zfs/module/zpios/zpios.c

1296 lines
32 KiB
C
Raw Normal View History

2008-12-05 19:32:34 +00:00
/*
* This file is part of the ZFS Linux port.
*
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory
* Written by:
* Brian Behlendorf <behlendorf1@llnl.gov>,
* Herb Wartens <wartens2@llnl.gov>,
* Jim Garlick <garlick@llnl.gov>
* LLNL-CODE-403049
*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Kernel PIOS DMU implemenation originally derived from PIOS test code.
* Character control interface derived from SPL code.
*/
#include <sys/zfs_context.h>
#include <sys/dmu.h>
#include <sys/txg.h>
#include <linux/cdev.h>
2008-12-23 17:24:19 +00:00
#include "zpios-internal.h"
2008-12-05 19:32:34 +00:00
static struct class *kpios_class;
static inline
struct timespec timespec_add(struct timespec lhs, struct timespec rhs)
{
struct timespec ts_delta;
set_normalized_timespec(&ts_delta, lhs.tv_sec + rhs.tv_sec,
lhs.tv_nsec + rhs.tv_nsec);
return ts_delta;
}
static
int kpios_upcall(char *path, char *phase, run_args_t *run_args, int rc)
{
/* This is stack heavy but it should be OK since we are only
* making the upcall between tests when the stack is shallow.
*/
char id[16], chunk_size[16], region_size[16], thread_count[16];
char region_count[16], offset[16], region_noise[16], chunk_noise[16];
char thread_delay[16], flags[16], result[8];
char *argv[16], *envp[4];
if (strlen(path) == 0)
return -ENOENT;
snprintf(id, 15, "%d", run_args->id);
snprintf(chunk_size, 15, "%lu", (long unsigned)run_args->chunk_size);
snprintf(region_size, 15, "%lu",(long unsigned) run_args->region_size);
snprintf(thread_count, 15, "%u", run_args->thread_count);
snprintf(region_count, 15, "%u", run_args->region_count);
snprintf(offset, 15, "%lu", (long unsigned)run_args->offset);
snprintf(region_noise, 15, "%u", run_args->region_noise);
snprintf(chunk_noise, 15, "%u", run_args->chunk_noise);
snprintf(thread_delay, 15, "%u", run_args->thread_delay);
snprintf(flags, 15, "0x%x", run_args->flags);
snprintf(result, 7, "%d", rc);
/* Passing 15 args to registered pre/post upcall */
argv[0] = path;
argv[1] = phase;
argv[2] = strlen(run_args->log) ? run_args->log : "<none>";
argv[3] = id;
argv[4] = run_args->pool;
argv[5] = chunk_size;
argv[6] = region_size;
argv[7] = thread_count;
argv[8] = region_count;
argv[9] = offset;
argv[10] = region_noise;
argv[11] = chunk_noise;
argv[12] = thread_delay;
argv[13] = flags;
argv[14] = result;
argv[15] = NULL;
/* Passing environment for userspace upcall */
envp[0] = "HOME=/";
envp[1] = "TERM=linux";
envp[2] = "PATH=/sbin:/usr/sbin:/bin:/usr/bin";
envp[3] = NULL;
return call_usermodehelper(path, argv, envp, 1);
}
static uint64_t
kpios_dmu_object_create(run_args_t *run_args, objset_t *os)
{
struct dmu_tx *tx;
uint64_t obj = 0ULL;
int rc;
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, OBJ_SIZE);
rc = dmu_tx_assign(tx, TXG_WAIT);
if (rc) {
kpios_print(run_args->file,
"dmu_tx_assign() failed: %d\n", rc);
dmu_tx_abort(tx);
return obj;
}
obj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
DMU_OT_NONE, 0, tx);
rc = dmu_object_set_blocksize(os, obj, 128ULL << 10, 0, tx);
if (rc) {
kpios_print(run_args->file,
"dmu_object_set_blocksize() failed: %d\n", rc);
dmu_tx_abort(tx);
return obj;
}
dmu_tx_commit(tx);
return obj;
}
static int
kpios_dmu_object_free(run_args_t *run_args, objset_t *os, uint64_t obj)
{
struct dmu_tx *tx;
int rc;
tx = dmu_tx_create(os);
dmu_tx_hold_free(tx, obj, 0, DMU_OBJECT_END);
rc = dmu_tx_assign(tx, TXG_WAIT);
if (rc) {
kpios_print(run_args->file,
"dmu_tx_assign() failed: %d\n", rc);
dmu_tx_abort(tx);
return rc;
}
rc = dmu_object_free(os, obj, tx);
if (rc) {
kpios_print(run_args->file,
"dmu_object_free() failed: %d\n", rc);
dmu_tx_abort(tx);
return rc;
}
dmu_tx_commit(tx);
return 0;
}
static int
kpios_dmu_setup(run_args_t *run_args)
{
kpios_time_t *t = &(run_args->stats.cr_time);
objset_t *os;
uint64_t obj = 0ULL;
int i, rc = 0;
t->start = current_kernel_time();
rc = dmu_objset_open(run_args->pool, DMU_OST_ZFS, DS_MODE_STANDARD, &os);
if (rc) {
kpios_print(run_args->file, "Error dmu_objset_open() "
"failed: %d\n", rc);
goto out;
}
if (!(run_args->flags & DMU_FPP)) {
obj = kpios_dmu_object_create(run_args, os);
if (obj == 0) {
rc = -EBADF;
kpios_print(run_args->file, "Error kpios_dmu_"
"object_create() failed, %d\n", rc);
goto out;
}
}
for (i = 0; i < run_args->region_count; i++) {
kpios_region_t *region;
region = &run_args->regions[i];
mutex_init(&region->lock, NULL, MUTEX_DEFAULT, NULL);
if (run_args->flags & DMU_FPP) {
/* File per process */
region->obj.os = os;
region->obj.obj = kpios_dmu_object_create(run_args, os);
ASSERT(region->obj.obj > 0); /* XXX - Handle this */
region->wr_offset = run_args->offset;
region->rd_offset = run_args->offset;
region->init_offset = run_args->offset;
region->max_offset = run_args->offset +
run_args->region_size;
} else {
/* Single shared file */
region->obj.os = os;
region->obj.obj = obj;
region->wr_offset = run_args->offset * i;
region->rd_offset = run_args->offset * i;
region->init_offset = run_args->offset * i;
region->max_offset = run_args->offset *
i + run_args->region_size;
}
}
run_args->os = os;
out:
t->stop = current_kernel_time();
t->delta = timespec_sub(t->stop, t->start);
return rc;
}
static int
kpios_setup_run(run_args_t **run_args, kpios_cmd_t *kcmd, struct file *file)
{
run_args_t *ra;
int rc, size;
size = sizeof(*ra) + kcmd->cmd_region_count * sizeof(kpios_region_t);
ra = vmem_zalloc(size, KM_SLEEP);
if (ra == NULL) {
kpios_print(file, "Unable to vmem_zalloc() %d bytes "
"for regions\n", size);
return -ENOMEM;
}
*run_args = ra;
strncpy(ra->pool, kcmd->cmd_pool, KPIOS_NAME_SIZE - 1);
strncpy(ra->pre, kcmd->cmd_pre, KPIOS_PATH_SIZE - 1);
strncpy(ra->post, kcmd->cmd_post, KPIOS_PATH_SIZE - 1);
strncpy(ra->log, kcmd->cmd_log, KPIOS_PATH_SIZE - 1);
ra->id = kcmd->cmd_id;
ra->chunk_size = kcmd->cmd_chunk_size;
ra->thread_count = kcmd->cmd_thread_count;
ra->region_count = kcmd->cmd_region_count;
ra->region_size = kcmd->cmd_region_size;
ra->offset = kcmd->cmd_offset;
ra->region_noise = kcmd->cmd_region_noise;
ra->chunk_noise = kcmd->cmd_chunk_noise;
ra->thread_delay = kcmd->cmd_thread_delay;
ra->flags = kcmd->cmd_flags;
ra->stats.wr_data = 0;
ra->stats.wr_chunks = 0;
ra->stats.rd_data = 0;
ra->stats.rd_chunks = 0;
ra->region_next = 0;
ra->file = file;
mutex_init(&ra->lock_work, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ra->lock_ctl, NULL, MUTEX_DEFAULT, NULL);
rc = kpios_dmu_setup(ra);
if (rc) {
mutex_destroy(&ra->lock_ctl);
mutex_destroy(&ra->lock_work);
vmem_free(ra, size);
*run_args = NULL;
}
return rc;
}
static int
kpios_get_work_item(run_args_t *run_args, dmu_obj_t *obj, __u64 *offset,
__u32 *chunk_size, kpios_region_t **region, __u32 flags)
{
int i, j, count = 0;
unsigned int random_int;
get_random_bytes(&random_int, sizeof(unsigned int));
mutex_enter(&run_args->lock_work);
i = run_args->region_next;
/* XXX: I don't much care for this chunk selection mechansim
* there's the potential to burn a lot of time here doing nothing
* useful while holding the global lock. This could give some
* misleading performance results. I'll fix it latter.
*/
while (count < run_args->region_count) {
__u64 *rw_offset;
kpios_time_t *rw_time;
j = i % run_args->region_count;
*region = &(run_args->regions[j]);
if (flags & DMU_WRITE) {
rw_offset = &((*region)->wr_offset);
rw_time = &((*region)->stats.wr_time);
} else {
rw_offset = &((*region)->rd_offset);
rw_time = &((*region)->stats.rd_time);
}
/* test if region is fully written */
if (*rw_offset + *chunk_size > (*region)->max_offset) {
i++;
count++;
if (unlikely(rw_time->stop.tv_sec == 0) &&
unlikely(rw_time->stop.tv_nsec == 0))
rw_time->stop = current_kernel_time();
continue;
}
*offset = *rw_offset;
*obj = (*region)->obj;
*rw_offset += *chunk_size;
/* update ctl structure */
if (run_args->region_noise) {
get_random_bytes(&random_int, sizeof(unsigned int));
run_args->region_next += random_int % run_args->region_noise;
} else {
run_args->region_next++;
}
mutex_exit(&run_args->lock_work);
return 1;
}
/* nothing left to do */
mutex_exit(&run_args->lock_work);
return 0;
}
static void
kpios_remove_objects(run_args_t *run_args)
{
kpios_time_t *t = &(run_args->stats.rm_time);
kpios_region_t *region;
int rc = 0, i;
t->start = current_kernel_time();
if (run_args->flags & DMU_REMOVE) {
if (run_args->flags & DMU_FPP) {
for (i = 0; i < run_args->region_count; i++) {
region = &run_args->regions[i];
rc = kpios_dmu_object_free(run_args,
region->obj.os,
region->obj.obj);
if (rc)
kpios_print(run_args->file, "Error "
"removing object %d, %d\n",
(int)region->obj.obj, rc);
}
} else {
region = &run_args->regions[0];
rc = kpios_dmu_object_free(run_args,
region->obj.os,
region->obj.obj);
if (rc)
kpios_print(run_args->file, "Error "
"removing object %d, %d\n",
(int)region->obj.obj, rc);
}
}
dmu_objset_close(run_args->os);
t->stop = current_kernel_time();
t->delta = timespec_sub(t->stop, t->start);
}
static void
kpios_cleanup_run(run_args_t *run_args)
{
int i, size = 0;
if (run_args == NULL)
return;
if (run_args->threads != NULL) {
for (i = 0; i < run_args->thread_count; i++) {
if (run_args->threads[i]) {
mutex_destroy(&run_args->threads[i]->lock);
kmem_free(run_args->threads[i],
sizeof(thread_data_t));
}
}
kmem_free(run_args->threads,
sizeof(thread_data_t *) * run_args->thread_count);
}
if (run_args->regions != NULL)
for (i = 0; i < run_args->region_count; i++)
mutex_destroy(&run_args->regions[i].lock);
mutex_destroy(&run_args->lock_work);
mutex_destroy(&run_args->lock_ctl);
if (run_args->regions != NULL)
size = run_args->region_count * sizeof(kpios_region_t);
vmem_free(run_args, sizeof(*run_args) + size);
}
static int
kpios_dmu_write(run_args_t *run_args, objset_t *os, uint64_t object,
uint64_t offset, uint64_t size, const void *buf)
{
struct dmu_tx *tx;
int rc, how = TXG_WAIT;
int flags = 0;
while (1) {
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, object, offset, size);
rc = dmu_tx_assign(tx, how);
if (rc) {
if (rc == ERESTART && how == TXG_NOWAIT) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
continue;
}
kpios_print(run_args->file,
"Error in dmu_tx_assign(), %d", rc);
dmu_tx_abort(tx);
return rc;
}
break;
}
if (run_args->flags & DMU_WRITE_ZC)
flags |= DMU_WRITE_ZEROCOPY;
dmu_write_impl(os, object, offset, size, buf, tx, flags);
dmu_tx_commit(tx);
return 0;
}
static int
kpios_dmu_read(run_args_t *run_args, objset_t *os, uint64_t object,
uint64_t offset, uint64_t size, void *buf)
{
int flags = 0;
if (run_args->flags & DMU_READ_ZC)
flags |= DMU_READ_ZEROCOPY;
return dmu_read_impl(os, object, offset, size, buf, flags);
}
static int
kpios_thread_main(void *data)
{
thread_data_t *thr = (thread_data_t *)data;
run_args_t *run_args = thr->run_args;
kpios_time_t t;
dmu_obj_t obj;
__u64 offset;
__u32 chunk_size;
kpios_region_t *region;
char *buf;
unsigned int random_int;
int chunk_noise = run_args->chunk_noise;
int chunk_noise_tmp = 0;
int thread_delay = run_args->thread_delay;
int thread_delay_tmp = 0;
int i, rc = 0;
if (chunk_noise) {
get_random_bytes(&random_int, sizeof(unsigned int));
chunk_noise_tmp = (random_int % (chunk_noise * 2)) - chunk_noise;
}
/* It's OK to vmem_alloc() this memory because it will be copied
* in to the slab and pointers to the slab copy will be setup in
* the bio when the IO is submitted. This of course is not ideal
* since we want a zero-copy IO path if possible. It would be nice
* to have direct access to those slab entries.
*/
chunk_size = run_args->chunk_size + chunk_noise_tmp;
buf = (char *)vmem_alloc(chunk_size, KM_SLEEP);
ASSERT(buf);
/* Trivial data verification pattern for now. */
if (run_args->flags & DMU_VERIFY)
memset(buf, 'z', chunk_size);
/* Write phase */
mutex_enter(&thr->lock);
thr->stats.wr_time.start = current_kernel_time();
mutex_exit(&thr->lock);
while (kpios_get_work_item(run_args, &obj, &offset,
&chunk_size, &region, DMU_WRITE)) {
if (thread_delay) {
get_random_bytes(&random_int, sizeof(unsigned int));
thread_delay_tmp = random_int % thread_delay;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(thread_delay_tmp); /* In jiffies */
}
t.start = current_kernel_time();
rc = kpios_dmu_write(run_args, obj.os, obj.obj,
offset, chunk_size, buf);
t.stop = current_kernel_time();
t.delta = timespec_sub(t.stop, t.start);
if (rc) {
kpios_print(run_args->file, "IO error while doing "
"dmu_write(): %d\n", rc);
break;
}
mutex_enter(&thr->lock);
thr->stats.wr_data += chunk_size;
thr->stats.wr_chunks++;
thr->stats.wr_time.delta = timespec_add(
thr->stats.wr_time.delta, t.delta);
mutex_exit(&thr->lock);
mutex_enter(&region->lock);
region->stats.wr_data += chunk_size;
region->stats.wr_chunks++;
region->stats.wr_time.delta = timespec_add(
region->stats.wr_time.delta, t.delta);
/* First time region was accessed */
if (region->init_offset == offset)
region->stats.wr_time.start = t.start;
mutex_exit(&region->lock);
}
mutex_enter(&run_args->lock_ctl);
run_args->threads_done++;
mutex_exit(&run_args->lock_ctl);
mutex_enter(&thr->lock);
thr->rc = rc;
thr->stats.wr_time.stop = current_kernel_time();
mutex_exit(&thr->lock);
wake_up(&run_args->waitq);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule();
/* Check if we should exit */
mutex_enter(&thr->lock);
rc = thr->rc;
mutex_exit(&thr->lock);
if (rc)
goto out;
/* Read phase */
mutex_enter(&thr->lock);
thr->stats.rd_time.start = current_kernel_time();
mutex_exit(&thr->lock);
while (kpios_get_work_item(run_args, &obj, &offset,
&chunk_size, &region, DMU_READ)) {
if (thread_delay) {
get_random_bytes(&random_int, sizeof(unsigned int));
thread_delay_tmp = random_int % thread_delay;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(thread_delay_tmp); /* In jiffies */
}
if (run_args->flags & DMU_VERIFY)
memset(buf, 0, chunk_size);
t.start = current_kernel_time();
rc = kpios_dmu_read(run_args, obj.os, obj.obj,
offset, chunk_size, buf);
t.stop = current_kernel_time();
t.delta = timespec_sub(t.stop, t.start);
if (rc) {
kpios_print(run_args->file, "IO error while doing "
"dmu_read(): %d\n", rc);
break;
}
/* Trivial data verification, expensive! */
if (run_args->flags & DMU_VERIFY) {
for (i = 0; i < chunk_size; i++) {
if (buf[i] != 'z') {
kpios_print(run_args->file,
"IO verify error: %d/%d/%d\n",
(int)obj.obj, (int)offset,
(int)chunk_size);
break;
}
}
}
mutex_enter(&thr->lock);
thr->stats.rd_data += chunk_size;
thr->stats.rd_chunks++;
thr->stats.rd_time.delta = timespec_add(
thr->stats.rd_time.delta, t.delta);
mutex_exit(&thr->lock);
mutex_enter(&region->lock);
region->stats.rd_data += chunk_size;
region->stats.rd_chunks++;
region->stats.rd_time.delta = timespec_add(
region->stats.rd_time.delta, t.delta);
/* First time region was accessed */
if (region->init_offset == offset)
region->stats.rd_time.start = t.start;
mutex_exit(&region->lock);
}
mutex_enter(&run_args->lock_ctl);
run_args->threads_done++;
mutex_exit(&run_args->lock_ctl);
mutex_enter(&thr->lock);
thr->rc = rc;
thr->stats.rd_time.stop = current_kernel_time();
mutex_exit(&thr->lock);
wake_up(&run_args->waitq);
out:
vmem_free(buf, chunk_size);
do_exit(0);
return rc; /* Unreachable, due to do_exit() */
}
static int
kpios_thread_done(run_args_t *run_args)
{
ASSERT(run_args->threads_done <= run_args->thread_count);
return (run_args->threads_done == run_args->thread_count);
}
static int
kpios_threads_run(run_args_t *run_args)
{
struct task_struct *tsk, **tsks;
thread_data_t *thr = NULL;
kpios_time_t *tt = &(run_args->stats.total_time);
kpios_time_t *tw = &(run_args->stats.wr_time);
kpios_time_t *tr = &(run_args->stats.rd_time);
int i, rc = 0, tc = run_args->thread_count;
DEFINE_WAIT(wait);
kpios_upcall(run_args->pre, PHASE_PRE, run_args, 0);
tsks = kmem_zalloc(sizeof(struct task_struct *) * tc, KM_SLEEP);
if (tsks == NULL) {
rc = -ENOMEM;
goto cleanup2;
}
run_args->threads = kmem_zalloc(sizeof(thread_data_t *) * tc, KM_SLEEP);
if (run_args->threads == NULL) {
rc = -ENOMEM;
goto cleanup;
}
init_waitqueue_head(&run_args->waitq);
run_args->threads_done = 0;
/* Create all the needed threads which will sleep until awoken */
for (i = 0; i < tc; i++) {
thr = kmem_zalloc(sizeof(thread_data_t), KM_SLEEP);
if (thr == NULL) {
rc = -ENOMEM;
goto taskerr;
}
thr->thread_no = i;
thr->run_args = run_args;
thr->rc = 0;
mutex_init(&thr->lock, NULL, MUTEX_DEFAULT, NULL);
run_args->threads[i] = thr;
tsk = kthread_create(kpios_thread_main, (void *)thr,
"%s/%d", "kpios_io", i);
if (IS_ERR(tsk)) {
rc = -EINVAL;
goto taskerr;
}
tsks[i] = tsk;
}
tt->start = current_kernel_time();
/* Wake up all threads for write phase */
kpios_upcall(run_args->pre, PHASE_WRITE, run_args, 0);
for (i = 0; i < tc; i++)
wake_up_process(tsks[i]);
/* Wait for write phase to complete */
tw->start = current_kernel_time();
wait_event(run_args->waitq, kpios_thread_done(run_args));
tw->stop = current_kernel_time();
for (i = 0; i < tc; i++) {
thr = run_args->threads[i];
mutex_enter(&thr->lock);
if (!rc && thr->rc)
rc = thr->rc;
run_args->stats.wr_data += thr->stats.wr_data;
run_args->stats.wr_chunks += thr->stats.wr_chunks;
mutex_exit(&thr->lock);
}
kpios_upcall(run_args->post, PHASE_WRITE, run_args, rc);
if (rc) {
/* Wake up all threads and tell them to exit */
for (i = 0; i < tc; i++) {
mutex_enter(&thr->lock);
thr->rc = rc;
mutex_exit(&thr->lock);
wake_up_process(tsks[i]);
}
goto out;
}
mutex_enter(&run_args->lock_ctl);
ASSERT(run_args->threads_done == run_args->thread_count);
run_args->threads_done = 0;
mutex_exit(&run_args->lock_ctl);
/* Wake up all threads for read phase */
kpios_upcall(run_args->pre, PHASE_READ, run_args, 0);
for (i = 0; i < tc; i++)
wake_up_process(tsks[i]);
/* Wait for read phase to complete */
tr->start = current_kernel_time();
wait_event(run_args->waitq, kpios_thread_done(run_args));
tr->stop = current_kernel_time();
for (i = 0; i < tc; i++) {
thr = run_args->threads[i];
mutex_enter(&thr->lock);
if (!rc && thr->rc)
rc = thr->rc;
run_args->stats.rd_data += thr->stats.rd_data;
run_args->stats.rd_chunks += thr->stats.rd_chunks;
mutex_exit(&thr->lock);
}
kpios_upcall(run_args->post, PHASE_READ, run_args, rc);
out:
tt->stop = current_kernel_time();
tt->delta = timespec_sub(tt->stop, tt->start);
tw->delta = timespec_sub(tw->stop, tw->start);
tr->delta = timespec_sub(tr->stop, tr->start);
cleanup:
kmem_free(tsks, sizeof(struct task_struct *) * tc);
cleanup2:
kpios_upcall(run_args->post, PHASE_POST, run_args, rc);
/* Returns first encountered thread error (if any) */
return rc;
taskerr:
/* Destroy all threads that were created successfully */
for (i = 0; i < tc; i++)
if (tsks[i] != NULL)
(void) kthread_stop(tsks[i]);
goto cleanup;
}
static int
kpios_do_one_run(struct file *file, kpios_cmd_t *kcmd,
int data_size, void *data)
{
run_args_t *run_args;
kpios_stats_t *stats = (kpios_stats_t *)data;
int i, n, m, size, rc;
if ((!kcmd->cmd_chunk_size) || (!kcmd->cmd_region_size) ||
(!kcmd->cmd_thread_count) || (!kcmd->cmd_region_count)) {
kpios_print(file, "Invalid chunk_size, region_size, "
"thread_count, or region_count, %d\n", -EINVAL);
return -EINVAL;
}
if (!(kcmd->cmd_flags & DMU_WRITE) ||
!(kcmd->cmd_flags & DMU_READ)) {
kpios_print(file, "Invalid flags, minimally DMU_WRITE "
"and DMU_READ must be set, %d\n", -EINVAL);
return -EINVAL;
}
if ((kcmd->cmd_flags & (DMU_WRITE_ZC | DMU_READ_ZC)) &&
(kcmd->cmd_flags & DMU_VERIFY)) {
kpios_print(file, "Invalid flags, DMU_*_ZC incompatible "
"with DMU_VERIFY, used for performance analysis "
"only, %d\n", -EINVAL);
return -EINVAL;
}
/* Opaque data on return contains structs of the following form:
*
* kpios_stat_t stats[];
* stats[0] = run_args->stats;
* stats[1-N] = threads[N]->stats;
* stats[N+1-M] = regions[M]->stats;
*
* Where N is the number of threads, and M is the number of regions.
*/
size = (sizeof(kpios_stats_t) +
(kcmd->cmd_thread_count * sizeof(kpios_stats_t)) +
(kcmd->cmd_region_count * sizeof(kpios_stats_t)));
if (data_size < size) {
kpios_print(file, "Invalid size, command data buffer "
"size too small, (%d < %d)\n", data_size, size);
return -ENOSPC;
}
rc = kpios_setup_run(&run_args, kcmd, file);
if (rc)
return rc;
rc = kpios_threads_run(run_args);
kpios_remove_objects(run_args);
if (rc)
goto cleanup;
if (stats) {
n = 1;
m = 1 + kcmd->cmd_thread_count;
stats[0] = run_args->stats;
for (i = 0; i < kcmd->cmd_thread_count; i++)
stats[n+i] = run_args->threads[i]->stats;
for (i = 0; i < kcmd->cmd_region_count; i++)
stats[m+i] = run_args->regions[i].stats;
}
cleanup:
kpios_cleanup_run(run_args);
return rc;
}
static int
kpios_open(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
kpios_info_t *info;
if (minor >= KPIOS_MINORS)
return -ENXIO;
info = (kpios_info_t *)kmem_alloc(sizeof(*info), KM_SLEEP);
if (info == NULL)
return -ENOMEM;
spin_lock_init(&info->info_lock);
info->info_size = KPIOS_INFO_BUFFER_SIZE;
info->info_buffer = (char *)vmem_alloc(KPIOS_INFO_BUFFER_SIZE,KM_SLEEP);
if (info->info_buffer == NULL) {
kmem_free(info, sizeof(*info));
return -ENOMEM;
}
info->info_head = info->info_buffer;
file->private_data = (void *)info;
return 0;
}
static int
kpios_release(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
kpios_info_t *info = (kpios_info_t *)file->private_data;
if (minor >= KPIOS_MINORS)
return -ENXIO;
ASSERT(info);
ASSERT(info->info_buffer);
vmem_free(info->info_buffer, KPIOS_INFO_BUFFER_SIZE);
kmem_free(info, sizeof(*info));
return 0;
}
static int
kpios_buffer_clear(struct file *file, kpios_cfg_t *kcfg, unsigned long arg)
{
kpios_info_t *info = (kpios_info_t *)file->private_data;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
memset(info->info_buffer, 0, info->info_size);
info->info_head = info->info_buffer;
spin_unlock(&info->info_lock);
return 0;
}
static int
kpios_buffer_size(struct file *file, kpios_cfg_t *kcfg, unsigned long arg)
{
kpios_info_t *info = (kpios_info_t *)file->private_data;
char *buf;
int min, size, rc = 0;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
if (kcfg->cfg_arg1 > 0) {
size = kcfg->cfg_arg1;
buf = (char *)vmem_alloc(size, KM_SLEEP);
if (buf == NULL) {
rc = -ENOMEM;
goto out;
}
/* Zero fill and truncate contents when coping buffer */
min = ((size < info->info_size) ? size : info->info_size);
memset(buf, 0, size);
memcpy(buf, info->info_buffer, min);
vmem_free(info->info_buffer, info->info_size);
info->info_size = size;
info->info_buffer = buf;
info->info_head = info->info_buffer;
}
kcfg->cfg_rc1 = info->info_size;
if (copy_to_user((struct kpios_cfg_t __user *)arg, kcfg, sizeof(*kcfg)))
rc = -EFAULT;
out:
spin_unlock(&info->info_lock);
return rc;
}
static int
kpios_ioctl_cfg(struct file *file, unsigned long arg)
{
kpios_cfg_t kcfg;
int rc = 0;
if (copy_from_user(&kcfg, (kpios_cfg_t *)arg, sizeof(kcfg)))
return -EFAULT;
if (kcfg.cfg_magic != KPIOS_CFG_MAGIC) {
kpios_print(file, "Bad config magic 0x%x != 0x%x\n",
kcfg.cfg_magic, KPIOS_CFG_MAGIC);
return -EINVAL;
}
switch (kcfg.cfg_cmd) {
case KPIOS_CFG_BUFFER_CLEAR:
/* cfg_arg1 - Unused
* cfg_rc1 - Unused
*/
rc = kpios_buffer_clear(file, &kcfg, arg);
break;
case KPIOS_CFG_BUFFER_SIZE:
/* cfg_arg1 - 0 - query size; >0 resize
* cfg_rc1 - Set to current buffer size
*/
rc = kpios_buffer_size(file, &kcfg, arg);
break;
default:
kpios_print(file, "Bad config command %d\n",
kcfg.cfg_cmd);
rc = -EINVAL;
break;
}
return rc;
}
static int
kpios_ioctl_cmd(struct file *file, unsigned long arg)
{
kpios_cmd_t kcmd;
int rc = -EINVAL;
void *data = NULL;
rc = copy_from_user(&kcmd, (kpios_cfg_t *)arg, sizeof(kcmd));
if (rc) {
kpios_print(file, "Unable to copy command structure "
"from user to kernel memory, %d\n", rc);
return -EFAULT;
}
if (kcmd.cmd_magic != KPIOS_CMD_MAGIC) {
kpios_print(file, "Bad command magic 0x%x != 0x%x\n",
kcmd.cmd_magic, KPIOS_CFG_MAGIC);
return -EINVAL;
}
/* Allocate memory for any opaque data the caller needed to pass on */
if (kcmd.cmd_data_size > 0) {
data = (void *)vmem_alloc(kcmd.cmd_data_size, KM_SLEEP);
if (data == NULL) {
kpios_print(file, "Unable to vmem_alloc() %ld "
"bytes for data buffer\n",
(long)kcmd.cmd_data_size);
return -ENOMEM;
}
rc = copy_from_user(data, (void *)(arg + offsetof(kpios_cmd_t,
cmd_data_str)), kcmd.cmd_data_size);
if (rc) {
kpios_print(file, "Unable to copy data buffer "
"from user to kernel memory, %d\n", rc);
vmem_free(data, kcmd.cmd_data_size);
return -EFAULT;
}
}
rc = kpios_do_one_run(file, &kcmd, kcmd.cmd_data_size, data);
if (data != NULL) {
/* If the test failed do not print out the stats */
if (rc)
goto cleanup;
rc = copy_to_user((void *)(arg + offsetof(kpios_cmd_t,
cmd_data_str)), data, kcmd.cmd_data_size);
if (rc) {
kpios_print(file, "Unable to copy data buffer "
"from kernel to user memory, %d\n", rc);
rc = -EFAULT;
}
cleanup:
vmem_free(data, kcmd.cmd_data_size);
}
return rc;
}
static int
kpios_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
unsigned int minor = iminor(file->f_dentry->d_inode);
int rc = 0;
/* Ignore tty ioctls */
if ((cmd & 0xffffff00) == ((int)'T') << 8)
return -ENOTTY;
if (minor >= KPIOS_MINORS)
return -ENXIO;
switch (cmd) {
case KPIOS_CFG:
rc = kpios_ioctl_cfg(file, arg);
break;
case KPIOS_CMD:
rc = kpios_ioctl_cmd(file, arg);
break;
default:
kpios_print(file, "Bad ioctl command %d\n", cmd);
rc = -EINVAL;
break;
}
return rc;
}
/* I'm not sure why you would want to write in to this buffer from
* user space since its principle use is to pass test status info
* back to the user space, but I don't see any reason to prevent it.
*/
static ssize_t
kpios_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned int minor = iminor(file->f_dentry->d_inode);
kpios_info_t *info = (kpios_info_t *)file->private_data;
int rc = 0;
if (minor >= KPIOS_MINORS)
return -ENXIO;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
/* Write beyond EOF */
if (*ppos >= info->info_size) {
rc = -EFBIG;
goto out;
}
/* Resize count if beyond EOF */
if (*ppos + count > info->info_size)
count = info->info_size - *ppos;
if (copy_from_user(info->info_buffer, buf, count)) {
rc = -EFAULT;
goto out;
}
*ppos += count;
rc = count;
out:
spin_unlock(&info->info_lock);
return rc;
}
static ssize_t
kpios_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
unsigned int minor = iminor(file->f_dentry->d_inode);
kpios_info_t *info = (kpios_info_t *)file->private_data;
int rc = 0;
if (minor >= KPIOS_MINORS)
return -ENXIO;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
/* Read beyond EOF */
if (*ppos >= info->info_size)
goto out;
/* Resize count if beyond EOF */
if (*ppos + count > info->info_size)
count = info->info_size - *ppos;
if (copy_to_user(buf, info->info_buffer + *ppos, count)) {
rc = -EFAULT;
goto out;
}
*ppos += count;
rc = count;
out:
spin_unlock(&info->info_lock);
return rc;
}
static loff_t kpios_seek(struct file *file, loff_t offset, int origin)
{
unsigned int minor = iminor(file->f_dentry->d_inode);
kpios_info_t *info = (kpios_info_t *)file->private_data;
int rc = -EINVAL;
if (minor >= KPIOS_MINORS)
return -ENXIO;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
switch (origin) {
case 0: /* SEEK_SET - No-op just do it */
break;
case 1: /* SEEK_CUR - Seek from current */
offset = file->f_pos + offset;
break;
case 2: /* SEEK_END - Seek from end */
offset = info->info_size + offset;
break;
}
if (offset >= 0) {
file->f_pos = offset;
file->f_version = 0;
rc = offset;
}
spin_unlock(&info->info_lock);
return rc;
}
static struct file_operations kpios_fops = {
.owner = THIS_MODULE,
.open = kpios_open,
.release = kpios_release,
.ioctl = kpios_ioctl,
.read = kpios_read,
.write = kpios_write,
.llseek = kpios_seek,
};
static struct cdev kpios_cdev = {
.owner = THIS_MODULE,
.kobj = { .name = "kpios", },
};
static int __init
kpios_init(void)
{
dev_t dev;
int rc;
dev = MKDEV(KPIOS_MAJOR, 0);
if ((rc = register_chrdev_region(dev, KPIOS_MINORS, "kpios")))
goto error;
/* Support for registering a character driver */
cdev_init(&kpios_cdev, &kpios_fops);
if ((rc = cdev_add(&kpios_cdev, dev, KPIOS_MINORS))) {
printk(KERN_ERR "kpios: Error adding cdev, %d\n", rc);
kobject_put(&kpios_cdev.kobj);
unregister_chrdev_region(dev, KPIOS_MINORS);
goto error;
}
/* Support for udev make driver info available in sysfs */
kpios_class = class_create(THIS_MODULE, "kpios");
if (IS_ERR(kpios_class)) {
rc = PTR_ERR(kpios_class);
printk(KERN_ERR "kpios: Error creating kpios class, %d\n", rc);
cdev_del(&kpios_cdev);
unregister_chrdev_region(dev, KPIOS_MINORS);
goto error;
}
class_device_create(kpios_class, NULL, dev, NULL, "kpios");
printk(KERN_INFO "kpios: Loaded Kernel PIOS Tests v%s\n", VERSION);
return 0;
error:
printk(KERN_ERR "kpios: Error registering kpios device, %d\n", rc);
return rc;
}
static void
kpios_fini(void)
{
dev_t dev = MKDEV(KPIOS_MAJOR, 0);
class_device_destroy(kpios_class, dev);
class_destroy(kpios_class);
cdev_del(&kpios_cdev);
unregister_chrdev_region(dev, KPIOS_MINORS);
printk(KERN_INFO "kpios: Unloaded Kernel PIOS Tests\n");
return;
}
module_init(kpios_init);
module_exit(kpios_fini);
MODULE_AUTHOR("LLNL / Sun");
MODULE_DESCRIPTION("Kernel PIOS implementation");
MODULE_LICENSE("GPL");