zfs/module/zfs/spa_stats.c

1026 lines
27 KiB
C
Raw Normal View History

Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
#include <sys/vdev_impl.h>
#include <sys/spa.h>
#include <zfs_comutil.h>
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
/*
* Keeps stats on last N reads per spa_t, disabled by default.
*/
static int zfs_read_history = B_FALSE;
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
/*
* Include cache hits in history, disabled by default.
*/
static int zfs_read_history_hits = B_FALSE;
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
/*
* Keeps stats on the last 100 txgs by default.
*/
static int zfs_txg_history = 100;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
/*
* Keeps stats on the last N MMP updates, disabled by default.
*/
int zfs_multihost_history = B_FALSE;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
/*
* ==========================================================================
* SPA Read History Routines
* ==========================================================================
*/
/*
* Read statistics - Information exported regarding each arc_read call
*/
typedef struct spa_read_history {
hrtime_t start; /* time read completed */
uint64_t objset; /* read from this objset */
uint64_t object; /* read of this object number */
uint64_t level; /* block's indirection level */
uint64_t blkid; /* read of this block id */
char origin[24]; /* read originated from here */
uint32_t aflags; /* ARC flags (cached, prefetch, etc.) */
pid_t pid; /* PID of task doing read */
char comm[16]; /* process name of task doing read */
procfs_list_node_t srh_node;
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
} spa_read_history_t;
static int
spa_read_history_show_header(struct seq_file *f)
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
{
seq_printf(f, "%-8s %-16s %-8s %-8s %-8s %-8s %-8s "
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
"%-24s %-8s %-16s\n", "UID", "start", "objset", "object",
"level", "blkid", "aflags", "origin", "pid", "process");
return (0);
}
static int
spa_read_history_show(struct seq_file *f, void *data)
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
{
spa_read_history_t *srh = (spa_read_history_t *)data;
seq_printf(f, "%-8llu %-16llu 0x%-6llx "
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
"%-8lli %-8lli %-8lli 0x%-6x %-24s %-8i %-16s\n",
(u_longlong_t)srh->srh_node.pln_id, srh->start,
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
(longlong_t)srh->objset, (longlong_t)srh->object,
(longlong_t)srh->level, (longlong_t)srh->blkid,
srh->aflags, srh->origin, srh->pid, srh->comm);
return (0);
}
/* Remove oldest elements from list until there are no more than 'size' left */
static void
spa_read_history_truncate(spa_history_list_t *shl, unsigned int size)
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
{
spa_read_history_t *srh;
while (shl->size > size) {
srh = list_remove_head(&shl->procfs_list.pl_list);
ASSERT3P(srh, !=, NULL);
kmem_free(srh, sizeof (spa_read_history_t));
shl->size--;
}
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
if (size == 0)
ASSERT(list_is_empty(&shl->procfs_list.pl_list));
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
}
static int
spa_read_history_clear(procfs_list_t *procfs_list)
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
{
spa_history_list_t *shl = procfs_list->pl_private;
mutex_enter(&procfs_list->pl_lock);
spa_read_history_truncate(shl, 0);
mutex_exit(&procfs_list->pl_lock);
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
return (0);
}
static void
spa_read_history_init(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.read_history;
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
shl->size = 0;
shl->procfs_list.pl_private = shl;
procfs_list_install("zfs",
spa_name(spa),
"reads",
0600,
&shl->procfs_list,
spa_read_history_show,
spa_read_history_show_header,
spa_read_history_clear,
offsetof(spa_read_history_t, srh_node));
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
}
static void
spa_read_history_destroy(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.read_history;
procfs_list_uninstall(&shl->procfs_list);
spa_read_history_truncate(shl, 0);
procfs_list_destroy(&shl->procfs_list);
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
}
void
spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb, uint32_t aflags)
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
{
spa_history_list_t *shl = &spa->spa_stats.read_history;
spa_read_history_t *srh;
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
ASSERT3P(spa, !=, NULL);
ASSERT3P(zb, !=, NULL);
if (zfs_read_history == 0 && shl->size == 0)
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
return;
if (zfs_read_history_hits == 0 && (aflags & ARC_FLAG_CACHED))
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
return;
srh = kmem_zalloc(sizeof (spa_read_history_t), KM_SLEEP);
strlcpy(srh->comm, getcomm(), sizeof (srh->comm));
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
srh->start = gethrtime();
srh->objset = zb->zb_objset;
srh->object = zb->zb_object;
srh->level = zb->zb_level;
srh->blkid = zb->zb_blkid;
srh->aflags = aflags;
srh->pid = getpid();
mutex_enter(&shl->procfs_list.pl_lock);
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
procfs_list_add(&shl->procfs_list, srh);
shl->size++;
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
spa_read_history_truncate(shl, zfs_read_history);
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
mutex_exit(&shl->procfs_list.pl_lock);
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
}
/*
* ==========================================================================
* SPA TXG History Routines
* ==========================================================================
*/
/*
* Txg statistics - Information exported regarding each txg sync
*/
typedef struct spa_txg_history {
uint64_t txg; /* txg id */
txg_state_t state; /* active txg state */
uint64_t nread; /* number of bytes read */
uint64_t nwritten; /* number of bytes written */
uint64_t reads; /* number of read operations */
uint64_t writes; /* number of write operations */
uint64_t ndirty; /* number of dirty bytes */
hrtime_t times[TXG_STATE_COMMITTED]; /* completion times */
procfs_list_node_t sth_node;
} spa_txg_history_t;
static int
spa_txg_history_show_header(struct seq_file *f)
{
seq_printf(f, "%-8s %-16s %-5s %-12s %-12s %-12s "
"%-8s %-8s %-12s %-12s %-12s %-12s\n", "txg", "birth", "state",
"ndirty", "nread", "nwritten", "reads", "writes",
"otime", "qtime", "wtime", "stime");
return (0);
}
static int
spa_txg_history_show(struct seq_file *f, void *data)
{
spa_txg_history_t *sth = (spa_txg_history_t *)data;
uint64_t open = 0, quiesce = 0, wait = 0, sync = 0;
char state;
switch (sth->state) {
case TXG_STATE_BIRTH: state = 'B'; break;
case TXG_STATE_OPEN: state = 'O'; break;
case TXG_STATE_QUIESCED: state = 'Q'; break;
case TXG_STATE_WAIT_FOR_SYNC: state = 'W'; break;
case TXG_STATE_SYNCED: state = 'S'; break;
case TXG_STATE_COMMITTED: state = 'C'; break;
default: state = '?'; break;
}
if (sth->times[TXG_STATE_OPEN])
open = sth->times[TXG_STATE_OPEN] -
sth->times[TXG_STATE_BIRTH];
if (sth->times[TXG_STATE_QUIESCED])
quiesce = sth->times[TXG_STATE_QUIESCED] -
sth->times[TXG_STATE_OPEN];
if (sth->times[TXG_STATE_WAIT_FOR_SYNC])
wait = sth->times[TXG_STATE_WAIT_FOR_SYNC] -
sth->times[TXG_STATE_QUIESCED];
if (sth->times[TXG_STATE_SYNCED])
sync = sth->times[TXG_STATE_SYNCED] -
sth->times[TXG_STATE_WAIT_FOR_SYNC];
seq_printf(f, "%-8llu %-16llu %-5c %-12llu "
"%-12llu %-12llu %-8llu %-8llu %-12llu %-12llu %-12llu %-12llu\n",
(longlong_t)sth->txg, sth->times[TXG_STATE_BIRTH], state,
(u_longlong_t)sth->ndirty,
(u_longlong_t)sth->nread, (u_longlong_t)sth->nwritten,
(u_longlong_t)sth->reads, (u_longlong_t)sth->writes,
(u_longlong_t)open, (u_longlong_t)quiesce, (u_longlong_t)wait,
(u_longlong_t)sync);
return (0);
}
/* Remove oldest elements from list until there are no more than 'size' left */
static void
spa_txg_history_truncate(spa_history_list_t *shl, unsigned int size)
{
spa_txg_history_t *sth;
while (shl->size > size) {
sth = list_remove_head(&shl->procfs_list.pl_list);
ASSERT3P(sth, !=, NULL);
kmem_free(sth, sizeof (spa_txg_history_t));
shl->size--;
}
if (size == 0)
ASSERT(list_is_empty(&shl->procfs_list.pl_list));
}
static int
spa_txg_history_clear(procfs_list_t *procfs_list)
{
spa_history_list_t *shl = procfs_list->pl_private;
mutex_enter(&procfs_list->pl_lock);
spa_txg_history_truncate(shl, 0);
mutex_exit(&procfs_list->pl_lock);
return (0);
}
static void
spa_txg_history_init(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
shl->size = 0;
shl->procfs_list.pl_private = shl;
procfs_list_install("zfs",
spa_name(spa),
"txgs",
0644,
&shl->procfs_list,
spa_txg_history_show,
spa_txg_history_show_header,
spa_txg_history_clear,
offsetof(spa_txg_history_t, sth_node));
}
static void
spa_txg_history_destroy(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
procfs_list_uninstall(&shl->procfs_list);
spa_txg_history_truncate(shl, 0);
procfs_list_destroy(&shl->procfs_list);
}
/*
* Add a new txg to historical record.
*/
void
spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
spa_txg_history_t *sth;
if (zfs_txg_history == 0 && shl->size == 0)
return;
sth = kmem_zalloc(sizeof (spa_txg_history_t), KM_SLEEP);
sth->txg = txg;
sth->state = TXG_STATE_OPEN;
sth->times[TXG_STATE_BIRTH] = birth_time;
mutex_enter(&shl->procfs_list.pl_lock);
procfs_list_add(&shl->procfs_list, sth);
shl->size++;
spa_txg_history_truncate(shl, zfs_txg_history);
mutex_exit(&shl->procfs_list.pl_lock);
}
/*
* Set txg state completion time and increment current state.
*/
int
spa_txg_history_set(spa_t *spa, uint64_t txg, txg_state_t completed_state,
hrtime_t completed_time)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
spa_txg_history_t *sth;
int error = ENOENT;
if (zfs_txg_history == 0)
return (0);
mutex_enter(&shl->procfs_list.pl_lock);
for (sth = list_tail(&shl->procfs_list.pl_list); sth != NULL;
sth = list_prev(&shl->procfs_list.pl_list, sth)) {
if (sth->txg == txg) {
sth->times[completed_state] = completed_time;
sth->state++;
error = 0;
break;
}
}
mutex_exit(&shl->procfs_list.pl_lock);
return (error);
}
/*
* Set txg IO stats.
*/
static int
spa_txg_history_set_io(spa_t *spa, uint64_t txg, uint64_t nread,
uint64_t nwritten, uint64_t reads, uint64_t writes, uint64_t ndirty)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
spa_txg_history_t *sth;
int error = ENOENT;
if (zfs_txg_history == 0)
return (0);
mutex_enter(&shl->procfs_list.pl_lock);
for (sth = list_tail(&shl->procfs_list.pl_list); sth != NULL;
sth = list_prev(&shl->procfs_list.pl_list, sth)) {
if (sth->txg == txg) {
sth->nread = nread;
sth->nwritten = nwritten;
sth->reads = reads;
sth->writes = writes;
sth->ndirty = ndirty;
error = 0;
break;
}
}
mutex_exit(&shl->procfs_list.pl_lock);
return (error);
}
txg_stat_t *
spa_txg_history_init_io(spa_t *spa, uint64_t txg, dsl_pool_t *dp)
{
txg_stat_t *ts;
if (zfs_txg_history == 0)
return (NULL);
ts = kmem_alloc(sizeof (txg_stat_t), KM_SLEEP);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vdev_get_stats(spa->spa_root_vdev, &ts->vs1);
spa_config_exit(spa, SCL_CONFIG, FTAG);
ts->txg = txg;
ts->ndirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
spa_txg_history_set(spa, txg, TXG_STATE_WAIT_FOR_SYNC, gethrtime());
return (ts);
}
void
spa_txg_history_fini_io(spa_t *spa, txg_stat_t *ts)
{
if (ts == NULL)
return;
if (zfs_txg_history == 0) {
kmem_free(ts, sizeof (txg_stat_t));
return;
}
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vdev_get_stats(spa->spa_root_vdev, &ts->vs2);
spa_config_exit(spa, SCL_CONFIG, FTAG);
spa_txg_history_set(spa, ts->txg, TXG_STATE_SYNCED, gethrtime());
spa_txg_history_set_io(spa, ts->txg,
ts->vs2.vs_bytes[ZIO_TYPE_READ] - ts->vs1.vs_bytes[ZIO_TYPE_READ],
ts->vs2.vs_bytes[ZIO_TYPE_WRITE] - ts->vs1.vs_bytes[ZIO_TYPE_WRITE],
ts->vs2.vs_ops[ZIO_TYPE_READ] - ts->vs1.vs_ops[ZIO_TYPE_READ],
ts->vs2.vs_ops[ZIO_TYPE_WRITE] - ts->vs1.vs_ops[ZIO_TYPE_WRITE],
ts->ndirty);
kmem_free(ts, sizeof (txg_stat_t));
}
/*
* ==========================================================================
* SPA TX Assign Histogram Routines
* ==========================================================================
*/
/*
* Tx statistics - Information exported regarding dmu_tx_assign time.
*/
/*
* When the kstat is written zero all buckets. When the kstat is read
* count the number of trailing buckets set to zero and update ks_ndata
* such that they are not output.
*/
static int
spa_tx_assign_update(kstat_t *ksp, int rw)
{
spa_t *spa = ksp->ks_private;
spa_history_kstat_t *shk = &spa->spa_stats.tx_assign_histogram;
int i;
if (rw == KSTAT_WRITE) {
for (i = 0; i < shk->count; i++)
((kstat_named_t *)shk->priv)[i].value.ui64 = 0;
}
for (i = shk->count; i > 0; i--)
if (((kstat_named_t *)shk->priv)[i-1].value.ui64 != 0)
break;
ksp->ks_ndata = i;
ksp->ks_data_size = i * sizeof (kstat_named_t);
return (0);
}
static void
spa_tx_assign_init(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.tx_assign_histogram;
char *name;
kstat_named_t *ks;
kstat_t *ksp;
int i;
mutex_init(&shk->lock, NULL, MUTEX_DEFAULT, NULL);
shk->count = 42; /* power of two buckets for 1ns to 2,199s */
shk->size = shk->count * sizeof (kstat_named_t);
shk->priv = kmem_alloc(shk->size, KM_SLEEP);
name = kmem_asprintf("zfs/%s", spa_name(spa));
for (i = 0; i < shk->count; i++) {
ks = &((kstat_named_t *)shk->priv)[i];
ks->data_type = KSTAT_DATA_UINT64;
ks->value.ui64 = 0;
(void) snprintf(ks->name, KSTAT_STRLEN, "%llu ns",
(u_longlong_t)1 << i);
}
ksp = kstat_create(name, 0, "dmu_tx_assign", "misc",
KSTAT_TYPE_NAMED, 0, KSTAT_FLAG_VIRTUAL);
shk->kstat = ksp;
if (ksp) {
ksp->ks_lock = &shk->lock;
ksp->ks_data = shk->priv;
ksp->ks_ndata = shk->count;
ksp->ks_data_size = shk->size;
ksp->ks_private = spa;
ksp->ks_update = spa_tx_assign_update;
kstat_install(ksp);
}
kmem_strfree(name);
}
static void
spa_tx_assign_destroy(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.tx_assign_histogram;
kstat_t *ksp;
ksp = shk->kstat;
if (ksp)
kstat_delete(ksp);
kmem_free(shk->priv, shk->size);
mutex_destroy(&shk->lock);
}
void
spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs)
{
spa_history_kstat_t *shk = &spa->spa_stats.tx_assign_histogram;
uint64_t idx = 0;
while (((1ULL << idx) < nsecs) && (idx < shk->size - 1))
idx++;
atomic_inc_64(&((kstat_named_t *)shk->priv)[idx].value.ui64);
}
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
/*
* ==========================================================================
* SPA MMP History Routines
* ==========================================================================
*/
/*
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
* MMP statistics - Information exported regarding attempted MMP writes
* For MMP writes issued, fields used as per comments below.
* For MMP writes skipped, an entry represents a span of time when
* writes were skipped for same reason (error from mmp_random_leaf).
* Differences are:
* timestamp time first write skipped, if >1 skipped in a row
* mmp_delay delay value at timestamp
* vdev_guid number of writes skipped
* io_error one of enum mmp_error
* duration time span (ns) of skipped writes
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
*/
typedef struct spa_mmp_history {
uint64_t mmp_node_id; /* unique # for updates */
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
uint64_t txg; /* txg of last sync */
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
uint64_t timestamp; /* UTC time MMP write issued */
uint64_t mmp_delay; /* mmp_thread.mmp_delay at timestamp */
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
uint64_t vdev_guid; /* unique ID of leaf vdev */
char *vdev_path;
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
int vdev_label; /* vdev label */
int io_error; /* error status of MMP write */
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
hrtime_t error_start; /* hrtime of start of error period */
hrtime_t duration; /* time from submission to completion */
procfs_list_node_t smh_node;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
} spa_mmp_history_t;
static int
spa_mmp_history_show_header(struct seq_file *f)
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
{
seq_printf(f, "%-10s %-10s %-10s %-6s %-10s %-12s %-24s "
"%-10s %s\n", "id", "txg", "timestamp", "error", "duration",
"mmp_delay", "vdev_guid", "vdev_label", "vdev_path");
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
return (0);
}
static int
spa_mmp_history_show(struct seq_file *f, void *data)
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
{
spa_mmp_history_t *smh = (spa_mmp_history_t *)data;
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
char skip_fmt[] = "%-10llu %-10llu %10llu %#6llx %10lld %12llu %-24llu "
"%-10lld %s\n";
char write_fmt[] = "%-10llu %-10llu %10llu %6lld %10lld %12llu %-24llu "
"%-10lld %s\n";
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
seq_printf(f, (smh->error_start ? skip_fmt : write_fmt),
(u_longlong_t)smh->mmp_node_id, (u_longlong_t)smh->txg,
(u_longlong_t)smh->timestamp, (longlong_t)smh->io_error,
(longlong_t)smh->duration, (u_longlong_t)smh->mmp_delay,
(u_longlong_t)smh->vdev_guid, (u_longlong_t)smh->vdev_label,
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
(smh->vdev_path ? smh->vdev_path : "-"));
return (0);
}
/* Remove oldest elements from list until there are no more than 'size' left */
static void
spa_mmp_history_truncate(spa_history_list_t *shl, unsigned int size)
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
{
spa_mmp_history_t *smh;
while (shl->size > size) {
smh = list_remove_head(&shl->procfs_list.pl_list);
if (smh->vdev_path)
kmem_strfree(smh->vdev_path);
kmem_free(smh, sizeof (spa_mmp_history_t));
shl->size--;
}
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
if (size == 0)
ASSERT(list_is_empty(&shl->procfs_list.pl_list));
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
}
static int
spa_mmp_history_clear(procfs_list_t *procfs_list)
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
{
spa_history_list_t *shl = procfs_list->pl_private;
mutex_enter(&procfs_list->pl_lock);
spa_mmp_history_truncate(shl, 0);
mutex_exit(&procfs_list->pl_lock);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
return (0);
}
static void
spa_mmp_history_init(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
shl->size = 0;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
shl->procfs_list.pl_private = shl;
procfs_list_install("zfs",
spa_name(spa),
"multihost",
0644,
&shl->procfs_list,
spa_mmp_history_show,
spa_mmp_history_show_header,
spa_mmp_history_clear,
offsetof(spa_mmp_history_t, smh_node));
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
}
static void
spa_mmp_history_destroy(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
procfs_list_uninstall(&shl->procfs_list);
spa_mmp_history_truncate(shl, 0);
procfs_list_destroy(&shl->procfs_list);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
}
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
/*
* Set duration in existing "skip" record to how long we have waited for a leaf
* vdev to become available.
*
* Important that we start search at the tail of the list where new
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
* records are inserted, so this is normally an O(1) operation.
*/
int
spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_node_id)
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
spa_mmp_history_t *smh;
int error = ENOENT;
if (zfs_multihost_history == 0 && shl->size == 0)
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
return (0);
mutex_enter(&shl->procfs_list.pl_lock);
for (smh = list_tail(&shl->procfs_list.pl_list); smh != NULL;
smh = list_prev(&shl->procfs_list.pl_list, smh)) {
if (smh->mmp_node_id == mmp_node_id) {
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
ASSERT3U(smh->io_error, !=, 0);
smh->duration = gethrtime() - smh->error_start;
smh->vdev_guid++;
error = 0;
break;
}
}
mutex_exit(&shl->procfs_list.pl_lock);
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
return (error);
}
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
/*
* Set MMP write duration and error status in existing record.
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
* See comment re: search order above spa_mmp_history_set_skip().
*/
int
spa_mmp_history_set(spa_t *spa, uint64_t mmp_node_id, int io_error,
hrtime_t duration)
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
spa_mmp_history_t *smh;
int error = ENOENT;
if (zfs_multihost_history == 0 && shl->size == 0)
return (0);
mutex_enter(&shl->procfs_list.pl_lock);
for (smh = list_tail(&shl->procfs_list.pl_list); smh != NULL;
smh = list_prev(&shl->procfs_list.pl_list, smh)) {
if (smh->mmp_node_id == mmp_node_id) {
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
ASSERT(smh->io_error == 0);
smh->io_error = io_error;
smh->duration = duration;
error = 0;
break;
}
}
mutex_exit(&shl->procfs_list.pl_lock);
return (error);
}
/*
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
* Add a new MMP historical record.
* error == 0 : a write was issued.
* error != 0 : a write was not issued because no leaves were found.
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
*/
void
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_node_id,
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
int error)
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
spa_mmp_history_t *smh;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
if (zfs_multihost_history == 0 && shl->size == 0)
return;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
smh = kmem_zalloc(sizeof (spa_mmp_history_t), KM_SLEEP);
smh->txg = txg;
smh->timestamp = timestamp;
smh->mmp_delay = mmp_delay;
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
if (vd) {
smh->vdev_guid = vd->vdev_guid;
if (vd->vdev_path)
smh->vdev_path = kmem_strdup(vd->vdev_path);
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
}
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
smh->vdev_label = label;
smh->mmp_node_id = mmp_node_id;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
Record skipped MMP writes in multihost_history Once per pass through the MMP thread's loop, the vdev tree is walked to find a suitable leaf to write the next MMP block to. If no such leaf is found, the thread sleeps for a while and resumes at the top of the loop. Add an entry to multihost_history when no leaf can be found, and record the reason in the error column. The error code for such entries is a bitfield, displayed in hex: 0x1 At least one vdev (interior or leaf) was not writeable. 0x2 At least one writeable leaf vdev was found, but it had a pending MMP write. timestamp = the time in seconds since the epoch when no leaf could be found originally. duration = the time (in ns) during which no MMP block was written for this reason. This does not include the preceeding inter-write period nor the following inter-write period. vdev_guid = the number of sequential cycles of the MMP thread looop when this occurred. Sample output, truncated to fit: For records of skipped MMP writes the right-most column, vdev_path, is reported as "-". id txg timestamp error duration mmp_delay vdev_guid ... 936 11 1520036441 0 146264 891422313 1740883117838 ... 937 11 1520036441 0 163956 888356657 7320395061548 ... 938 11 1520036442 0 130690 885314969 7320395061548 ... 939 11 1520036442 0 2001068577 882296582 1740883117838 ... 940 11 1520036443 0 161806 882296582 7320395061548 ... 941 11 1520036443 0x2 0 998020546 1 ... 942 11 1520036444 0 136585 998020546 7320395061548 ... 943 11 1520036444 0x2 0 998020257 1 ... 944 11 1520036445 5 2002662964 994160219 1740883117838 ... 945 11 1520036445 0x2 998073118 994160219 3 ... 946 11 1520036447 0 247136 994160219 7320395061548 ... Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7212
2018-02-27 01:32:49 +00:00
if (error) {
smh->io_error = error;
smh->error_start = gethrtime();
smh->vdev_guid = 1;
}
mutex_enter(&shl->procfs_list.pl_lock);
procfs_list_add(&shl->procfs_list, smh);
shl->size++;
spa_mmp_history_truncate(shl, zfs_multihost_history);
mutex_exit(&shl->procfs_list.pl_lock);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
}
static void *
spa_state_addr(kstat_t *ksp, loff_t n)
{
if (n == 0)
return (ksp->ks_private); /* return the spa_t */
return (NULL);
}
static int
spa_state_data(char *buf, size_t size, void *data)
{
spa_t *spa = (spa_t *)data;
(void) snprintf(buf, size, "%s\n", spa_state_to_name(spa));
return (0);
}
/*
* Return the state of the pool in /proc/spl/kstat/zfs/<pool>/state.
*
* This is a lock-less read of the pool's state (unlike using 'zpool', which
* can potentially block for seconds). Because it doesn't block, it can useful
* as a pool heartbeat value.
*/
static void
spa_state_init(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.state;
char *name;
kstat_t *ksp;
mutex_init(&shk->lock, NULL, MUTEX_DEFAULT, NULL);
name = kmem_asprintf("zfs/%s", spa_name(spa));
ksp = kstat_create(name, 0, "state", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
shk->kstat = ksp;
if (ksp) {
ksp->ks_lock = &shk->lock;
ksp->ks_data = NULL;
ksp->ks_private = spa;
ksp->ks_flags |= KSTAT_FLAG_NO_HEADERS;
kstat_set_raw_ops(ksp, NULL, spa_state_data, spa_state_addr);
kstat_install(ksp);
}
kmem_strfree(name);
}
static int
spa_guid_data(char *buf, size_t size, void *data)
{
spa_t *spa = (spa_t *)data;
(void) snprintf(buf, size, "%llu\n", (u_longlong_t)spa_guid(spa));
return (0);
}
static void
spa_guid_init(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.guid;
char *name;
kstat_t *ksp;
mutex_init(&shk->lock, NULL, MUTEX_DEFAULT, NULL);
name = kmem_asprintf("zfs/%s", spa_name(spa));
ksp = kstat_create(name, 0, "guid", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
shk->kstat = ksp;
if (ksp) {
ksp->ks_lock = &shk->lock;
ksp->ks_data = NULL;
ksp->ks_private = spa;
ksp->ks_flags |= KSTAT_FLAG_NO_HEADERS;
kstat_set_raw_ops(ksp, NULL, spa_guid_data, spa_state_addr);
kstat_install(ksp);
}
kmem_strfree(name);
}
static void
spa_health_destroy(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.state;
kstat_t *ksp = shk->kstat;
if (ksp)
kstat_delete(ksp);
mutex_destroy(&shk->lock);
}
static void
spa_guid_destroy(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.guid;
kstat_t *ksp = shk->kstat;
if (ksp)
kstat_delete(ksp);
mutex_destroy(&shk->lock);
}
static const spa_iostats_t spa_iostats_template = {
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
{ "trim_extents_written", KSTAT_DATA_UINT64 },
{ "trim_bytes_written", KSTAT_DATA_UINT64 },
{ "trim_extents_skipped", KSTAT_DATA_UINT64 },
{ "trim_bytes_skipped", KSTAT_DATA_UINT64 },
{ "trim_extents_failed", KSTAT_DATA_UINT64 },
{ "trim_bytes_failed", KSTAT_DATA_UINT64 },
{ "autotrim_extents_written", KSTAT_DATA_UINT64 },
{ "autotrim_bytes_written", KSTAT_DATA_UINT64 },
{ "autotrim_extents_skipped", KSTAT_DATA_UINT64 },
{ "autotrim_bytes_skipped", KSTAT_DATA_UINT64 },
{ "autotrim_extents_failed", KSTAT_DATA_UINT64 },
{ "autotrim_bytes_failed", KSTAT_DATA_UINT64 },
Trim L2ARC The l2arc_evict() function is responsible for evicting buffers which reference the next bytes of the L2ARC device to be overwritten. Teach this function to additionally TRIM that vdev space before it is overwritten if the device has been filled with data. This is done by vdev_trim_simple() which trims by issuing a new type of TRIM, TRIM_TYPE_SIMPLE. We also implement a "Trim Ahead" feature. It is a zfs module parameter, expressed in % of the current write size. This trims ahead of the current write size. A minimum of 64MB will be trimmed. The default is 0 which disables TRIM on L2ARC as it can put significant stress to underlying storage devices. To enable TRIM on L2ARC we set l2arc_trim_ahead > 0. We also implement TRIM of the whole cache device upon addition to a pool, pool creation or when the header of the device is invalid upon importing a pool or onlining a cache device. This is dependent on l2arc_trim_ahead > 0. TRIM of the whole device is done with TRIM_TYPE_MANUAL so that its status can be monitored by zpool status -t. We save the TRIM state for the whole device and the time of completion on-disk in the header, and restore these upon L2ARC rebuild so that zpool status -t can correctly report them. Whole device TRIM is done asynchronously so that the user can export of the pool or remove the cache device while it is trimming (ie if it is too slow). We do not TRIM the whole device if persistent L2ARC has been disabled by l2arc_rebuild_enabled = 0 because we may not want to lose all cached buffers (eg we may want to import the pool with l2arc_rebuild_enabled = 0 only once because of memory pressure). If persistent L2ARC has been disabled by setting the module parameter l2arc_rebuild_blocks_min_l2size to a value greater than the size of the cache device then the whole device is trimmed upon creation or import of a pool if l2arc_trim_ahead > 0. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Adam D. Moss <c@yotes.com> Signed-off-by: George Amanakis <gamanakis@gmail.com> Closes #9713 Closes #9789 Closes #10224
2020-06-09 17:15:08 +00:00
{ "simple_trim_extents_written", KSTAT_DATA_UINT64 },
{ "simple_trim_bytes_written", KSTAT_DATA_UINT64 },
{ "simple_trim_extents_skipped", KSTAT_DATA_UINT64 },
{ "simple_trim_bytes_skipped", KSTAT_DATA_UINT64 },
{ "simple_trim_extents_failed", KSTAT_DATA_UINT64 },
{ "simple_trim_bytes_failed", KSTAT_DATA_UINT64 },
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
};
#define SPA_IOSTATS_ADD(stat, val) \
atomic_add_64(&iostats->stat.value.ui64, (val));
void
spa_iostats_trim_add(spa_t *spa, trim_type_t type,
uint64_t extents_written, uint64_t bytes_written,
uint64_t extents_skipped, uint64_t bytes_skipped,
uint64_t extents_failed, uint64_t bytes_failed)
{
spa_history_kstat_t *shk = &spa->spa_stats.iostats;
kstat_t *ksp = shk->kstat;
spa_iostats_t *iostats;
if (ksp == NULL)
return;
iostats = ksp->ks_data;
if (type == TRIM_TYPE_MANUAL) {
SPA_IOSTATS_ADD(trim_extents_written, extents_written);
SPA_IOSTATS_ADD(trim_bytes_written, bytes_written);
SPA_IOSTATS_ADD(trim_extents_skipped, extents_skipped);
SPA_IOSTATS_ADD(trim_bytes_skipped, bytes_skipped);
SPA_IOSTATS_ADD(trim_extents_failed, extents_failed);
SPA_IOSTATS_ADD(trim_bytes_failed, bytes_failed);
Trim L2ARC The l2arc_evict() function is responsible for evicting buffers which reference the next bytes of the L2ARC device to be overwritten. Teach this function to additionally TRIM that vdev space before it is overwritten if the device has been filled with data. This is done by vdev_trim_simple() which trims by issuing a new type of TRIM, TRIM_TYPE_SIMPLE. We also implement a "Trim Ahead" feature. It is a zfs module parameter, expressed in % of the current write size. This trims ahead of the current write size. A minimum of 64MB will be trimmed. The default is 0 which disables TRIM on L2ARC as it can put significant stress to underlying storage devices. To enable TRIM on L2ARC we set l2arc_trim_ahead > 0. We also implement TRIM of the whole cache device upon addition to a pool, pool creation or when the header of the device is invalid upon importing a pool or onlining a cache device. This is dependent on l2arc_trim_ahead > 0. TRIM of the whole device is done with TRIM_TYPE_MANUAL so that its status can be monitored by zpool status -t. We save the TRIM state for the whole device and the time of completion on-disk in the header, and restore these upon L2ARC rebuild so that zpool status -t can correctly report them. Whole device TRIM is done asynchronously so that the user can export of the pool or remove the cache device while it is trimming (ie if it is too slow). We do not TRIM the whole device if persistent L2ARC has been disabled by l2arc_rebuild_enabled = 0 because we may not want to lose all cached buffers (eg we may want to import the pool with l2arc_rebuild_enabled = 0 only once because of memory pressure). If persistent L2ARC has been disabled by setting the module parameter l2arc_rebuild_blocks_min_l2size to a value greater than the size of the cache device then the whole device is trimmed upon creation or import of a pool if l2arc_trim_ahead > 0. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Adam D. Moss <c@yotes.com> Signed-off-by: George Amanakis <gamanakis@gmail.com> Closes #9713 Closes #9789 Closes #10224
2020-06-09 17:15:08 +00:00
} else if (type == TRIM_TYPE_AUTO) {
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
SPA_IOSTATS_ADD(autotrim_extents_written, extents_written);
SPA_IOSTATS_ADD(autotrim_bytes_written, bytes_written);
SPA_IOSTATS_ADD(autotrim_extents_skipped, extents_skipped);
SPA_IOSTATS_ADD(autotrim_bytes_skipped, bytes_skipped);
SPA_IOSTATS_ADD(autotrim_extents_failed, extents_failed);
SPA_IOSTATS_ADD(autotrim_bytes_failed, bytes_failed);
Trim L2ARC The l2arc_evict() function is responsible for evicting buffers which reference the next bytes of the L2ARC device to be overwritten. Teach this function to additionally TRIM that vdev space before it is overwritten if the device has been filled with data. This is done by vdev_trim_simple() which trims by issuing a new type of TRIM, TRIM_TYPE_SIMPLE. We also implement a "Trim Ahead" feature. It is a zfs module parameter, expressed in % of the current write size. This trims ahead of the current write size. A minimum of 64MB will be trimmed. The default is 0 which disables TRIM on L2ARC as it can put significant stress to underlying storage devices. To enable TRIM on L2ARC we set l2arc_trim_ahead > 0. We also implement TRIM of the whole cache device upon addition to a pool, pool creation or when the header of the device is invalid upon importing a pool or onlining a cache device. This is dependent on l2arc_trim_ahead > 0. TRIM of the whole device is done with TRIM_TYPE_MANUAL so that its status can be monitored by zpool status -t. We save the TRIM state for the whole device and the time of completion on-disk in the header, and restore these upon L2ARC rebuild so that zpool status -t can correctly report them. Whole device TRIM is done asynchronously so that the user can export of the pool or remove the cache device while it is trimming (ie if it is too slow). We do not TRIM the whole device if persistent L2ARC has been disabled by l2arc_rebuild_enabled = 0 because we may not want to lose all cached buffers (eg we may want to import the pool with l2arc_rebuild_enabled = 0 only once because of memory pressure). If persistent L2ARC has been disabled by setting the module parameter l2arc_rebuild_blocks_min_l2size to a value greater than the size of the cache device then the whole device is trimmed upon creation or import of a pool if l2arc_trim_ahead > 0. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Adam D. Moss <c@yotes.com> Signed-off-by: George Amanakis <gamanakis@gmail.com> Closes #9713 Closes #9789 Closes #10224
2020-06-09 17:15:08 +00:00
} else {
SPA_IOSTATS_ADD(simple_trim_extents_written, extents_written);
SPA_IOSTATS_ADD(simple_trim_bytes_written, bytes_written);
SPA_IOSTATS_ADD(simple_trim_extents_skipped, extents_skipped);
SPA_IOSTATS_ADD(simple_trim_bytes_skipped, bytes_skipped);
SPA_IOSTATS_ADD(simple_trim_extents_failed, extents_failed);
SPA_IOSTATS_ADD(simple_trim_bytes_failed, bytes_failed);
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
}
}
static int
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
spa_iostats_update(kstat_t *ksp, int rw)
{
if (rw == KSTAT_WRITE) {
memcpy(ksp->ks_data, &spa_iostats_template,
sizeof (spa_iostats_t));
}
return (0);
}
static void
spa_iostats_init(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.iostats;
mutex_init(&shk->lock, NULL, MUTEX_DEFAULT, NULL);
char *name = kmem_asprintf("zfs/%s", spa_name(spa));
kstat_t *ksp = kstat_create(name, 0, "iostats", "misc",
KSTAT_TYPE_NAMED, sizeof (spa_iostats_t) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
shk->kstat = ksp;
if (ksp) {
int size = sizeof (spa_iostats_t);
ksp->ks_lock = &shk->lock;
ksp->ks_private = spa;
ksp->ks_update = spa_iostats_update;
ksp->ks_data = kmem_alloc(size, KM_SLEEP);
memcpy(ksp->ks_data, &spa_iostats_template, size);
kstat_install(ksp);
}
kmem_strfree(name);
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
}
static void
spa_iostats_destroy(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.iostats;
kstat_t *ksp = shk->kstat;
if (ksp) {
kmem_free(ksp->ks_data, sizeof (spa_iostats_t));
kstat_delete(ksp);
}
mutex_destroy(&shk->lock);
}
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
void
spa_stats_init(spa_t *spa)
{
spa_read_history_init(spa);
spa_txg_history_init(spa);
spa_tx_assign_init(spa);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
spa_mmp_history_init(spa);
spa_state_init(spa);
spa_guid_init(spa);
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
spa_iostats_init(spa);
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
}
void
spa_stats_destroy(spa_t *spa)
{
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
spa_iostats_destroy(spa);
spa_health_destroy(spa);
spa_tx_assign_destroy(spa);
spa_txg_history_destroy(spa);
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
spa_read_history_destroy(spa);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
spa_mmp_history_destroy(spa);
spa_guid_destroy(spa);
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-06 23:09:05 +00:00
}
ZFS_MODULE_PARAM(zfs, zfs_, read_history, INT, ZMOD_RW,
"Historical statistics for the last N reads");
ZFS_MODULE_PARAM(zfs, zfs_, read_history_hits, INT, ZMOD_RW,
"Include cache hits in read history");
ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, history, INT, ZMOD_RW,
"Historical statistics for the last N txgs");
ZFS_MODULE_PARAM(zfs_multihost, zfs_multihost_, history, INT, ZMOD_RW,
"Historical statistics for last N multihost writes");