zfs/modules/spl/spl-kmem.c

314 lines
9.3 KiB
C
Raw Normal View History

#include <sys/kmem.h>
/*
* Memory allocation interfaces
*/
#ifdef DEBUG_KMEM
/* Shim layer memory accounting */
atomic64_t kmem_alloc_used;
unsigned long kmem_alloc_max = 0;
atomic64_t vmem_alloc_used;
unsigned long vmem_alloc_max = 0;
int kmem_warning_flag = 1;
EXPORT_SYMBOL(kmem_alloc_used);
EXPORT_SYMBOL(kmem_alloc_max);
EXPORT_SYMBOL(vmem_alloc_used);
EXPORT_SYMBOL(vmem_alloc_max);
EXPORT_SYMBOL(kmem_warning_flag);
int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
#else
int kmem_set_warning(int flag) { return 0; }
#endif
EXPORT_SYMBOL(kmem_set_warning);
/*
* Slab allocation interfaces
*
* While the linux slab implementation was inspired by solaris they
* have made some changes to the API which complicates this shim
* layer. For one thing the same symbol names are used with different
* arguments for the prototypes. To deal with this we must use the
* preprocessor to re-order arguments. Happily for us standard C says,
* "Macro's appearing in their own expansion are not reexpanded" so
* this does not result in an infinite recursion. Additionally the
* function pointers registered by solarias differ from those used
* by linux so a lookup and mapping from linux style callback to a
* solaris style callback is needed. There is some overhead in this
* operation which isn't horibile but it needs to be kept in mind.
*/
typedef struct kmem_cache_cb {
struct list_head kcc_list;
kmem_cache_t * kcc_cache;
kmem_constructor_t kcc_constructor;
kmem_destructor_t kcc_destructor;
kmem_reclaim_t kcc_reclaim;
void * kcc_private;
void * kcc_vmp;
} kmem_cache_cb_t;
static spinlock_t kmem_cache_cb_lock = SPIN_LOCK_UNLOCKED;
static LIST_HEAD(kmem_cache_cb_list);
static struct shrinker *kmem_cache_shrinker;
/* Function must be called while holding the kmem_cache_cb_lock
* Because kmem_cache_t is an opaque datatype we're forced to
* match pointers to identify specific cache entires.
*/
static kmem_cache_cb_t *
kmem_cache_find_cache_cb(kmem_cache_t *cache)
{
kmem_cache_cb_t *kcc;
list_for_each_entry(kcc, &kmem_cache_cb_list, kcc_list)
if (cache == kcc->kcc_cache)
return kcc;
return NULL;
}
static kmem_cache_cb_t *
kmem_cache_add_cache_cb(kmem_cache_t *cache,
kmem_constructor_t constructor,
kmem_destructor_t destructor,
kmem_reclaim_t reclaim,
void *priv, void *vmp)
{
kmem_cache_cb_t *kcc;
kcc = (kmem_cache_cb_t *)kmalloc(sizeof(*kcc), GFP_KERNEL);
if (kcc) {
kcc->kcc_cache = cache;
kcc->kcc_constructor = constructor;
kcc->kcc_destructor = destructor;
kcc->kcc_reclaim = reclaim;
kcc->kcc_private = priv;
kcc->kcc_vmp = vmp;
spin_lock(&kmem_cache_cb_lock);
list_add(&kcc->kcc_list, &kmem_cache_cb_list);
spin_unlock(&kmem_cache_cb_lock);
}
return kcc;
}
static void
kmem_cache_remove_cache_cb(kmem_cache_cb_t *kcc)
{
spin_lock(&kmem_cache_cb_lock);
list_del(&kcc->kcc_list);
spin_unlock(&kmem_cache_cb_lock);
if (kcc)
kfree(kcc);
}
static void
kmem_cache_generic_constructor(void *ptr, kmem_cache_t *cache, unsigned long flags)
{
kmem_cache_cb_t *kcc;
kmem_constructor_t constructor;
void *private;
spin_lock(&kmem_cache_cb_lock);
/* Callback list must be in sync with linux slab caches */
kcc = kmem_cache_find_cache_cb(cache);
BUG_ON(!kcc);
constructor = kcc->kcc_constructor;
private = kcc->kcc_private;
spin_unlock(&kmem_cache_cb_lock);
if (constructor)
constructor(ptr, private, (int)flags);
/* Linux constructor has no return code, silently eat it */
}
static void
kmem_cache_generic_destructor(void *ptr, kmem_cache_t *cache, unsigned long flags)
{
kmem_cache_cb_t *kcc;
kmem_destructor_t destructor;
void *private;
spin_lock(&kmem_cache_cb_lock);
/* Callback list must be in sync with linux slab caches */
kcc = kmem_cache_find_cache_cb(cache);
BUG_ON(!kcc);
destructor = kcc->kcc_destructor;
private = kcc->kcc_private;
spin_unlock(&kmem_cache_cb_lock);
/* Solaris destructor takes no flags, silently eat them */
if (destructor)
destructor(ptr, private);
}
/* XXX - Arguments are ignored */
static int
kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
{
kmem_cache_cb_t *kcc;
int total = 0;
/* Under linux a shrinker is not tightly coupled with a slab
* cache. In fact linux always systematically trys calling all
* registered shrinker callbacks until its target reclamation level
* is reached. Because of this we only register one shrinker
* function in the shim layer for all slab caches. And we always
* attempt to shrink all caches when this generic shrinker is called.
*/
spin_lock(&kmem_cache_cb_lock);
list_for_each_entry(kcc, &kmem_cache_cb_list, kcc_list) {
/* Under linux the desired number and gfp type of objects
* is passed to the reclaiming function as a sugested reclaim
* target. I do not pass these args on because reclaim
* policy is entirely up to the owner under solaris. We only
* pass on the pre-registered private data.
*/
if (kcc->kcc_reclaim)
kcc->kcc_reclaim(kcc->kcc_private);
total += 1;
}
/* Under linux we should return the remaining number of entires in
* the cache. Unfortunately, I don't see an easy way to safely
* emulate this behavior so I'm returning one entry per cache which
* was registered with the generic shrinker. This should fake out
* the linux VM when it attempts to shrink caches.
*/
spin_unlock(&kmem_cache_cb_lock);
return total;
}
/* Ensure the __kmem_cache_create/__kmem_cache_destroy macros are
* removed here to prevent a recursive substitution, we want to call
* the native linux version.
*/
#undef kmem_cache_create
#undef kmem_cache_destroy
kmem_cache_t *
__kmem_cache_create(char *name, size_t size, size_t align,
kmem_constructor_t constructor,
kmem_destructor_t destructor,
kmem_reclaim_t reclaim,
void *priv, void *vmp, int flags)
{
kmem_cache_t *cache;
kmem_cache_cb_t *kcc;
int shrinker_flag = 0;
char *cache_name;
/* FIXME: - Option currently unsupported by shim layer */
BUG_ON(vmp);
cache_name = kzalloc(strlen(name) + 1, GFP_KERNEL);
if (cache_name == NULL)
return NULL;
strcpy(cache_name, name);
cache = kmem_cache_create(cache_name, size, align, flags,
kmem_cache_generic_constructor,
kmem_cache_generic_destructor);
if (cache == NULL)
return NULL;
/* Register shared shrinker function on initial cache create */
spin_lock(&kmem_cache_cb_lock);
if (list_empty(&kmem_cache_cb_list)) {
kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
kmem_cache_generic_shrinker);
if (kmem_cache_shrinker == NULL) {
kmem_cache_destroy(cache);
spin_unlock(&kmem_cache_cb_lock);
return NULL;
}
}
spin_unlock(&kmem_cache_cb_lock);
kcc = kmem_cache_add_cache_cb(cache, constructor, destructor,
reclaim, priv, vmp);
if (kcc == NULL) {
if (shrinker_flag) /* New shrinker registered must be removed */
remove_shrinker(kmem_cache_shrinker);
kmem_cache_destroy(cache);
return NULL;
}
return cache;
}
EXPORT_SYMBOL(__kmem_cache_create);
/* Return code provided despite Solaris's void return. There should be no
* harm here since the Solaris versions will ignore it anyway. */
int
__kmem_cache_destroy(kmem_cache_t *cache)
{
kmem_cache_cb_t *kcc;
char *name;
int rc;
spin_lock(&kmem_cache_cb_lock);
kcc = kmem_cache_find_cache_cb(cache);
spin_unlock(&kmem_cache_cb_lock);
if (kcc == NULL)
return -EINVAL;
name = (char *)kmem_cache_name(cache);
rc = kmem_cache_destroy(cache);
kmem_cache_remove_cache_cb(kcc);
kfree(name);
/* Unregister generic shrinker on removal of all caches */
spin_lock(&kmem_cache_cb_lock);
if (list_empty(&kmem_cache_cb_list))
remove_shrinker(kmem_cache_shrinker);
spin_unlock(&kmem_cache_cb_lock);
return rc;
}
EXPORT_SYMBOL(__kmem_cache_destroy);
void
__kmem_reap(void) {
/* Since there's no easy hook in to linux to force all the registered
* shrinkers to run we just run the ones registered for this shim */
kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
}
EXPORT_SYMBOL(__kmem_reap);
int
kmem_init(void)
{
#ifdef DEBUG_KMEM
atomic64_set(&kmem_alloc_used, 0);
atomic64_set(&vmem_alloc_used, 0);
#endif
return 0;
}
void
kmem_fini(void)
{
#ifdef DEBUG_KMEM
if (atomic64_read(&kmem_alloc_used) != 0)
printk("spl: Warning kmem leaked %ld/%ld bytes\n",
atomic_read(&kmem_alloc_used), kmem_alloc_max);
if (atomic64_read(&vmem_alloc_used) != 0)
printk("spl: Warning vmem leaked %ld/%ld bytes\n",
atomic_read(&vmem_alloc_used), vmem_alloc_max);
#endif
}