zfs/module/zfs/zap.c

1385 lines
35 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
2008-11-20 20:01:55 +00:00
*/
/*
* This file contains the top half of the zfs directory structure
* implementation. The bottom half is in zap_leaf.c.
*
* The zdir is an extendable hash data structure. There is a table of
* pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
* each a constant size and hold a variable number of directory entries.
* The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
*
* The pointer table holds a power of 2 number of pointers.
* (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to
* by the pointer at index i in the table holds entries whose hash value
* has a zd_prefix_len - bit prefix
*/
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
2009-07-02 22:44:48 +00:00
#include <sys/fs/zfs.h>
2008-11-20 20:01:55 +00:00
#include <sys/zap.h>
#include <sys/zap_impl.h>
#include <sys/zap_leaf.h>
/*
* If zap_iterate_prefetch is set, we will prefetch the entire ZAP object
* (all leaf blocks) when we start iterating over it.
*
* For zap_cursor_init(), the callers all intend to iterate through all the
* entries. There are a few cases where an error (typically i/o error) could
* cause it to bail out early.
*
* For zap_cursor_init_serialized(), there are callers that do the iteration
* outside of ZFS. Typically they would iterate over everything, but we
* don't have control of that. E.g. zfs_ioc_snapshot_list_next(),
* zcp_snapshots_iter(), and other iterators over things in the MOS - these
* are called by /sbin/zfs and channel programs. The other example is
* zfs_readdir() which iterates over directory entries for the getdents()
* syscall. /sbin/ls iterates to the end (unless it receives a signal), but
* userland doesn't have to.
*
* Given that the ZAP entries aren't returned in a specific order, the only
* legitimate use cases for partial iteration would be:
*
* 1. Pagination: e.g. you only want to display 100 entries at a time, so you
* get the first 100 and then wait for the user to hit "next page", which
* they may never do).
*
* 2. You want to know if there are more than X entries, without relying on
* the zfs-specific implementation of the directory's st_size (which is
* the number of entries).
*/
int zap_iterate_prefetch = B_TRUE;
2008-11-20 20:01:55 +00:00
int fzap_default_block_shift = 14; /* 16k blocksize */
extern inline zap_phys_t *zap_f_phys(zap_t *zap);
2008-11-20 20:01:55 +00:00
static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
void
fzap_byteswap(void *vbuf, size_t size)
{
uint64_t block_type = *(uint64_t *)vbuf;
2008-11-20 20:01:55 +00:00
if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
zap_leaf_byteswap(vbuf, size);
else {
/* it's a ptrtbl block */
byteswap_uint64_array(vbuf, size);
}
}
void
fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
2008-11-20 20:01:55 +00:00
{
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
zap->zap_ismicro = FALSE;
zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
zap->zap_dbu.dbu_evict_func_async = NULL;
2008-11-20 20:01:55 +00:00
mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
2008-11-20 20:01:55 +00:00
zap_phys_t *zp = zap_f_phys(zap);
2008-11-20 20:01:55 +00:00
/*
* explicitly zero it since it might be coming from an
* initialized microzap
*/
bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size);
zp->zap_block_type = ZBT_HEADER;
zp->zap_magic = ZAP_MAGIC;
zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
zp->zap_freeblk = 2; /* block 1 will be the first leaf */
zp->zap_num_leafs = 1;
zp->zap_num_entries = 0;
zp->zap_salt = zap->zap_salt;
zp->zap_normflags = zap->zap_normflags;
zp->zap_flags = flags;
2008-11-20 20:01:55 +00:00
/* block 1 will be the first leaf */
for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
2008-11-20 20:01:55 +00:00
ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
/*
* set up block 1 - the first leaf
*/
dmu_buf_t *db;
VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
2008-11-20 20:01:55 +00:00
dmu_buf_will_dirty(db, tx);
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
2008-11-20 20:01:55 +00:00
l->l_dbuf = db;
zap_leaf_init(l, zp->zap_normflags != 0);
kmem_free(l, sizeof (zap_leaf_t));
dmu_buf_rele(db, FTAG);
}
static int
zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
{
if (RW_WRITE_HELD(&zap->zap_rwlock))
return (1);
if (rw_tryupgrade(&zap->zap_rwlock)) {
dmu_buf_will_dirty(zap->zap_dbuf, tx);
return (1);
}
return (0);
}
/*
* Generic routines for dealing with the pointer & cookie tables.
*/
static int
zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
dmu_tx_t *tx)
{
uint64_t newblk;
2008-11-20 20:01:55 +00:00
int bs = FZAP_BLOCK_SHIFT(zap);
int hepb = 1<<(bs-4);
/* hepb = half the number of entries in a block */
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
ASSERT(tbl->zt_blk != 0);
ASSERT(tbl->zt_numblks > 0);
if (tbl->zt_nextblk != 0) {
newblk = tbl->zt_nextblk;
} else {
newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
tbl->zt_nextblk = newblk;
ASSERT0(tbl->zt_blks_copied);
dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
tbl->zt_blk << bs, tbl->zt_numblks << bs,
ZIO_PRIORITY_SYNC_READ);
2008-11-20 20:01:55 +00:00
}
/*
* Copy the ptrtbl from the old to new location.
*/
uint64_t b = tbl->zt_blks_copied;
dmu_buf_t *db_old;
int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
/* first half of entries in old[b] go to new[2*b+0] */
dmu_buf_t *db_new;
VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
(newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
2008-11-20 20:01:55 +00:00
dmu_buf_will_dirty(db_new, tx);
transfer_func(db_old->db_data, db_new->db_data, hepb);
dmu_buf_rele(db_new, FTAG);
/* second half of entries in old[b] go to new[2*b+1] */
VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
(newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
2008-11-20 20:01:55 +00:00
dmu_buf_will_dirty(db_new, tx);
transfer_func((uint64_t *)db_old->db_data + hepb,
db_new->db_data, hepb);
dmu_buf_rele(db_new, FTAG);
dmu_buf_rele(db_old, FTAG);
tbl->zt_blks_copied++;
dprintf("copied block %llu of %llu\n",
tbl->zt_blks_copied, tbl->zt_numblks);
if (tbl->zt_blks_copied == tbl->zt_numblks) {
(void) dmu_free_range(zap->zap_objset, zap->zap_object,
tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
tbl->zt_blk = newblk;
tbl->zt_numblks *= 2;
tbl->zt_shift++;
tbl->zt_nextblk = 0;
tbl->zt_blks_copied = 0;
dprintf("finished; numblocks now %llu (%uk entries)\n",
2008-11-20 20:01:55 +00:00
tbl->zt_numblks, 1<<(tbl->zt_shift-10));
}
return (0);
}
static int
zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
dmu_tx_t *tx)
{
int bs = FZAP_BLOCK_SHIFT(zap);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT(tbl->zt_blk != 0);
dprintf("storing %llx at index %llx\n", val, idx);
uint64_t blk = idx >> (bs-3);
uint64_t off = idx & ((1<<(bs-3))-1);
2008-11-20 20:01:55 +00:00
dmu_buf_t *db;
int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
dmu_buf_will_dirty(db, tx);
if (tbl->zt_nextblk != 0) {
uint64_t idx2 = idx * 2;
uint64_t blk2 = idx2 >> (bs-3);
uint64_t off2 = idx2 & ((1<<(bs-3))-1);
dmu_buf_t *db2;
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
DMU_READ_NO_PREFETCH);
if (err != 0) {
2008-11-20 20:01:55 +00:00
dmu_buf_rele(db, FTAG);
return (err);
}
dmu_buf_will_dirty(db2, tx);
((uint64_t *)db2->db_data)[off2] = val;
((uint64_t *)db2->db_data)[off2+1] = val;
dmu_buf_rele(db2, FTAG);
}
((uint64_t *)db->db_data)[off] = val;
dmu_buf_rele(db, FTAG);
return (0);
}
static int
zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
{
int bs = FZAP_BLOCK_SHIFT(zap);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
uint64_t blk = idx >> (bs-3);
uint64_t off = idx & ((1<<(bs-3))-1);
2008-11-20 20:01:55 +00:00
OpenZFS 7004 - dmu_tx_hold_zap() does dnode_hold() 7x on same object Using a benchmark which has 32 threads creating 2 million files in the same directory, on a machine with 16 CPU cores, I observed poor performance. I noticed that dmu_tx_hold_zap() was using about 30% of all CPU, and doing dnode_hold() 7 times on the same object (the ZAP object that is being held). dmu_tx_hold_zap() keeps a hold on the dnode_t the entire time it is running, in dmu_tx_hold_t:txh_dnode, so it would be nice to use the dnode_t that we already have in hand, rather than repeatedly calling dnode_hold(). To do this, we need to pass the dnode_t down through all the intermediate calls that dmu_tx_hold_zap() makes, making these routines take the dnode_t* rather than an objset_t* and a uint64_t object number. In particular, the following routines will need to have analogous *_by_dnode() variants created: dmu_buf_hold_noread() dmu_buf_hold() zap_lookup() zap_lookup_norm() zap_count_write() zap_lockdir() zap_count_write() This can improve performance on the benchmark described above by 100%, from 30,000 file creations per second to 60,000. (This improvement is on top of that provided by working around the object allocation issue. Peak performance of ~90,000 creations per second was observed with 8 CPUs; adding CPUs past that decreased performance due to lock contention.) The CPU used by dmu_tx_hold_zap() was reduced by 88%, from 340 CPU-seconds to 40 CPU-seconds. Sponsored by: Intel Corp. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/7004 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/109 Closes #4641 Closes #4972
2016-07-20 22:42:13 +00:00
/*
* Note: this is equivalent to dmu_buf_hold(), but we use
* _dnode_enter / _by_dnode because it's faster because we don't
* have to hold the dnode.
*/
dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
dmu_buf_t *db;
int err = dmu_buf_hold_by_dnode(dn,
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
OpenZFS 7004 - dmu_tx_hold_zap() does dnode_hold() 7x on same object Using a benchmark which has 32 threads creating 2 million files in the same directory, on a machine with 16 CPU cores, I observed poor performance. I noticed that dmu_tx_hold_zap() was using about 30% of all CPU, and doing dnode_hold() 7 times on the same object (the ZAP object that is being held). dmu_tx_hold_zap() keeps a hold on the dnode_t the entire time it is running, in dmu_tx_hold_t:txh_dnode, so it would be nice to use the dnode_t that we already have in hand, rather than repeatedly calling dnode_hold(). To do this, we need to pass the dnode_t down through all the intermediate calls that dmu_tx_hold_zap() makes, making these routines take the dnode_t* rather than an objset_t* and a uint64_t object number. In particular, the following routines will need to have analogous *_by_dnode() variants created: dmu_buf_hold_noread() dmu_buf_hold() zap_lookup() zap_lookup_norm() zap_count_write() zap_lockdir() zap_count_write() This can improve performance on the benchmark described above by 100%, from 30,000 file creations per second to 60,000. (This improvement is on top of that provided by working around the object allocation issue. Peak performance of ~90,000 creations per second was observed with 8 CPUs; adding CPUs past that decreased performance due to lock contention.) The CPU used by dmu_tx_hold_zap() was reduced by 88%, from 340 CPU-seconds to 40 CPU-seconds. Sponsored by: Intel Corp. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/7004 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/109 Closes #4641 Closes #4972
2016-07-20 22:42:13 +00:00
dmu_buf_dnode_exit(zap->zap_dbuf);
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
*valp = ((uint64_t *)db->db_data)[off];
dmu_buf_rele(db, FTAG);
if (tbl->zt_nextblk != 0) {
/*
* read the nextblk for the sake of i/o error checking,
* so that zap_table_load() will catch errors for
* zap_table_store.
*/
blk = (idx*2) >> (bs-3);
OpenZFS 7004 - dmu_tx_hold_zap() does dnode_hold() 7x on same object Using a benchmark which has 32 threads creating 2 million files in the same directory, on a machine with 16 CPU cores, I observed poor performance. I noticed that dmu_tx_hold_zap() was using about 30% of all CPU, and doing dnode_hold() 7 times on the same object (the ZAP object that is being held). dmu_tx_hold_zap() keeps a hold on the dnode_t the entire time it is running, in dmu_tx_hold_t:txh_dnode, so it would be nice to use the dnode_t that we already have in hand, rather than repeatedly calling dnode_hold(). To do this, we need to pass the dnode_t down through all the intermediate calls that dmu_tx_hold_zap() makes, making these routines take the dnode_t* rather than an objset_t* and a uint64_t object number. In particular, the following routines will need to have analogous *_by_dnode() variants created: dmu_buf_hold_noread() dmu_buf_hold() zap_lookup() zap_lookup_norm() zap_count_write() zap_lockdir() zap_count_write() This can improve performance on the benchmark described above by 100%, from 30,000 file creations per second to 60,000. (This improvement is on top of that provided by working around the object allocation issue. Peak performance of ~90,000 creations per second was observed with 8 CPUs; adding CPUs past that decreased performance due to lock contention.) The CPU used by dmu_tx_hold_zap() was reduced by 88%, from 340 CPU-seconds to 40 CPU-seconds. Sponsored by: Intel Corp. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/7004 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/109 Closes #4641 Closes #4972
2016-07-20 22:42:13 +00:00
dn = dmu_buf_dnode_enter(zap->zap_dbuf);
err = dmu_buf_hold_by_dnode(dn,
(tbl->zt_nextblk + blk) << bs, FTAG, &db,
DMU_READ_NO_PREFETCH);
OpenZFS 7004 - dmu_tx_hold_zap() does dnode_hold() 7x on same object Using a benchmark which has 32 threads creating 2 million files in the same directory, on a machine with 16 CPU cores, I observed poor performance. I noticed that dmu_tx_hold_zap() was using about 30% of all CPU, and doing dnode_hold() 7 times on the same object (the ZAP object that is being held). dmu_tx_hold_zap() keeps a hold on the dnode_t the entire time it is running, in dmu_tx_hold_t:txh_dnode, so it would be nice to use the dnode_t that we already have in hand, rather than repeatedly calling dnode_hold(). To do this, we need to pass the dnode_t down through all the intermediate calls that dmu_tx_hold_zap() makes, making these routines take the dnode_t* rather than an objset_t* and a uint64_t object number. In particular, the following routines will need to have analogous *_by_dnode() variants created: dmu_buf_hold_noread() dmu_buf_hold() zap_lookup() zap_lookup_norm() zap_count_write() zap_lockdir() zap_count_write() This can improve performance on the benchmark described above by 100%, from 30,000 file creations per second to 60,000. (This improvement is on top of that provided by working around the object allocation issue. Peak performance of ~90,000 creations per second was observed with 8 CPUs; adding CPUs past that decreased performance due to lock contention.) The CPU used by dmu_tx_hold_zap() was reduced by 88%, from 340 CPU-seconds to 40 CPU-seconds. Sponsored by: Intel Corp. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/7004 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/109 Closes #4641 Closes #4972
2016-07-20 22:42:13 +00:00
dmu_buf_dnode_exit(zap->zap_dbuf);
if (err == 0)
dmu_buf_rele(db, FTAG);
2008-11-20 20:01:55 +00:00
}
return (err);
}
/*
* Routines for growing the ptrtbl.
*/
static void
zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
{
for (int i = 0; i < n; i++) {
2008-11-20 20:01:55 +00:00
uint64_t lb = src[i];
dst[2 * i + 0] = lb;
dst[2 * i + 1] = lb;
2008-11-20 20:01:55 +00:00
}
}
static int
zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
{
/*
* The pointer table should never use more hash bits than we
* have (otherwise we'd be using useless zero bits to index it).
* If we are within 2 bits of running out, stop growing, since
* this is already an aberrant condition.
*/
if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
return (SET_ERROR(ENOSPC));
2008-11-20 20:01:55 +00:00
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
2008-11-20 20:01:55 +00:00
/*
* We are outgrowing the "embedded" ptrtbl (the one
* stored in the header block). Give it its own entire
* block, which will double the size of the ptrtbl.
*/
ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
2008-11-20 20:01:55 +00:00
ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
2008-11-20 20:01:55 +00:00
uint64_t newblk = zap_allocate_blocks(zap, 1);
dmu_buf_t *db_new;
int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
DMU_READ_NO_PREFETCH);
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
dmu_buf_will_dirty(db_new, tx);
zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
dmu_buf_rele(db_new, FTAG);
zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
2008-11-20 20:01:55 +00:00
ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
2008-11-20 20:01:55 +00:00
(FZAP_BLOCK_SHIFT(zap)-3));
return (0);
} else {
return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
2008-11-20 20:01:55 +00:00
zap_ptrtbl_transfer, tx));
}
}
static void
zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
{
dmu_buf_will_dirty(zap->zap_dbuf, tx);
mutex_enter(&zap->zap_f.zap_num_entries_mtx);
ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
zap_f_phys(zap)->zap_num_entries += delta;
2008-11-20 20:01:55 +00:00
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
}
static uint64_t
zap_allocate_blocks(zap_t *zap, int nblocks)
{
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
uint64_t newblk = zap_f_phys(zap)->zap_freeblk;
zap_f_phys(zap)->zap_freeblk += nblocks;
2008-11-20 20:01:55 +00:00
return (newblk);
}
static void
zap_leaf_evict_sync(void *dbu)
{
zap_leaf_t *l = dbu;
rw_destroy(&l->l_rwlock);
kmem_free(l, sizeof (zap_leaf_t));
}
2008-11-20 20:01:55 +00:00
static zap_leaf_t *
zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
{
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
2008-11-20 20:01:55 +00:00
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
Identify locks flagged by lockdep When running a kernel with CONFIG_LOCKDEP=y, lockdep reports possible recursive locking in some cases and possible circular locking dependency in others, within the SPL and ZFS modules. This patch uses a mutex type defined in SPL, MUTEX_NOLOCKDEP, to mark such mutexes when they are initialized. This mutex type causes attempts to take or release those locks to be wrapped in lockdep_off() and lockdep_on() calls to silence the dependency checker and allow the use of lock_stats to examine contention. For RW locks, it uses an analogous lock type, RW_NOLOCKDEP. The goal is that these locks are ultimately changed back to type MUTEX_DEFAULT or RW_DEFAULT, after the locks are annotated to reflect their relationship (e.g. z_name_lock below) or any real problem with the lock dependencies are fixed. Some of the affected locks are: tc_open_lock: ============= This is an array of locks, all with same name, which txg_quiesce must take all of in order to move txg to next state. All default to the same lockdep class, and so to lockdep appears recursive. zp->z_name_lock: ================ In zfs_rmdir, dzp = znode for the directory (input to zfs_dirent_lock) zp = znode for the entry being removed (output of zfs_dirent_lock) zfs_rmdir()->zfs_dirent_lock() takes z_name_lock in dzp zfs_rmdir() takes z_name_lock in zp Since both dzp and zp are type znode_t, the locks have the same default class, and lockdep considers it a possible recursive lock attempt. l->l_rwlock: ============ zap_expand_leaf() sometimes creates two new zap leaf structures, via these call paths: zap_deref_leaf()->zap_get_leaf_byblk()->zap_leaf_open() zap_expand_leaf()->zap_create_leaf()->zap_expand_leaf()->zap_create_leaf() Because both zap_leaf_open() and zap_create_leaf() initialize l->l_rwlock in their (separate) leaf structures, the lockdep class is the same, and the linux kernel believes these might both be the same lock, and emits a possible recursive lock warning. Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3895
2015-10-15 20:08:27 +00:00
rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
2008-11-20 20:01:55 +00:00
rw_enter(&l->l_rwlock, RW_WRITER);
l->l_blkid = zap_allocate_blocks(zap, 1);
l->l_dbuf = NULL;
VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf,
DMU_READ_NO_PREFETCH));
dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu));
2008-11-20 20:01:55 +00:00
dmu_buf_will_dirty(l->l_dbuf, tx);
zap_leaf_init(l, zap->zap_normflags != 0);
zap_f_phys(zap)->zap_num_leafs++;
2008-11-20 20:01:55 +00:00
return (l);
}
int
fzap_count(zap_t *zap, uint64_t *count)
{
ASSERT(!zap->zap_ismicro);
mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
*count = zap_f_phys(zap)->zap_num_entries;
2008-11-20 20:01:55 +00:00
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
return (0);
}
/*
* Routines for obtaining zap_leaf_t's
*/
void
zap_put_leaf(zap_leaf_t *l)
{
rw_exit(&l->l_rwlock);
dmu_buf_rele(l->l_dbuf, NULL);
}
static zap_leaf_t *
zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
{
ASSERT(blkid != 0);
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
2008-11-20 20:01:55 +00:00
rw_enter(&l->l_rwlock, RW_WRITER);
l->l_blkid = blkid;
l->l_bs = highbit64(db->db_size) - 1;
2008-11-20 20:01:55 +00:00
l->l_dbuf = db;
dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu);
2008-11-20 20:01:55 +00:00
rw_exit(&l->l_rwlock);
if (winner != NULL) {
/* someone else set it first */
zap_leaf_evict_sync(&l->l_dbu);
2008-11-20 20:01:55 +00:00
l = winner;
}
/*
* lhr_pad was previously used for the next leaf in the leaf
* chain. There should be no chained leafs (as we have removed
* support for them).
*/
ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
2008-11-20 20:01:55 +00:00
/*
* There should be more hash entries than there can be
* chunks to put in the hash table
*/
ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
/* The chunks should begin at the end of the hash table */
ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
&zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
2008-11-20 20:01:55 +00:00
/* The chunks should end at the end of the block */
ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
(uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
2008-11-20 20:01:55 +00:00
return (l);
}
static int
zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
zap_leaf_t **lp)
{
dmu_buf_t *db;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
/*
* If system crashed just after dmu_free_long_range in zfs_rmnode, we
* would be left with an empty xattr dir in delete queue. blkid=0
* would be passed in when doing zfs_purgedir. If that's the case we
* should just return immediately. The underlying objects should
* already be freed, so this should be perfectly fine.
*/
if (blkid == 0)
return (SET_ERROR(ENOENT));
int bs = FZAP_BLOCK_SHIFT(zap);
dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
int err = dmu_buf_hold_by_dnode(dn,
blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
OpenZFS 7004 - dmu_tx_hold_zap() does dnode_hold() 7x on same object Using a benchmark which has 32 threads creating 2 million files in the same directory, on a machine with 16 CPU cores, I observed poor performance. I noticed that dmu_tx_hold_zap() was using about 30% of all CPU, and doing dnode_hold() 7 times on the same object (the ZAP object that is being held). dmu_tx_hold_zap() keeps a hold on the dnode_t the entire time it is running, in dmu_tx_hold_t:txh_dnode, so it would be nice to use the dnode_t that we already have in hand, rather than repeatedly calling dnode_hold(). To do this, we need to pass the dnode_t down through all the intermediate calls that dmu_tx_hold_zap() makes, making these routines take the dnode_t* rather than an objset_t* and a uint64_t object number. In particular, the following routines will need to have analogous *_by_dnode() variants created: dmu_buf_hold_noread() dmu_buf_hold() zap_lookup() zap_lookup_norm() zap_count_write() zap_lockdir() zap_count_write() This can improve performance on the benchmark described above by 100%, from 30,000 file creations per second to 60,000. (This improvement is on top of that provided by working around the object allocation issue. Peak performance of ~90,000 creations per second was observed with 8 CPUs; adding CPUs past that decreased performance due to lock contention.) The CPU used by dmu_tx_hold_zap() was reduced by 88%, from 340 CPU-seconds to 40 CPU-seconds. Sponsored by: Intel Corp. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/7004 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/109 Closes #4641 Closes #4972
2016-07-20 22:42:13 +00:00
dmu_buf_dnode_exit(zap->zap_dbuf);
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
ASSERT3U(db->db_object, ==, zap->zap_object);
ASSERT3U(db->db_offset, ==, blkid << bs);
ASSERT3U(db->db_size, ==, 1 << bs);
ASSERT(blkid != 0);
zap_leaf_t *l = dmu_buf_get_user(db);
2008-11-20 20:01:55 +00:00
if (l == NULL)
l = zap_open_leaf(blkid, db);
rw_enter(&l->l_rwlock, lt);
/*
* Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
2008-11-20 20:01:55 +00:00
* causing ASSERT below to fail.
*/
if (lt == RW_WRITER)
dmu_buf_will_dirty(db, tx);
ASSERT3U(l->l_blkid, ==, blkid);
ASSERT3P(l->l_dbuf, ==, db);
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
2008-11-20 20:01:55 +00:00
*lp = l;
return (0);
}
static int
zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
{
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
2008-11-20 20:01:55 +00:00
ASSERT3U(idx, <,
(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
2008-11-20 20:01:55 +00:00
*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
return (0);
} else {
return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
2008-11-20 20:01:55 +00:00
idx, valp));
}
}
static int
zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
{
ASSERT(tx != NULL);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
2008-11-20 20:01:55 +00:00
ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
return (0);
} else {
return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
2008-11-20 20:01:55 +00:00
idx, blk, tx));
}
}
static int
zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
{
uint64_t blk;
2008-11-20 20:01:55 +00:00
ASSERT(zap->zap_dbuf == NULL ||
zap_f_phys(zap) == zap->zap_dbuf->db_data);
/* Reality check for corrupt zap objects (leaf or header). */
if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
return (SET_ERROR(EIO));
}
uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
int err = zap_idx_to_blk(zap, idx, &blk);
2008-11-20 20:01:55 +00:00
if (err != 0)
return (err);
err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
ASSERT(err ||
ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
zap_leaf_phys(*lp)->l_hdr.lh_prefix);
2008-11-20 20:01:55 +00:00
return (err);
}
static int
zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
2008-11-20 20:01:55 +00:00
{
zap_t *zap = zn->zn_zap;
uint64_t hash = zn->zn_hash;
int err;
int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
2008-11-20 20:01:55 +00:00
ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
2008-11-20 20:01:55 +00:00
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
zap_leaf_phys(l)->l_hdr.lh_prefix);
2008-11-20 20:01:55 +00:00
if (zap_tryupgradedir(zap, tx) == 0 ||
old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
2008-11-20 20:01:55 +00:00
/* We failed to upgrade, or need to grow the pointer table */
objset_t *os = zap->zap_objset;
uint64_t object = zap->zap_object;
zap_put_leaf(l);
zap_unlockdir(zap, tag);
2008-11-20 20:01:55 +00:00
err = zap_lockdir(os, object, tx, RW_WRITER,
FALSE, FALSE, tag, &zn->zn_zap);
2008-11-20 20:01:55 +00:00
zap = zn->zn_zap;
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
ASSERT(!zap->zap_ismicro);
while (old_prefix_len ==
zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
2008-11-20 20:01:55 +00:00
err = zap_grow_ptrtbl(zap, tx);
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
}
err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
2008-11-20 20:01:55 +00:00
/* it split while our locks were down */
*lp = l;
return (0);
}
}
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
2008-11-20 20:01:55 +00:00
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
zap_leaf_phys(l)->l_hdr.lh_prefix);
2008-11-20 20:01:55 +00:00
int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
2008-11-20 20:01:55 +00:00
(old_prefix_len + 1);
uint64_t sibling =
(ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
2008-11-20 20:01:55 +00:00
/* check for i/o errors before doing zap_leaf_split */
for (int i = 0; i < (1ULL << prefix_diff); i++) {
2008-11-20 20:01:55 +00:00
uint64_t blk;
err = zap_idx_to_blk(zap, sibling + i, &blk);
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
ASSERT3U(blk, ==, l->l_blkid);
}
zap_leaf_t *nl = zap_create_leaf(zap, tx);
2008-11-20 20:01:55 +00:00
zap_leaf_split(l, nl, zap->zap_normflags != 0);
/* set sibling pointers */
for (int i = 0; i < (1ULL << prefix_diff); i++) {
err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx);
ASSERT0(err); /* we checked for i/o errors above */
2008-11-20 20:01:55 +00:00
}
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
2008-11-20 20:01:55 +00:00
/* we want the sibling */
zap_put_leaf(l);
*lp = nl;
} else {
zap_put_leaf(nl);
*lp = l;
}
return (0);
}
static void
zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
void *tag, dmu_tx_t *tx)
2008-11-20 20:01:55 +00:00
{
zap_t *zap = zn->zn_zap;
int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
2008-11-20 20:01:55 +00:00
zap_put_leaf(l);
if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
2008-11-20 20:01:55 +00:00
/*
* We are in the middle of growing the pointer table, or
* this leaf will soon make us grow it.
*/
if (zap_tryupgradedir(zap, tx) == 0) {
objset_t *os = zap->zap_objset;
uint64_t zapobj = zap->zap_object;
zap_unlockdir(zap, tag);
int err = zap_lockdir(os, zapobj, tx,
RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
2008-11-20 20:01:55 +00:00
zap = zn->zn_zap;
if (err != 0)
2008-11-20 20:01:55 +00:00
return;
}
/* could have finished growing while our locks were down */
if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
2008-11-20 20:01:55 +00:00
(void) zap_grow_ptrtbl(zap, tx);
}
}
static int
fzap_checkname(zap_name_t *zn)
2008-11-20 20:01:55 +00:00
{
if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
return (SET_ERROR(ENAMETOOLONG));
return (0);
}
2008-11-20 20:01:55 +00:00
static int
fzap_checksize(uint64_t integer_size, uint64_t num_integers)
{
2008-11-20 20:01:55 +00:00
/* Only integer sizes supported by C */
switch (integer_size) {
case 1:
case 2:
case 4:
case 8:
break;
default:
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
if (integer_size * num_integers > ZAP_MAXVALUELEN)
return (SET_ERROR(E2BIG));
2008-11-20 20:01:55 +00:00
return (0);
}
static int
fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
{
int err = fzap_checkname(zn);
if (err != 0)
return (err);
return (fzap_checksize(integer_size, num_integers));
}
2008-11-20 20:01:55 +00:00
/*
* Routines for manipulating attributes.
*/
int
fzap_lookup(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers, void *buf,
char *realname, int rn_len, boolean_t *ncp)
{
zap_leaf_t *l;
zap_entry_handle_t zeh;
int err = fzap_checkname(zn);
if (err != 0)
2008-11-20 20:01:55 +00:00
return (err);
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
zap_put_leaf(l);
return (err);
}
2008-11-20 20:01:55 +00:00
err = zap_entry_read(&zeh, integer_size, num_integers, buf);
(void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
2008-11-20 20:01:55 +00:00
if (ncp) {
*ncp = zap_entry_normalization_conflict(&zeh,
zn, NULL, zn->zn_zap);
}
}
zap_put_leaf(l);
return (err);
}
int
fzap_add_cd(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers,
const void *val, uint32_t cd, void *tag, dmu_tx_t *tx)
2008-11-20 20:01:55 +00:00
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
zap_t *zap = zn->zn_zap;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT(!zap->zap_ismicro);
ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
2008-11-20 20:01:55 +00:00
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
retry:
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
err = SET_ERROR(EEXIST);
2008-11-20 20:01:55 +00:00
goto out;
}
if (err != ENOENT)
goto out;
err = zap_entry_create(l, zn, cd,
2008-11-20 20:01:55 +00:00
integer_size, num_integers, val, &zeh);
if (err == 0) {
zap_increment_num_entries(zap, 1, tx);
} else if (err == EAGAIN) {
err = zap_expand_leaf(zn, l, tag, tx, &l);
2008-11-20 20:01:55 +00:00
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
Fix ENOSPC in "Handle zap_add() failures in ..." Commit cc63068 caused ENOSPC error when copy a large amount of files between two directories. The reason is that the patch limits zap leaf expansion to 2 retries, and return ENOSPC when failed. The intent for limiting retries is to prevent pointlessly growing table to max size when adding a block full of entries with same name in different case in mixed mode. However, it turns out we cannot use any limit on the retry. When we copy files from one directory in readdir order, we are copying in hash order, one leaf block at a time. Which means that if the leaf block in source directory has expanded 6 times, and you copy those entries in that block, by the time you need to expand the leaf in destination directory, you need to expand it 6 times in one go. So any limit on the retry will result in error where it shouldn't. Note that while we do use different salt for different directories, it seems that the salt/hash function doesn't provide enough randomization to the hash distance to prevent this from happening. Since cc63068 has already been reverted. This patch adds it back and removes the retry limit. Also, as it turn out, failing on zap_add() has a serious side effect for mzap_upgrade(). When upgrading from micro zap to fat zap, it will call zap_add() to transfer entries one at a time. If it hit any error halfway through, the remaining entries will be lost, causing those files to become orphan. This patch add a VERIFY to catch it. Reviewed-by: Sanjeev Bagewadi <sanjeev.bagewadi@gmail.com> Reviewed-by: Richard Yao <ryao@gentoo.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Albert Lee <trisk@forkgnu.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Chunwei Chen <david.chen@nutanix.com> Closes #7401 Closes #7421
2018-04-18 21:19:50 +00:00
if (err == 0) {
2008-11-20 20:01:55 +00:00
goto retry;
Fix ENOSPC in "Handle zap_add() failures in ..." Commit cc63068 caused ENOSPC error when copy a large amount of files between two directories. The reason is that the patch limits zap leaf expansion to 2 retries, and return ENOSPC when failed. The intent for limiting retries is to prevent pointlessly growing table to max size when adding a block full of entries with same name in different case in mixed mode. However, it turns out we cannot use any limit on the retry. When we copy files from one directory in readdir order, we are copying in hash order, one leaf block at a time. Which means that if the leaf block in source directory has expanded 6 times, and you copy those entries in that block, by the time you need to expand the leaf in destination directory, you need to expand it 6 times in one go. So any limit on the retry will result in error where it shouldn't. Note that while we do use different salt for different directories, it seems that the salt/hash function doesn't provide enough randomization to the hash distance to prevent this from happening. Since cc63068 has already been reverted. This patch adds it back and removes the retry limit. Also, as it turn out, failing on zap_add() has a serious side effect for mzap_upgrade(). When upgrading from micro zap to fat zap, it will call zap_add() to transfer entries one at a time. If it hit any error halfway through, the remaining entries will be lost, causing those files to become orphan. This patch add a VERIFY to catch it. Reviewed-by: Sanjeev Bagewadi <sanjeev.bagewadi@gmail.com> Reviewed-by: Richard Yao <ryao@gentoo.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Albert Lee <trisk@forkgnu.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Chunwei Chen <david.chen@nutanix.com> Closes #7401 Closes #7421
2018-04-18 21:19:50 +00:00
} else if (err == ENOSPC) {
/*
* If we failed to expand the leaf, then bailout
* as there is no point trying
* zap_put_leaf_maybe_grow_ptrtbl().
*/
return (err);
}
2008-11-20 20:01:55 +00:00
}
out:
if (zap != NULL)
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
2008-11-20 20:01:55 +00:00
return (err);
}
int
fzap_add(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers,
const void *val, void *tag, dmu_tx_t *tx)
2008-11-20 20:01:55 +00:00
{
int err = fzap_check(zn, integer_size, num_integers);
2008-11-20 20:01:55 +00:00
if (err != 0)
return (err);
return (fzap_add_cd(zn, integer_size, num_integers,
val, ZAP_NEED_CD, tag, tx));
2008-11-20 20:01:55 +00:00
}
int
fzap_update(zap_name_t *zn,
int integer_size, uint64_t num_integers, const void *val,
void *tag, dmu_tx_t *tx)
2008-11-20 20:01:55 +00:00
{
zap_leaf_t *l;
int err;
boolean_t create;
2008-11-20 20:01:55 +00:00
zap_entry_handle_t zeh;
zap_t *zap = zn->zn_zap;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
err = fzap_check(zn, integer_size, num_integers);
2008-11-20 20:01:55 +00:00
if (err != 0)
return (err);
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
retry:
err = zap_leaf_lookup(l, zn, &zeh);
create = (err == ENOENT);
ASSERT(err == 0 || err == ENOENT);
if (create) {
err = zap_entry_create(l, zn, ZAP_NEED_CD,
integer_size, num_integers, val, &zeh);
2008-11-20 20:01:55 +00:00
if (err == 0)
zap_increment_num_entries(zap, 1, tx);
} else {
err = zap_entry_update(&zeh, integer_size, num_integers, val);
}
if (err == EAGAIN) {
err = zap_expand_leaf(zn, l, tag, tx, &l);
2008-11-20 20:01:55 +00:00
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
if (err == 0)
goto retry;
}
if (zap != NULL)
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
2008-11-20 20:01:55 +00:00
return (err);
}
int
fzap_length(zap_name_t *zn,
uint64_t *integer_size, uint64_t *num_integers)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err != 0)
goto out;
if (integer_size != 0)
2008-11-20 20:01:55 +00:00
*integer_size = zeh.zeh_integer_size;
if (num_integers != 0)
2008-11-20 20:01:55 +00:00
*num_integers = zeh.zeh_num_integers;
out:
zap_put_leaf(l);
return (err);
}
int
fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
zap_entry_remove(&zeh);
zap_increment_num_entries(zn->zn_zap, -1, tx);
}
zap_put_leaf(l);
return (err);
}
void
fzap_prefetch(zap_name_t *zn)
{
uint64_t blk;
zap_t *zap = zn->zn_zap;
uint64_t idx = ZAP_HASH_IDX(zn->zn_hash,
zap_f_phys(zap)->zap_ptrtbl.zt_shift);
if (zap_idx_to_blk(zap, idx, &blk) != 0)
return;
int bs = FZAP_BLOCK_SHIFT(zap);
dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs,
ZIO_PRIORITY_SYNC_READ);
}
/*
* Helper functions for consumers.
*/
uint64_t
zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
const char *name, dmu_tx_t *tx)
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 01:25:34 +00:00
{
return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
}
uint64_t
zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
const char *name, int dnodesize, dmu_tx_t *tx)
{
uint64_t new_obj;
new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx);
VERIFY(new_obj != 0);
VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
tx));
return (new_obj);
}
2008-11-20 20:01:55 +00:00
int
zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
char *name)
{
zap_cursor_t zc;
int err;
if (mask == 0)
mask = -1ULL;
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
2008-11-20 20:01:55 +00:00
for (zap_cursor_init(&zc, os, zapobj);
(err = zap_cursor_retrieve(&zc, za)) == 0;
zap_cursor_advance(&zc)) {
if ((za->za_first_integer & mask) == (value & mask)) {
(void) strlcpy(name, za->za_name, MAXNAMELEN);
2008-11-20 20:01:55 +00:00
break;
}
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (*za));
2008-11-20 20:01:55 +00:00
return (err);
}
int
zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
{
zap_cursor_t zc;
int err = 0;
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, za) == 0;
(void) zap_cursor_advance(&zc)) {
if (za->za_integer_length != 8 || za->za_num_integers != 1) {
err = SET_ERROR(EINVAL);
break;
}
err = zap_add(os, intoobj, za->za_name,
8, 1, &za->za_first_integer, tx);
if (err != 0)
break;
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (*za));
return (err);
}
int
zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
uint64_t value, dmu_tx_t *tx)
{
zap_cursor_t zc;
int err = 0;
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, za) == 0;
(void) zap_cursor_advance(&zc)) {
if (za->za_integer_length != 8 || za->za_num_integers != 1) {
err = SET_ERROR(EINVAL);
break;
}
err = zap_add(os, intoobj, za->za_name,
8, 1, &value, tx);
if (err != 0)
break;
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (*za));
return (err);
}
int
zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
dmu_tx_t *tx)
{
zap_cursor_t zc;
int err = 0;
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, za) == 0;
(void) zap_cursor_advance(&zc)) {
uint64_t delta = 0;
if (za->za_integer_length != 8 || za->za_num_integers != 1) {
err = SET_ERROR(EINVAL);
break;
}
err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta);
if (err != 0 && err != ENOENT)
break;
delta += za->za_first_integer;
err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx);
if (err != 0)
break;
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (*za));
return (err);
}
int
zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_add(os, obj, name, 8, 1, &value, tx));
}
int
zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_remove(os, obj, name, tx));
}
int
zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_lookup(os, obj, name, 8, 1, &value));
}
2008-11-20 20:01:55 +00:00
int
zap_add_int_key(objset_t *os, uint64_t obj,
uint64_t key, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_add(os, obj, name, 8, 1, &value, tx));
}
int
zap_update_int_key(objset_t *os, uint64_t obj,
uint64_t key, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_update(os, obj, name, 8, 1, &value, tx));
}
int
zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_lookup(os, obj, name, 8, 1, valuep));
}
int
zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
dmu_tx_t *tx)
{
uint64_t value = 0;
if (delta == 0)
return (0);
int err = zap_lookup(os, obj, name, 8, 1, &value);
if (err != 0 && err != ENOENT)
return (err);
value += delta;
if (value == 0)
err = zap_remove(os, obj, name, tx);
else
err = zap_update(os, obj, name, 8, 1, &value, tx);
return (err);
}
int
zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_increment(os, obj, name, delta, tx));
}
2008-11-20 20:01:55 +00:00
/*
* Routines for iterating over the attributes.
*/
int
fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
{
int err = ENOENT;
zap_entry_handle_t zeh;
zap_leaf_t *l;
/* retrieve the next entry at or after zc_hash/zc_cd */
/* if no entry, return ENOENT */
/*
* If we are reading from the beginning, we're almost certain to
* iterate over the entire ZAP object. If there are multiple leaf
* blocks (freeblk > 2), prefetch the whole object (up to
* dmu_prefetch_max bytes), so that we read the leaf blocks
* concurrently. (Unless noprefetch was requested via
* zap_cursor_init_noprefetch()).
*/
if (zc->zc_hash == 0 && zap_iterate_prefetch &&
zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) {
dmu_prefetch(zc->zc_objset, zc->zc_zapobj, 0, 0,
zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap),
ZIO_PRIORITY_ASYNC_READ);
}
2008-11-20 20:01:55 +00:00
if (zc->zc_leaf &&
(ZAP_HASH_IDX(zc->zc_hash,
zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
2008-11-20 20:01:55 +00:00
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
zap_put_leaf(zc->zc_leaf);
zc->zc_leaf = NULL;
}
again:
if (zc->zc_leaf == NULL) {
err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
&zc->zc_leaf);
if (err != 0)
return (err);
} else {
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
}
l = zc->zc_leaf;
err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
if (err == ENOENT) {
if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
2008-11-20 20:01:55 +00:00
zc->zc_hash = -1ULL;
zc->zc_cd = 0;
2008-11-20 20:01:55 +00:00
} else {
uint64_t nocare = (1ULL <<
(64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
zc->zc_cd = 0;
if (zc->zc_hash == 0) {
zc->zc_hash = -1ULL;
} else {
zap_put_leaf(zc->zc_leaf);
zc->zc_leaf = NULL;
goto again;
}
2008-11-20 20:01:55 +00:00
}
}
if (err == 0) {
zc->zc_hash = zeh.zeh_hash;
zc->zc_cd = zeh.zeh_cd;
za->za_integer_length = zeh.zeh_integer_size;
za->za_num_integers = zeh.zeh_num_integers;
if (zeh.zeh_num_integers == 0) {
za->za_first_integer = 0;
} else {
err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
ASSERT(err == 0 || err == EOVERFLOW);
}
err = zap_entry_read_name(zap, &zeh,
2008-11-20 20:01:55 +00:00
sizeof (za->za_name), za->za_name);
ASSERT(err == 0);
za->za_normalization_conflict =
zap_entry_normalization_conflict(&zeh,
NULL, za->za_name, zap);
}
rw_exit(&zc->zc_leaf->l_rwlock);
return (err);
}
static void
zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
{
uint64_t lastblk = 0;
/*
* NB: if a leaf has more pointers than an entire ptrtbl block
* can hold, then it'll be accounted for more than once, since
* we won't have lastblk.
*/
for (int i = 0; i < len; i++) {
2008-11-20 20:01:55 +00:00
zap_leaf_t *l;
if (tbl[i] == lastblk)
continue;
lastblk = tbl[i];
int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
2008-11-20 20:01:55 +00:00
if (err == 0) {
zap_leaf_stats(zap, l, zs);
zap_put_leaf(l);
}
}
}
void
fzap_get_stats(zap_t *zap, zap_stats_t *zs)
{
int bs = FZAP_BLOCK_SHIFT(zap);
zs->zs_blocksize = 1ULL << bs;
/*
* Set zap_phys_t fields
*/
zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
zs->zs_magic = zap_f_phys(zap)->zap_magic;
zs->zs_salt = zap_f_phys(zap)->zap_salt;
2008-11-20 20:01:55 +00:00
/*
* Set zap_ptrtbl fields
*/
zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
2008-11-20 20:01:55 +00:00
zs->zs_ptrtbl_blks_copied =
zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
2008-11-20 20:01:55 +00:00
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
2008-11-20 20:01:55 +00:00
/* the ptrtbl is entirely in the header block. */
zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
} else {
dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
ZIO_PRIORITY_SYNC_READ);
2008-11-20 20:01:55 +00:00
for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
2008-11-20 20:01:55 +00:00
b++) {
dmu_buf_t *db;
int err;
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
FTAG, &db, DMU_READ_NO_PREFETCH);
2008-11-20 20:01:55 +00:00
if (err == 0) {
zap_stats_ptrtbl(zap, db->db_data,
1<<(bs-3), zs);
dmu_buf_rele(db, FTAG);
}
}
}
}
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW,
"When iterating ZAP object, prefetch it");
/* END CSTYLED */