zfs/include/sys/mutex.h

214 lines
8.5 KiB
C
Raw Normal View History

/*****************************************************************************\
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
* Copyright (C) 2007 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* UCRL-CODE-235197
*
* This file is part of the SPL, Solaris Porting Layer.
* For details, see <http://github.com/behlendorf/spl/>.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
\*****************************************************************************/
#ifndef _SPL_MUTEX_H
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#define _SPL_MUTEX_H
#include <sys/types.h>
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#include <linux/mutex.h>
#include <linux/compiler_compat.h>
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
typedef enum {
MUTEX_DEFAULT = 0,
MUTEX_SPIN = 1,
MUTEX_ADAPTIVE = 2
} kmutex_type_t;
#if defined(HAVE_MUTEX_OWNER) && defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
/*
* We define a 1-field struct rather than a straight typedef to enforce type
* safety.
*/
typedef struct {
struct mutex m;
} kmutex_t;
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
static inline kthread_t *
mutex_owner(kmutex_t *mp)
{
#if defined(HAVE_MUTEX_OWNER_TASK_STRUCT)
return ACCESS_ONCE(mp->m.owner);
#else
struct thread_info *owner = ACCESS_ONCE(mp->m.owner);
if (owner)
return owner->task;
return NULL;
#endif
}
#define mutex_owned(mp) (mutex_owner(mp) == current)
#define MUTEX_HELD(mp) mutex_owned(mp)
#define MUTEX_NOT_HELD(mp) (!MUTEX_HELD(mp))
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#undef mutex_init
#define mutex_init(mp, name, type, ibc) \
({ \
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
static struct lock_class_key __key; \
ASSERT(type == MUTEX_DEFAULT); \
\
__mutex_init(&(mp)->m, #mp, &__key); \
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
})
#undef mutex_destroy
#define mutex_destroy(mp) \
({ \
VERIFY3P(mutex_owner(mp), ==, NULL); \
})
#define mutex_tryenter(mp) mutex_trylock(&(mp)->m)
#define mutex_enter(mp) mutex_lock(&(mp)->m)
#define mutex_exit(mp) mutex_unlock(&(mp)->m)
#ifdef HAVE_GPL_ONLY_SYMBOLS
# define mutex_enter_nested(mp, sc) mutex_lock_nested(&(mp)->m, sc)
#else
# define mutex_enter_nested(mp, sc) mutex_enter(mp)
#endif /* HAVE_GPL_ONLY_SYMBOLS */
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#else /* HAVE_MUTEX_OWNER */
typedef struct {
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
struct mutex m_mutex;
kthread_t *m_owner;
} kmutex_t;
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#ifdef HAVE_TASK_CURR
extern int spl_mutex_spin_max(void);
#else /* HAVE_TASK_CURR */
# define task_curr(owner) 0
# define spl_mutex_spin_max() 0
#endif /* HAVE_TASK_CURR */
#define MUTEX(mp) (&((mp)->m_mutex))
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
static inline void
spl_mutex_set_owner(kmutex_t *mp)
{
mp->m_owner = current;
}
static inline void
spl_mutex_clear_owner(kmutex_t *mp)
{
mp->m_owner = NULL;
}
#define mutex_owner(mp) (ACCESS_ONCE((mp)->m_owner))
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#define mutex_owned(mp) (mutex_owner(mp) == current)
#define MUTEX_HELD(mp) mutex_owned(mp)
#define MUTEX_NOT_HELD(mp) (!MUTEX_HELD(mp))
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
/*
* The following functions must be a #define and not static inline.
* This ensures that the native linux mutex functions (lock/unlock)
* will be correctly located in the users code which is important
* for the built in kernel lock analysis tools
*/
#undef mutex_init
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#define mutex_init(mp, name, type, ibc) \
({ \
static struct lock_class_key __key; \
ASSERT(type == MUTEX_DEFAULT); \
\
__mutex_init(MUTEX(mp), #mp, &__key); \
spl_mutex_clear_owner(mp); \
})
#undef mutex_destroy
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#define mutex_destroy(mp) \
({ \
VERIFY3P(mutex_owner(mp), ==, NULL); \
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
})
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#define mutex_tryenter(mp) \
({ \
int _rc_; \
\
if ((_rc_ = mutex_trylock(MUTEX(mp))) == 1) \
spl_mutex_set_owner(mp); \
\
_rc_; \
})
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
/*
* Adaptive mutexs assume that the lock may be held by a task running
* on a different cpu. The expectation is that the task will drop the
* lock before leaving the head of the run queue. So the ideal thing
* to do is spin until we acquire the lock and avoid a context switch.
* However it is also possible the task holding the lock yields the
* processor with out dropping lock. In this case, we know it's going
* to be a while so we stop spinning and go to sleep waiting for the
* lock to be available. This should strike the optimum balance
* between spinning and sleeping waiting for a lock.
*/
#define mutex_enter(mp) \
({ \
kthread_t *_owner_; \
int _rc_, _count_; \
\
_rc_ = 0; \
_count_ = 0; \
_owner_ = mutex_owner(mp); \
\
while (_owner_ && task_curr(_owner_) && \
_count_ <= spl_mutex_spin_max()) { \
if ((_rc_ = mutex_trylock(MUTEX(mp)))) \
break; \
\
_count_++; \
} \
\
if (!_rc_) \
mutex_lock(MUTEX(mp)); \
\
spl_mutex_set_owner(mp); \
})
#define mutex_exit(mp) \
({ \
spl_mutex_clear_owner(mp); \
mutex_unlock(MUTEX(mp)); \
})
#ifdef HAVE_GPL_ONLY_SYMBOLS
# define mutex_enter_nested(mp, sc) \
({ \
mutex_lock_nested(MUTEX(mp, sc)); \
spl_mutex_set_owner(mp); \
})
#else
# define mutex_enter_nested(mp, sc) \
({ \
mutex_enter(mp); \
})
#endif
Reimplement mutexs for Linux lock profiling/analysis For a generic explanation of why mutexs needed to be reimplemented to work with the kernel lock profiling see commits: e811949a57044d60d12953c5c3b808a79a7d36ef and d28db80fd0fd4fd63aec09037c44408e51a222d6 The specific changes made to the mutex implemetation are as follows. The Linux mutex structure is now directly embedded in the kmutex_t. This allows a kmutex_t to be directly case to a mutex struct and passed directly to the Linux primative. Just like with the rwlocks it is critical that these functions be implemented as '#defines to ensure the location information is preserved. The preprocessor can then do a direct replacement of the Solaris primative with the linux primative. Just as with the rwlocks we need to track the lock owner. Here things get a little more interesting because depending on your kernel version, and how you've built your kernel Linux may already do this for you. If your running a 2.6.29 or newer kernel on a SMP system the lock owner will be tracked. This was added to Linux to support adaptive mutexs, more on that shortly. Alternately, your kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES in the kernel build. If neither of the above things is true for your kernel the kmutex_t type will include and track the lock owner to ensure correct behavior. This is all handled by a new autoconf check called SPL_AC_MUTEX_OWNER. Concerning adaptive mutexs these are a very recent development and they did not make it in to either the latest FC11 of SLES11 kernels. Ideally, I'd love to see this kernel change appear in one of these distros because it does help performance. From Linux kernel commit: 0d66bf6d3514b35eb6897629059443132992dbd7 "Testing with Ingo's test-mutex application... gave a 345% boost for VFS scalability on my testbox" However, if you don't want to backport this change yourself you can still simply export the task_curr() symbol. The kmutex_t implementation will use this symbol when it's available to provide it's own adaptive mutexs. Finally, DEBUG_MUTEX support was removed including the proc handlers. This was done because now that we are cleanly integrated with the kernel profiling all this information and much much more is available in debug kernel builds. This code was now redundant. Update mutexs validated on: - SLES10 (ppc64) - SLES11 (x86_64) - CHAOS4.2 (x86_64) - RHEL5.3 (x86_64) - RHEL6 (x86_64) - FC11 (x86_64)
2009-09-25 21:47:01 +00:00
#endif /* HAVE_MUTEX_OWNER */
int spl_mutex_init(void);
void spl_mutex_fini(void);
#endif /* _SPL_MUTEX_H */