zfs/lib/libzpool/abd_os.c

366 lines
9.7 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
* Copyright (c) 2019 by Delphix. All rights reserved.
* Copyright (c) 2023, 2024, Klara Inc.
*/
#include <sys/abd_impl.h>
#include <sys/param.h>
#include <sys/zio.h>
#include <sys/arc.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
/*
* We're simulating scatter/gather with 4K allocations, since that's more like
* what a typical kernel does.
*/
#define ABD_PAGESIZE (4096)
#define ABD_PAGESHIFT (12)
#define ABD_PAGEMASK (ABD_PAGESIZE-1)
/*
* See rationale in module/os/linux/zfs/abd_os.c, but in userspace this is
* mostly useful to get a mix of linear and scatter ABDs for testing.
*/
#define ABD_SCATTER_MIN_SIZE (512 * 3)
abd_t *abd_zero_scatter = NULL;
static uint_t
abd_iovcnt_for_bytes(size_t size)
{
/*
* Each iovec points to a 4K page. There's no real reason to do this
* in userspace, but our whole point here is to make it feel a bit
* more like a real paged memory model.
*/
return (P2ROUNDUP(size, ABD_PAGESIZE) / ABD_PAGESIZE);
}
abd_t *
abd_alloc_struct_impl(size_t size)
{
/*
* Zero-sized means it will be used for a linear or gang abd, so just
* allocate the abd itself and return.
*/
if (size == 0)
return (umem_alloc(sizeof (abd_t), UMEM_NOFAIL));
/*
* Allocating for a scatter abd, so compute how many ABD_PAGESIZE
* iovecs we will need to hold this size. Append that allocation to the
* end. Note that struct abd_scatter has includes abd_iov[1], so we
* allocate one less iovec than we need.
*
* Note we're not allocating the pages proper, just the iovec pointers.
* That's down in abd_alloc_chunks. We _could_ do it here in a single
* allocation, but it's fiddly and harder to read for no real gain.
*/
uint_t n = abd_iovcnt_for_bytes(size);
abd_t *abd = umem_alloc(sizeof (abd_t) + (n-1) * sizeof (struct iovec),
UMEM_NOFAIL);
ABD_SCATTER(abd).abd_offset = 0;
ABD_SCATTER(abd).abd_iovcnt = n;
return (abd);
}
void
abd_free_struct_impl(abd_t *abd)
{
/* For scatter, compute the extra amount we need to free */
uint_t iovcnt =
abd_is_linear(abd) || abd_is_gang(abd) ?
0 : (ABD_SCATTER(abd).abd_iovcnt - 1);
umem_free(abd, sizeof (abd_t) + iovcnt * sizeof (struct iovec));
}
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
/*
* We've already allocated the iovec array; ensure that the wanted size
* actually matches, otherwise the caller has made a mistake somewhere.
*/
uint_t n = ABD_SCATTER(abd).abd_iovcnt;
ASSERT3U(n, ==, abd_iovcnt_for_bytes(size));
/*
* Allocate a ABD_PAGESIZE region for each iovec.
*/
struct iovec *iov = ABD_SCATTER(abd).abd_iov;
for (int i = 0; i < n; i++) {
iov[i].iov_base =
umem_alloc_aligned(ABD_PAGESIZE, ABD_PAGESIZE, UMEM_NOFAIL);
iov[i].iov_len = ABD_PAGESIZE;
}
}
void
abd_free_chunks(abd_t *abd)
{
uint_t n = ABD_SCATTER(abd).abd_iovcnt;
struct iovec *iov = ABD_SCATTER(abd).abd_iov;
for (int i = 0; i < n; i++)
umem_free_aligned(iov[i].iov_base, ABD_PAGESIZE);
}
boolean_t
abd_size_alloc_linear(size_t size)
{
return (size < ABD_SCATTER_MIN_SIZE);
}
void
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
{
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
int waste = P2ROUNDUP(abd->abd_size, ABD_PAGESIZE) - abd->abd_size;
if (op == ABDSTAT_INCR) {
arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
} else {
arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
}
}
void
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
{
(void) abd;
(void) op;
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
}
void
abd_verify_scatter(abd_t *abd)
{
#ifdef ZFS_DEBUG
/*
* scatter abds shall have:
* - at least one iovec
* - all iov_base point somewhere
* - all iov_len are ABD_PAGESIZE
* - offset set within the abd pages somewhere
*/
uint_t n = ABD_SCATTER(abd).abd_iovcnt;
ASSERT3U(n, >, 0);
uint_t len = 0;
for (int i = 0; i < n; i++) {
ASSERT3P(ABD_SCATTER(abd).abd_iov[i].iov_base, !=, NULL);
ASSERT3U(ABD_SCATTER(abd).abd_iov[i].iov_len, ==, ABD_PAGESIZE);
len += ABD_PAGESIZE;
}
ASSERT3U(ABD_SCATTER(abd).abd_offset, <, len);
#endif
}
void
abd_init(void)
{
/*
* Create the "zero" scatter abd. This is always the size of the
* largest possible block, but only actually has a single allocated
* page, which all iovecs in the abd point to.
*/
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
void *zero =
umem_alloc_aligned(ABD_PAGESIZE, ABD_PAGESIZE, UMEM_NOFAIL);
memset(zero, 0, ABD_PAGESIZE);
uint_t n = abd_iovcnt_for_bytes(SPA_MAXBLOCKSIZE);
struct iovec *iov = ABD_SCATTER(abd_zero_scatter).abd_iov;
for (int i = 0; i < n; i++) {
iov[i].iov_base = zero;
iov[i].iov_len = ABD_PAGESIZE;
}
}
void
abd_fini(void)
{
umem_free_aligned(
ABD_SCATTER(abd_zero_scatter).abd_iov[0].iov_base, ABD_PAGESIZE);
abd_free_struct(abd_zero_scatter);
abd_zero_scatter = NULL;
}
void
abd_free_linear_page(abd_t *abd)
{
/*
* LINEAR_PAGE is specific to the Linux kernel; we never set this
* flag, so this will never be called.
*/
(void) abd;
PANIC("unreachable");
}
abd_t *
abd_alloc_for_io(size_t size, boolean_t is_metadata)
{
return (abd_alloc(size, is_metadata));
}
abd_t *
abd_get_offset_scatter(abd_t *dabd, abd_t *sabd, size_t off, size_t size)
{
/*
* Create a new scatter dabd by borrowing data pages from sabd to cover
* off+size.
*
* sabd is an existing scatter abd with a set of iovecs, each covering
* an ABD_PAGESIZE (4K) allocation. It's "zero" is at abd_offset.
*
* [........][........][........][........]
* ^- sabd_offset
*
* We want to produce a new abd, referencing those allocations at the
* given offset.
*
* [........][........][........][........]
* ^- dabd_offset = sabd_offset + off
* ^- dabd_offset + size
*
* In this example, dabd needs three iovecs. The first iovec is offset
* 0, so the final dabd_offset is masked back into the first iovec.
*
* [........][........][........]
* ^- dabd_offset
*/
size_t soff = ABD_SCATTER(sabd).abd_offset + off;
size_t doff = soff & ABD_PAGEMASK;
size_t iovcnt = abd_iovcnt_for_bytes(doff + size);
/*
* If the passed-in abd has enough allocated iovecs already, reuse it.
* Otherwise, make a new one. The caller will free the original if the
* one it gets back is not the same.
*
* Note that it's ok if we reuse an abd with more iovecs than we need.
* abd_size has the usable amount of data, and the abd does not own the
* pages referenced by the iovecs. At worst, they're holding dangling
* pointers that we'll never use anyway.
*/
if (dabd == NULL || ABD_SCATTER(dabd).abd_iovcnt < iovcnt)
dabd = abd_alloc_struct(iovcnt << ABD_PAGESHIFT);
/* Set offset into first page in view */
ABD_SCATTER(dabd).abd_offset = doff;
/* Copy the wanted iovecs from the source to the dest */
memcpy(&ABD_SCATTER(dabd).abd_iov[0],
&ABD_SCATTER(sabd).abd_iov[soff >> ABD_PAGESHIFT],
iovcnt * sizeof (struct iovec));
return (dabd);
}
void
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
{
ASSERT(!abd_is_gang(abd));
abd_verify(abd);
memset(aiter, 0, sizeof (struct abd_iter));
aiter->iter_abd = abd;
}
boolean_t
abd_iter_at_end(struct abd_iter *aiter)
{
ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
return (aiter->iter_pos == aiter->iter_abd->abd_size);
}
void
abd_iter_advance(struct abd_iter *aiter, size_t amount)
{
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
if (abd_iter_at_end(aiter))
return;
aiter->iter_pos += amount;
ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
}
void
abd_iter_map(struct abd_iter *aiter)
{
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
if (abd_iter_at_end(aiter))
return;
if (abd_is_linear(aiter->iter_abd)) {
aiter->iter_mapaddr =
ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos;
aiter->iter_mapsize =
aiter->iter_abd->abd_size - aiter->iter_pos;
return;
}
/*
* For scatter, we index into the appropriate iovec, and return the
* smaller of the amount requested, or up to the end of the page.
*/
size_t poff = aiter->iter_pos + ABD_SCATTER(aiter->iter_abd).abd_offset;
ASSERT3U(poff >> ABD_PAGESHIFT, <=,
ABD_SCATTER(aiter->iter_abd).abd_iovcnt);
struct iovec *iov = &ABD_SCATTER(aiter->iter_abd).
abd_iov[poff >> ABD_PAGESHIFT];
aiter->iter_mapsize = MIN(ABD_PAGESIZE - (poff & ABD_PAGEMASK),
aiter->iter_abd->abd_size - aiter->iter_pos);
ASSERT3U(aiter->iter_mapsize, <=, ABD_PAGESIZE);
aiter->iter_mapaddr = iov->iov_base + (poff & ABD_PAGEMASK);
}
void
abd_iter_unmap(struct abd_iter *aiter)
{
if (abd_iter_at_end(aiter))
return;
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
ASSERT3U(aiter->iter_mapsize, >, 0);
aiter->iter_mapaddr = NULL;
aiter->iter_mapsize = 0;
}
void
abd_cache_reap_now(void)
{
}