2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
|
|
|
|
* Use is subject to license terms.
|
|
|
|
*/
|
|
|
|
|
2009-03-09 21:36:22 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <sys/dnode.h>
|
|
|
|
#include <sys/dmu_objset.h>
|
|
|
|
#include <sys/dmu_zfetch.h>
|
|
|
|
#include <sys/dmu.h>
|
|
|
|
#include <sys/dbuf.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* I'm against tune-ables, but these should probably exist as tweakable globals
|
|
|
|
* until we can get this working the way we want it to.
|
|
|
|
*/
|
|
|
|
|
|
|
|
int zfs_prefetch_disable = 0;
|
|
|
|
|
|
|
|
/* max # of streams per zfetch */
|
|
|
|
uint32_t zfetch_max_streams = 8;
|
|
|
|
/* min time before stream reclaim */
|
|
|
|
uint32_t zfetch_min_sec_reap = 2;
|
|
|
|
/* max number of blocks to fetch at a time */
|
|
|
|
uint32_t zfetch_block_cap = 256;
|
|
|
|
/* number of bytes in a array_read at which we stop prefetching (1Mb) */
|
|
|
|
uint64_t zfetch_array_rd_sz = 1024 * 1024;
|
|
|
|
|
|
|
|
/* forward decls for static routines */
|
|
|
|
static int dmu_zfetch_colinear(zfetch_t *, zstream_t *);
|
|
|
|
static void dmu_zfetch_dofetch(zfetch_t *, zstream_t *);
|
|
|
|
static uint64_t dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
|
|
|
|
static uint64_t dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
|
|
|
|
static int dmu_zfetch_find(zfetch_t *, zstream_t *, int);
|
|
|
|
static int dmu_zfetch_stream_insert(zfetch_t *, zstream_t *);
|
|
|
|
static zstream_t *dmu_zfetch_stream_reclaim(zfetch_t *);
|
|
|
|
static void dmu_zfetch_stream_remove(zfetch_t *, zstream_t *);
|
|
|
|
static int dmu_zfetch_streams_equal(zstream_t *, zstream_t *);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Given a zfetch structure and a zstream structure, determine whether the
|
|
|
|
* blocks to be read are part of a co-linear pair of existing prefetch
|
|
|
|
* streams. If a set is found, coalesce the streams, removing one, and
|
|
|
|
* configure the prefetch so it looks for a strided access pattern.
|
|
|
|
*
|
|
|
|
* In other words: if we find two sequential access streams that are
|
|
|
|
* the same length and distance N appart, and this read is N from the
|
|
|
|
* last stream, then we are probably in a strided access pattern. So
|
|
|
|
* combine the two sequential streams into a single strided stream.
|
|
|
|
*
|
|
|
|
* If no co-linear streams are found, return NULL.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh)
|
|
|
|
{
|
|
|
|
zstream_t *z_walk;
|
|
|
|
zstream_t *z_comp;
|
|
|
|
|
|
|
|
if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (zh == NULL) {
|
|
|
|
rw_exit(&zf->zf_rwlock);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (z_walk = list_head(&zf->zf_stream); z_walk;
|
|
|
|
z_walk = list_next(&zf->zf_stream, z_walk)) {
|
|
|
|
for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp;
|
|
|
|
z_comp = list_next(&zf->zf_stream, z_comp)) {
|
|
|
|
int64_t diff;
|
|
|
|
|
|
|
|
if (z_walk->zst_len != z_walk->zst_stride ||
|
|
|
|
z_comp->zst_len != z_comp->zst_stride) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
diff = z_comp->zst_offset - z_walk->zst_offset;
|
|
|
|
if (z_comp->zst_offset + diff == zh->zst_offset) {
|
|
|
|
z_walk->zst_offset = zh->zst_offset;
|
|
|
|
z_walk->zst_direction = diff < 0 ? -1 : 1;
|
|
|
|
z_walk->zst_stride =
|
|
|
|
diff * z_walk->zst_direction;
|
|
|
|
z_walk->zst_ph_offset =
|
|
|
|
zh->zst_offset + z_walk->zst_stride;
|
|
|
|
dmu_zfetch_stream_remove(zf, z_comp);
|
|
|
|
mutex_destroy(&z_comp->zst_lock);
|
|
|
|
kmem_free(z_comp, sizeof (zstream_t));
|
|
|
|
|
|
|
|
dmu_zfetch_dofetch(zf, z_walk);
|
|
|
|
|
|
|
|
rw_exit(&zf->zf_rwlock);
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
diff = z_walk->zst_offset - z_comp->zst_offset;
|
|
|
|
if (z_walk->zst_offset + diff == zh->zst_offset) {
|
|
|
|
z_walk->zst_offset = zh->zst_offset;
|
|
|
|
z_walk->zst_direction = diff < 0 ? -1 : 1;
|
|
|
|
z_walk->zst_stride =
|
|
|
|
diff * z_walk->zst_direction;
|
|
|
|
z_walk->zst_ph_offset =
|
|
|
|
zh->zst_offset + z_walk->zst_stride;
|
|
|
|
dmu_zfetch_stream_remove(zf, z_comp);
|
|
|
|
mutex_destroy(&z_comp->zst_lock);
|
|
|
|
kmem_free(z_comp, sizeof (zstream_t));
|
|
|
|
|
|
|
|
dmu_zfetch_dofetch(zf, z_walk);
|
|
|
|
|
|
|
|
rw_exit(&zf->zf_rwlock);
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
rw_exit(&zf->zf_rwlock);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Given a zstream_t, determine the bounds of the prefetch. Then call the
|
|
|
|
* routine that actually prefetches the individual blocks.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
dmu_zfetch_dofetch(zfetch_t *zf, zstream_t *zs)
|
|
|
|
{
|
|
|
|
uint64_t prefetch_tail;
|
|
|
|
uint64_t prefetch_limit;
|
|
|
|
uint64_t prefetch_ofst;
|
|
|
|
uint64_t prefetch_len;
|
|
|
|
uint64_t blocks_fetched;
|
|
|
|
|
|
|
|
zs->zst_stride = MAX((int64_t)zs->zst_stride, zs->zst_len);
|
|
|
|
zs->zst_cap = MIN(zfetch_block_cap, 2 * zs->zst_cap);
|
|
|
|
|
|
|
|
prefetch_tail = MAX((int64_t)zs->zst_ph_offset,
|
|
|
|
(int64_t)(zs->zst_offset + zs->zst_stride));
|
|
|
|
/*
|
|
|
|
* XXX: use a faster division method?
|
|
|
|
*/
|
|
|
|
prefetch_limit = zs->zst_offset + zs->zst_len +
|
|
|
|
(zs->zst_cap * zs->zst_stride) / zs->zst_len;
|
|
|
|
|
|
|
|
while (prefetch_tail < prefetch_limit) {
|
|
|
|
prefetch_ofst = zs->zst_offset + zs->zst_direction *
|
|
|
|
(prefetch_tail - zs->zst_offset);
|
|
|
|
|
|
|
|
prefetch_len = zs->zst_len;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Don't prefetch beyond the end of the file, if working
|
|
|
|
* backwards.
|
|
|
|
*/
|
|
|
|
if ((zs->zst_direction == ZFETCH_BACKWARD) &&
|
|
|
|
(prefetch_ofst > prefetch_tail)) {
|
|
|
|
prefetch_len += prefetch_ofst;
|
|
|
|
prefetch_ofst = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* don't prefetch more than we're supposed to */
|
|
|
|
if (prefetch_len > zs->zst_len)
|
|
|
|
break;
|
|
|
|
|
|
|
|
blocks_fetched = dmu_zfetch_fetch(zf->zf_dnode,
|
|
|
|
prefetch_ofst, zs->zst_len);
|
|
|
|
|
|
|
|
prefetch_tail += zs->zst_stride;
|
|
|
|
/* stop if we've run out of stuff to prefetch */
|
|
|
|
if (blocks_fetched < zs->zst_len)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
zs->zst_ph_offset = prefetch_tail;
|
|
|
|
zs->zst_last = lbolt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This takes a pointer to a zfetch structure and a dnode. It performs the
|
|
|
|
* necessary setup for the zfetch structure, grokking data from the
|
|
|
|
* associated dnode.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
|
|
|
|
{
|
|
|
|
zf->zf_dnode = dno;
|
|
|
|
zf->zf_stream_cnt = 0;
|
|
|
|
zf->zf_alloc_fail = 0;
|
2009-03-19 22:22:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clean-up state associated with a zfetch structure. This frees allocated
|
|
|
|
* structure members, empties the zf_stream tree, and generally makes things
|
|
|
|
* nice. This doesn't free the zfetch_t itself, that's left to the caller.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dmu_zfetch_rele(zfetch_t *zf)
|
|
|
|
{
|
|
|
|
zstream_t *zs;
|
|
|
|
zstream_t *zs_next;
|
|
|
|
|
|
|
|
for (zs = list_head(&zf->zf_stream); zs; zs = zs_next) {
|
|
|
|
zs_next = list_next(&zf->zf_stream, zs);
|
|
|
|
|
|
|
|
list_remove(&zf->zf_stream, zs);
|
|
|
|
mutex_destroy(&zs->zst_lock);
|
|
|
|
kmem_free(zs, sizeof (zstream_t));
|
|
|
|
}
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2009-03-19 22:22:48 +00:00
|
|
|
/*
|
|
|
|
* Construct a zfetch structure.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dmu_zfetch_cons(zfetch_t *zf)
|
|
|
|
{
|
2008-11-20 20:01:55 +00:00
|
|
|
list_create(&zf->zf_stream, sizeof (zstream_t),
|
|
|
|
offsetof(zstream_t, zst_node));
|
|
|
|
|
|
|
|
rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
|
|
|
|
}
|
|
|
|
|
2009-03-19 22:22:48 +00:00
|
|
|
/*
|
|
|
|
* Destruct a zfetch structure.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dmu_zfetch_dest(zfetch_t *zf)
|
|
|
|
{
|
|
|
|
list_destroy(&zf->zf_stream);
|
|
|
|
rw_destroy(&zf->zf_rwlock);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* This function computes the actual size, in blocks, that can be prefetched,
|
|
|
|
* and fetches it.
|
|
|
|
*/
|
|
|
|
static uint64_t
|
|
|
|
dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks)
|
|
|
|
{
|
|
|
|
uint64_t fetchsz;
|
|
|
|
uint64_t i;
|
|
|
|
|
|
|
|
fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks);
|
|
|
|
|
|
|
|
for (i = 0; i < fetchsz; i++) {
|
|
|
|
dbuf_prefetch(dn, blkid + i);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (fetchsz);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* this function returns the number of blocks that would be prefetched, based
|
|
|
|
* upon the supplied dnode, blockid, and nblks. This is used so that we can
|
|
|
|
* update streams in place, and then prefetch with their old value after the
|
|
|
|
* fact. This way, we can delay the prefetch, but subsequent accesses to the
|
|
|
|
* stream won't result in the same data being prefetched multiple times.
|
|
|
|
*/
|
|
|
|
static uint64_t
|
|
|
|
dmu_zfetch_fetchsz(dnode_t *dn, uint64_t blkid, uint64_t nblks)
|
|
|
|
{
|
|
|
|
uint64_t fetchsz;
|
|
|
|
|
|
|
|
if (blkid > dn->dn_maxblkid) {
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* compute fetch size */
|
|
|
|
if (blkid + nblks + 1 > dn->dn_maxblkid) {
|
|
|
|
fetchsz = (dn->dn_maxblkid - blkid) + 1;
|
|
|
|
ASSERT(blkid + fetchsz - 1 <= dn->dn_maxblkid);
|
|
|
|
} else {
|
|
|
|
fetchsz = nblks;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
return (fetchsz);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* given a zfetch and a zsearch structure, see if there is an associated zstream
|
|
|
|
* for this block read. If so, it starts a prefetch for the stream it
|
|
|
|
* located and returns true, otherwise it returns false
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
dmu_zfetch_find(zfetch_t *zf, zstream_t *zh, int prefetched)
|
|
|
|
{
|
|
|
|
zstream_t *zs;
|
|
|
|
int64_t diff;
|
|
|
|
int reset = !prefetched;
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
if (zh == NULL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX: This locking strategy is a bit coarse; however, it's impact has
|
|
|
|
* yet to be tested. If this turns out to be an issue, it can be
|
|
|
|
* modified in a number of different ways.
|
|
|
|
*/
|
|
|
|
|
|
|
|
rw_enter(&zf->zf_rwlock, RW_READER);
|
|
|
|
top:
|
|
|
|
|
|
|
|
for (zs = list_head(&zf->zf_stream); zs;
|
|
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX - should this be an assert?
|
|
|
|
*/
|
|
|
|
if (zs->zst_len == 0) {
|
|
|
|
/* bogus stream */
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We hit this case when we are in a strided prefetch stream:
|
|
|
|
* we will read "len" blocks before "striding".
|
|
|
|
*/
|
|
|
|
if (zh->zst_offset >= zs->zst_offset &&
|
|
|
|
zh->zst_offset < zs->zst_offset + zs->zst_len) {
|
|
|
|
/* already fetched */
|
|
|
|
rc = 1;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the forward sequential read case: we increment
|
|
|
|
* len by one each time we hit here, so we will enter this
|
|
|
|
* case on every read.
|
|
|
|
*/
|
|
|
|
if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
|
|
|
|
|
|
|
|
reset = !prefetched && zs->zst_len > 1;
|
|
|
|
|
|
|
|
mutex_enter(&zs->zst_lock);
|
|
|
|
|
|
|
|
if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
|
|
|
|
mutex_exit(&zs->zst_lock);
|
|
|
|
goto top;
|
|
|
|
}
|
|
|
|
zs->zst_len += zh->zst_len;
|
|
|
|
diff = zs->zst_len - zfetch_block_cap;
|
|
|
|
if (diff > 0) {
|
|
|
|
zs->zst_offset += diff;
|
|
|
|
zs->zst_len = zs->zst_len > diff ?
|
|
|
|
zs->zst_len - diff : 0;
|
|
|
|
}
|
|
|
|
zs->zst_direction = ZFETCH_FORWARD;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Same as above, but reading backwards through the file.
|
|
|
|
*/
|
|
|
|
} else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
|
|
|
|
/* backwards sequential access */
|
|
|
|
|
|
|
|
reset = !prefetched && zs->zst_len > 1;
|
|
|
|
|
|
|
|
mutex_enter(&zs->zst_lock);
|
|
|
|
|
|
|
|
if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
|
|
|
|
mutex_exit(&zs->zst_lock);
|
|
|
|
goto top;
|
|
|
|
}
|
|
|
|
|
|
|
|
zs->zst_offset = zs->zst_offset > zh->zst_len ?
|
|
|
|
zs->zst_offset - zh->zst_len : 0;
|
|
|
|
zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ?
|
|
|
|
zs->zst_ph_offset - zh->zst_len : 0;
|
|
|
|
zs->zst_len += zh->zst_len;
|
|
|
|
|
|
|
|
diff = zs->zst_len - zfetch_block_cap;
|
|
|
|
if (diff > 0) {
|
|
|
|
zs->zst_ph_offset = zs->zst_ph_offset > diff ?
|
|
|
|
zs->zst_ph_offset - diff : 0;
|
|
|
|
zs->zst_len = zs->zst_len > diff ?
|
|
|
|
zs->zst_len - diff : zs->zst_len;
|
|
|
|
}
|
|
|
|
zs->zst_direction = ZFETCH_BACKWARD;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
} else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
|
|
|
|
zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
|
|
|
|
/* strided forward access */
|
|
|
|
|
|
|
|
mutex_enter(&zs->zst_lock);
|
|
|
|
|
|
|
|
if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
|
|
|
|
zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
|
|
|
|
mutex_exit(&zs->zst_lock);
|
|
|
|
goto top;
|
|
|
|
}
|
|
|
|
|
|
|
|
zs->zst_offset += zs->zst_stride;
|
|
|
|
zs->zst_direction = ZFETCH_FORWARD;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
} else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
|
|
|
|
zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
|
|
|
|
/* strided reverse access */
|
|
|
|
|
|
|
|
mutex_enter(&zs->zst_lock);
|
|
|
|
|
|
|
|
if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
|
|
|
|
zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
|
|
|
|
mutex_exit(&zs->zst_lock);
|
|
|
|
goto top;
|
|
|
|
}
|
|
|
|
|
|
|
|
zs->zst_offset = zs->zst_offset > zs->zst_stride ?
|
|
|
|
zs->zst_offset - zs->zst_stride : 0;
|
|
|
|
zs->zst_ph_offset = (zs->zst_ph_offset >
|
|
|
|
(2 * zs->zst_stride)) ?
|
|
|
|
(zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
|
|
|
|
zs->zst_direction = ZFETCH_BACKWARD;
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (zs) {
|
|
|
|
if (reset) {
|
2008-12-18 21:24:37 +00:00
|
|
|
zstream_t *rm = zs;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
rc = 0;
|
|
|
|
mutex_exit(&zs->zst_lock);
|
|
|
|
rw_exit(&zf->zf_rwlock);
|
|
|
|
rw_enter(&zf->zf_rwlock, RW_WRITER);
|
|
|
|
/*
|
|
|
|
* Relocate the stream, in case someone removes
|
|
|
|
* it while we were acquiring the WRITER lock.
|
|
|
|
*/
|
|
|
|
for (zs = list_head(&zf->zf_stream); zs;
|
|
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
2008-12-18 21:24:37 +00:00
|
|
|
if (zs == rm) {
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
|
|
mutex_destroy(&zs->zst_lock);
|
|
|
|
kmem_free(zs, sizeof (zstream_t));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
rc = 1;
|
|
|
|
dmu_zfetch_dofetch(zf, zs);
|
|
|
|
mutex_exit(&zs->zst_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
rw_exit(&zf->zf_rwlock);
|
|
|
|
return (rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Given a zfetch and zstream structure, insert the zstream structure into the
|
|
|
|
* AVL tree contained within the zfetch structure. Peform the appropriate
|
|
|
|
* book-keeping. It is possible that another thread has inserted a stream which
|
|
|
|
* matches one that we are about to insert, so we must be sure to check for this
|
|
|
|
* case. If one is found, return failure, and let the caller cleanup the
|
|
|
|
* duplicates.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
dmu_zfetch_stream_insert(zfetch_t *zf, zstream_t *zs)
|
|
|
|
{
|
|
|
|
zstream_t *zs_walk;
|
|
|
|
zstream_t *zs_next;
|
|
|
|
|
|
|
|
ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
|
|
|
|
|
|
|
|
for (zs_walk = list_head(&zf->zf_stream); zs_walk; zs_walk = zs_next) {
|
|
|
|
zs_next = list_next(&zf->zf_stream, zs_walk);
|
|
|
|
|
|
|
|
if (dmu_zfetch_streams_equal(zs_walk, zs)) {
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
list_insert_head(&zf->zf_stream, zs);
|
|
|
|
zf->zf_stream_cnt++;
|
|
|
|
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Walk the list of zstreams in the given zfetch, find an old one (by time), and
|
|
|
|
* reclaim it for use by the caller.
|
|
|
|
*/
|
|
|
|
static zstream_t *
|
|
|
|
dmu_zfetch_stream_reclaim(zfetch_t *zf)
|
|
|
|
{
|
|
|
|
zstream_t *zs;
|
|
|
|
|
|
|
|
if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
for (zs = list_head(&zf->zf_stream); zs;
|
|
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
|
|
|
|
|
|
if (((lbolt - zs->zst_last) / hz) > zfetch_min_sec_reap)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (zs) {
|
|
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
|
|
mutex_destroy(&zs->zst_lock);
|
|
|
|
bzero(zs, sizeof (zstream_t));
|
|
|
|
} else {
|
|
|
|
zf->zf_alloc_fail++;
|
|
|
|
}
|
|
|
|
rw_exit(&zf->zf_rwlock);
|
|
|
|
|
|
|
|
return (zs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Given a zfetch and zstream structure, remove the zstream structure from its
|
|
|
|
* container in the zfetch structure. Perform the appropriate book-keeping.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
|
|
|
|
{
|
|
|
|
ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
|
|
|
|
|
|
|
|
list_remove(&zf->zf_stream, zs);
|
|
|
|
zf->zf_stream_cnt--;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
|
|
|
|
{
|
|
|
|
if (zs1->zst_offset != zs2->zst_offset)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (zs1->zst_len != zs2->zst_len)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (zs1->zst_stride != zs2->zst_stride)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (zs1->zst_ph_offset != zs2->zst_ph_offset)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (zs1->zst_cap != zs2->zst_cap)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (zs1->zst_direction != zs2->zst_direction)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the prefetch entry point. It calls all of the other dmu_zfetch
|
|
|
|
* routines to create, delete, find, or operate upon prefetch streams.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
|
|
|
|
{
|
|
|
|
zstream_t zst;
|
|
|
|
zstream_t *newstream;
|
|
|
|
int fetched;
|
|
|
|
int inserted;
|
|
|
|
unsigned int blkshft;
|
|
|
|
uint64_t blksz;
|
|
|
|
|
|
|
|
if (zfs_prefetch_disable)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* files that aren't ln2 blocksz are only one block -- nothing to do */
|
|
|
|
if (!zf->zf_dnode->dn_datablkshift)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* convert offset and size, into blockid and nblocks */
|
|
|
|
blkshft = zf->zf_dnode->dn_datablkshift;
|
|
|
|
blksz = (1 << blkshft);
|
|
|
|
|
|
|
|
bzero(&zst, sizeof (zstream_t));
|
|
|
|
zst.zst_offset = offset >> blkshft;
|
|
|
|
zst.zst_len = (P2ROUNDUP(offset + size, blksz) -
|
|
|
|
P2ALIGN(offset, blksz)) >> blkshft;
|
|
|
|
|
|
|
|
fetched = dmu_zfetch_find(zf, &zst, prefetched);
|
|
|
|
if (!fetched) {
|
|
|
|
fetched = dmu_zfetch_colinear(zf, &zst);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!fetched) {
|
|
|
|
newstream = dmu_zfetch_stream_reclaim(zf);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* we still couldn't find a stream, drop the lock, and allocate
|
|
|
|
* one if possible. Otherwise, give up and go home.
|
|
|
|
*/
|
|
|
|
if (newstream == NULL) {
|
|
|
|
uint64_t maxblocks;
|
|
|
|
uint32_t max_streams;
|
|
|
|
uint32_t cur_streams;
|
|
|
|
|
|
|
|
cur_streams = zf->zf_stream_cnt;
|
|
|
|
maxblocks = zf->zf_dnode->dn_maxblkid;
|
|
|
|
|
|
|
|
max_streams = MIN(zfetch_max_streams,
|
|
|
|
(maxblocks / zfetch_block_cap));
|
|
|
|
if (max_streams == 0) {
|
|
|
|
max_streams++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cur_streams >= max_streams) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
newstream = kmem_zalloc(sizeof (zstream_t), KM_SLEEP);
|
|
|
|
}
|
|
|
|
|
|
|
|
newstream->zst_offset = zst.zst_offset;
|
|
|
|
newstream->zst_len = zst.zst_len;
|
|
|
|
newstream->zst_stride = zst.zst_len;
|
|
|
|
newstream->zst_ph_offset = zst.zst_len + zst.zst_offset;
|
|
|
|
newstream->zst_cap = zst.zst_len;
|
|
|
|
newstream->zst_direction = ZFETCH_FORWARD;
|
|
|
|
newstream->zst_last = lbolt;
|
|
|
|
|
|
|
|
mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
|
|
|
|
rw_enter(&zf->zf_rwlock, RW_WRITER);
|
|
|
|
inserted = dmu_zfetch_stream_insert(zf, newstream);
|
|
|
|
rw_exit(&zf->zf_rwlock);
|
|
|
|
|
|
|
|
if (!inserted) {
|
|
|
|
mutex_destroy(&newstream->zst_lock);
|
|
|
|
kmem_free(newstream, sizeof (zstream_t));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2008-12-05 20:12:37 +00:00
|
|
|
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
|
|
module_param(zfs_prefetch_disable, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_prefetch_disable, "Disable all ZFS prefetching");
|
|
|
|
#endif
|
|
|
|
|