4 mounted with '-o user_xattr'. * xfs - Stock RHEL6.1 xfs mounted with default options. * zfs-dir - Directory based xattrs only. * zfs-sa - Prefer SAs but spill in to directories as needed, a trailing * indicates overflow in to directories occured. NOTE: Ext4 supports 4096 bytes of xattr name/value pairs per file. NOTE: XFS and ZFS have no limit on xattr name/value pairs per file. NOTE: Linux limits individual name/value pairs to 65536 bytes. NOTE: All setattr/getattr's were done after dropping the cache. NOTE: All tests were run against a single hard drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #443
2011-10-24 23:55:20 +00:00
sa_spill_free(old_data[1]);
kmem_free(attr_desc, sizeof (sa_bulk_attr_t) * attr_count);
return (error);
}
static int
sa_bulk_update_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count,
dmu_tx_t *tx)
{
int error;
sa_os_t *sa = hdl->sa_os->os_sa;
dmu_object_type_t bonustype;
dmu_buf_t *saved_spill;
ASSERT(hdl);
ASSERT(MUTEX_HELD(&hdl->sa_lock));
bonustype = SA_BONUSTYPE_FROM_DB(SA_GET_DB(hdl, SA_BONUS));
saved_spill = hdl->sa_spill;
/* sync out registration table if necessary */
if (sa->sa_need_attr_registration)
sa_attr_register_sync(hdl, tx);
error = sa_attr_op(hdl, bulk, count, SA_UPDATE, tx);
if (error == 0 && !IS_SA_BONUSTYPE(bonustype) && sa->sa_update_cb)
sa->sa_update_cb(hdl, tx);
/*
* If saved_spill is NULL and current sa_spill is not NULL that
* means we increased the refcount of the spill buffer through
* sa_get_spill() or dmu_spill_hold_by_dnode(). Therefore we
* must release the hold before calling dmu_tx_commit() to avoid
* making a copy of this buffer in dbuf_sync_leaf() due to the
* reference count now being greater than 1.
*/
if (!saved_spill && hdl->sa_spill) {
if (hdl->sa_spill_tab) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
hdl->sa_spill_tab = NULL;
}
dmu_buf_rele((dmu_buf_t *)hdl->sa_spill, NULL);
hdl->sa_spill = NULL;
}
return (error);
}
/*
* update or add new attribute
*/
int
sa_update(sa_handle_t *hdl, sa_attr_type_t type,
void *buf, uint32_t buflen, dmu_tx_t *tx)
{
int error;
sa_bulk_attr_t bulk;
bulk.sa_attr = type;
bulk.sa_data_func = NULL;
bulk.sa_length = buflen;
bulk.sa_data = buf;
mutex_enter(&hdl->sa_lock);
error = sa_bulk_update_impl(hdl, &bulk, 1, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
int
sa_update_from_cb(sa_handle_t *hdl, sa_attr_type_t attr,
uint32_t buflen, sa_data_locator_t *locator, void *userdata, dmu_tx_t *tx)
{
int error;
sa_bulk_attr_t bulk;
bulk.sa_attr = attr;
bulk.sa_data = userdata;
bulk.sa_data_func = locator;
bulk.sa_length = buflen;
mutex_enter(&hdl->sa_lock);
error = sa_bulk_update_impl(hdl, &bulk, 1, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
/*
* Return size of an attribute
*/
int
sa_size(sa_handle_t *hdl, sa_attr_type_t attr, int *size)
{
sa_bulk_attr_t bulk;
int error;
bulk.sa_data = NULL;
bulk.sa_attr = attr;
bulk.sa_data_func = NULL;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) != 0) {
mutex_exit(&hdl->sa_lock);
return (error);
}
*size = bulk.sa_size;
mutex_exit(&hdl->sa_lock);
return (0);
}
int
sa_bulk_lookup_locked(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count)
{
ASSERT(hdl);
ASSERT(MUTEX_HELD(&hdl->sa_lock));
return (sa_lookup_impl(hdl, attrs, count));
}
int
sa_bulk_lookup(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count)
{
int error;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
error = sa_bulk_lookup_locked(hdl, attrs, count);
mutex_exit(&hdl->sa_lock);
return (error);
}
int
sa_bulk_update(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count, dmu_tx_t *tx)
{
int error;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
error = sa_bulk_update_impl(hdl, attrs, count, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
int
sa_remove(sa_handle_t *hdl, sa_attr_type_t attr, dmu_tx_t *tx)
{
int error;
mutex_enter(&hdl->sa_lock);
error = sa_modify_attrs(hdl, attr, SA_REMOVE, NULL,
NULL, 0, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
void
sa_object_info(sa_handle_t *hdl, dmu_object_info_t *doi)
{
dmu_object_info_from_db((dmu_buf_t *)hdl->sa_bonus, doi);
}
void
sa_object_size(sa_handle_t *hdl, uint32_t *blksize, u_longlong_t *nblocks)
{
dmu_object_size_from_db((dmu_buf_t *)hdl->sa_bonus,
blksize, nblocks);
}
void
sa_update_user(sa_handle_t *newhdl, sa_handle_t *oldhdl)
{
(void) dmu_buf_update_user((dmu_buf_t *)newhdl->sa_bonus,
oldhdl, newhdl, NULL, sa_evict);
oldhdl->sa_bonus = NULL;
}
void
sa_set_userp(sa_handle_t *hdl, void *ptr)
{
hdl->sa_userp = ptr;
}
dmu_buf_t *
sa_get_db(sa_handle_t *hdl)
{
return ((dmu_buf_t *)hdl->sa_bonus);
}
void *
sa_get_userdata(sa_handle_t *hdl)
{
return (hdl->sa_userp);
}
void
sa_register_update_callback_locked(objset_t *os, sa_update_cb_t *func)
{
ASSERT(MUTEX_HELD(&os->os_sa->sa_lock));
os->os_sa->sa_update_cb = func;
}
void
sa_register_update_callback(objset_t *os, sa_update_cb_t *func)
{
mutex_enter(&os->os_sa->sa_lock);
sa_register_update_callback_locked(os, func);
mutex_exit(&os->os_sa->sa_lock);
}
uint64_t
sa_handle_object(sa_handle_t *hdl)
{
return (hdl->sa_bonus->db_object);
}
boolean_t
sa_enabled(objset_t *os)
{
return (os->os_sa == NULL);
}
int
sa_set_sa_object(objset_t *os, uint64_t sa_object)
{
sa_os_t *sa = os->os_sa;
if (sa->sa_master_obj)
return (1);
sa->sa_master_obj = sa_object;
return (0);
}
int
sa_hdrsize(void *arg)
{
sa_hdr_phys_t *hdr = arg;
return (SA_HDR_SIZE(hdr));
}
void
sa_handle_lock(sa_handle_t *hdl)
{
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
}
void
sa_handle_unlock(sa_handle_t *hdl)
{
ASSERT(hdl);
mutex_exit(&hdl->sa_lock);
}
#ifdef _KERNEL
EXPORT_SYMBOL(sa_handle_get);
EXPORT_SYMBOL(sa_handle_get_from_db);
EXPORT_SYMBOL(sa_handle_destroy);
EXPORT_SYMBOL(sa_buf_hold);
EXPORT_SYMBOL(sa_buf_rele);
EXPORT_SYMBOL(sa_spill_rele);
EXPORT_SYMBOL(sa_lookup);
EXPORT_SYMBOL(sa_update);
EXPORT_SYMBOL(sa_remove);
EXPORT_SYMBOL(sa_bulk_lookup);
EXPORT_SYMBOL(sa_bulk_lookup_locked);
EXPORT_SYMBOL(sa_bulk_update);
EXPORT_SYMBOL(sa_size);
EXPORT_SYMBOL(sa_update_from_cb);
EXPORT_SYMBOL(sa_object_info);
EXPORT_SYMBOL(sa_object_size);
EXPORT_SYMBOL(sa_update_user);
EXPORT_SYMBOL(sa_get_userdata);
EXPORT_SYMBOL(sa_set_userp);
EXPORT_SYMBOL(sa_get_db);
EXPORT_SYMBOL(sa_handle_object);
EXPORT_SYMBOL(sa_register_update_callback);
EXPORT_SYMBOL(sa_setup);
EXPORT_SYMBOL(sa_replace_all_by_template);
EXPORT_SYMBOL(sa_replace_all_by_template_locked);
EXPORT_SYMBOL(sa_enabled);
EXPORT_SYMBOL(sa_cache_init);
EXPORT_SYMBOL(sa_cache_fini);
Implement SA based xattrs The current ZFS implementation stores xattrs on disk using a hidden directory. In this directory a file name represents the xattr name and the file contexts are the xattr binary data. This approach is very flexible and allows for arbitrarily large xattrs. However, it also suffers from a significant performance penalty. Accessing a single xattr can requires up to three disk seeks. 1) Lookup the dnode object. 2) Lookup the dnodes's xattr directory object. 3) Lookup the xattr object in the directory. To avoid this performance penalty Linux filesystems such as ext3 and xfs try to store the xattr as part of the inode on disk. When the xattr is to large to store in the inode then a single external block is allocated for them. In practice most xattrs are small and this approach works well. The addition of System Attributes (SA) to zfs provides us a clean way to make this optimization. When the dataset property 'xattr=sa' is set then xattrs will be preferentially stored as System Attributes. This allows tiny xattrs (~100 bytes) to be stored with the dnode and up to 64k of xattrs to be stored in the spill block. If additional xattr space is required, which is unlikely under Linux, they will be stored using the traditional directory approach. This optimization results in roughly a 3x performance improvement when accessing xattrs which brings zfs roughly to parity with ext4 and xfs (see table below). When multiple xattrs are stored per-file the performance improvements are even greater because all of the xattrs stored in the spill block will be cached. However, by default SA based xattrs are disabled in the Linux port to maximize compatibility with other implementations. If you do enable SA based xattrs then they will not be visible on platforms which do not support this feature. ---------------------------------------------------------------------- Time in seconds to get/set one xattr of N bytes on 100,000 files ------+--------------------------------+------------------------------ | setxattr | getxattr bytes | ext4 xfs zfs-dir zfs-sa | ext4 xfs zfs-dir zfs-sa ------+--------------------------------+------------------------------ 1 | 2.33 31.88 21.50 4.57 | 2.35 2.64 6.29 2.43 32 | 2.79 30.68 21.98 4.60 | 2.44 2.59 6.78 2.48 256 | 3.25 31.99 21.36 5.92 | 2.32 2.71 6.22 3.14 1024 | 3.30 32.61 22.83 8.45 | 2.40 2.79 6.24 3.27 4096 | 3.57 317.46 22.52 10.73 | 2.78 28.62 6.90 3.94 16384 | n/a 2342.39 34.30 19.20 | n/a 45.44 145.90 7.55 65536 | n/a 2941.39 128.15 131.32* | n/a 141.92 256.85 262.12* Legend: * ext4 - Stock RHEL6.1 ext4 mounted with '-o user_xattr'. * xfs - Stock RHEL6.1 xfs mounted with default options. * zfs-dir - Directory based xattrs only. * zfs-sa - Prefer SAs but spill in to directories as needed, a trailing * indicates overflow in to directories occured. NOTE: Ext4 supports 4096 bytes of xattr name/value pairs per file. NOTE: XFS and ZFS have no limit on xattr name/value pairs per file. NOTE: Linux limits individual name/value pairs to 65536 bytes. NOTE: All setattr/getattr's were done after dropping the cache. NOTE: All tests were run against a single hard drive. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #443
2011-10-24 23:55:20 +00:00
EXPORT_SYMBOL(sa_spill_alloc);
EXPORT_SYMBOL(sa_spill_free);
EXPORT_SYMBOL(sa_set_sa_object);
EXPORT_SYMBOL(sa_hdrsize);
EXPORT_SYMBOL(sa_handle_lock);
EXPORT_SYMBOL(sa_handle_unlock);
EXPORT_SYMBOL(sa_lookup_uio);
#endif /* _KERNEL */