zfs/lib/libzfs/libzfs_dataset.c

4442 lines
110 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <libdevinfo.h>
#include <libintl.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <stddef.h>
#include <zone.h>
#include <fcntl.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <sys/avl.h>
#include <priv.h>
#include <pwd.h>
#include <grp.h>
#include <stddef.h>
#include <ucred.h>
#include <sys/spa.h>
#include <sys/zap.h>
#include <libzfs.h>
#include "zfs_namecheck.h"
#include "zfs_prop.h"
#include "libzfs_impl.h"
#include "zfs_deleg.h"
static int zvol_create_link_common(libzfs_handle_t *, const char *, int);
/*
* Given a single type (not a mask of types), return the type in a human
* readable form.
*/
const char *
zfs_type_to_name(zfs_type_t type)
{
switch (type) {
case ZFS_TYPE_FILESYSTEM:
return (dgettext(TEXT_DOMAIN, "filesystem"));
case ZFS_TYPE_SNAPSHOT:
return (dgettext(TEXT_DOMAIN, "snapshot"));
case ZFS_TYPE_VOLUME:
return (dgettext(TEXT_DOMAIN, "volume"));
}
return (NULL);
}
/*
* Given a path and mask of ZFS types, return a string describing this dataset.
* This is used when we fail to open a dataset and we cannot get an exact type.
* We guess what the type would have been based on the path and the mask of
* acceptable types.
*/
static const char *
path_to_str(const char *path, int types)
{
/*
* When given a single type, always report the exact type.
*/
if (types == ZFS_TYPE_SNAPSHOT)
return (dgettext(TEXT_DOMAIN, "snapshot"));
if (types == ZFS_TYPE_FILESYSTEM)
return (dgettext(TEXT_DOMAIN, "filesystem"));
if (types == ZFS_TYPE_VOLUME)
return (dgettext(TEXT_DOMAIN, "volume"));
/*
* The user is requesting more than one type of dataset. If this is the
* case, consult the path itself. If we're looking for a snapshot, and
* a '@' is found, then report it as "snapshot". Otherwise, remove the
* snapshot attribute and try again.
*/
if (types & ZFS_TYPE_SNAPSHOT) {
if (strchr(path, '@') != NULL)
return (dgettext(TEXT_DOMAIN, "snapshot"));
return (path_to_str(path, types & ~ZFS_TYPE_SNAPSHOT));
}
/*
* The user has requested either filesystems or volumes.
* We have no way of knowing a priori what type this would be, so always
* report it as "filesystem" or "volume", our two primitive types.
*/
if (types & ZFS_TYPE_FILESYSTEM)
return (dgettext(TEXT_DOMAIN, "filesystem"));
assert(types & ZFS_TYPE_VOLUME);
return (dgettext(TEXT_DOMAIN, "volume"));
}
/*
* Validate a ZFS path. This is used even before trying to open the dataset, to
* provide a more meaningful error message. We place a more useful message in
* 'buf' detailing exactly why the name was not valid.
*/
static int
zfs_validate_name(libzfs_handle_t *hdl, const char *path, int type,
boolean_t modifying)
{
namecheck_err_t why;
char what;
if (dataset_namecheck(path, &why, &what) != 0) {
if (hdl != NULL) {
switch (why) {
case NAME_ERR_TOOLONG:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"name is too long"));
break;
case NAME_ERR_LEADING_SLASH:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"leading slash in name"));
break;
case NAME_ERR_EMPTY_COMPONENT:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"empty component in name"));
break;
case NAME_ERR_TRAILING_SLASH:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"trailing slash in name"));
break;
case NAME_ERR_INVALCHAR:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "invalid character "
"'%c' in name"), what);
break;
case NAME_ERR_MULTIPLE_AT:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"multiple '@' delimiters in name"));
break;
case NAME_ERR_NOLETTER:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool doesn't begin with a letter"));
break;
case NAME_ERR_RESERVED:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"name is reserved"));
break;
case NAME_ERR_DISKLIKE:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"reserved disk name"));
break;
}
}
return (0);
}
if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@') != NULL) {
if (hdl != NULL)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"snapshot delimiter '@' in filesystem name"));
return (0);
}
if (type == ZFS_TYPE_SNAPSHOT && strchr(path, '@') == NULL) {
if (hdl != NULL)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"missing '@' delimiter in snapshot name"));
return (0);
}
if (modifying && strchr(path, '%') != NULL) {
if (hdl != NULL)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid character %c in name"), '%');
return (0);
}
return (-1);
}
int
zfs_name_valid(const char *name, zfs_type_t type)
{
if (type == ZFS_TYPE_POOL)
return (zpool_name_valid(NULL, B_FALSE, name));
return (zfs_validate_name(NULL, name, type, B_FALSE));
}
/*
* This function takes the raw DSL properties, and filters out the user-defined
* properties into a separate nvlist.
*/
static nvlist_t *
process_user_props(zfs_handle_t *zhp, nvlist_t *props)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
nvpair_t *elem;
nvlist_t *propval;
nvlist_t *nvl;
if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
(void) no_memory(hdl);
return (NULL);
}
elem = NULL;
while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
if (!zfs_prop_user(nvpair_name(elem)))
continue;
verify(nvpair_value_nvlist(elem, &propval) == 0);
if (nvlist_add_nvlist(nvl, nvpair_name(elem), propval) != 0) {
nvlist_free(nvl);
(void) no_memory(hdl);
return (NULL);
}
}
return (nvl);
}
static zpool_handle_t *
zpool_add_handle(zfs_handle_t *zhp, const char *pool_name)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
zpool_handle_t *zph;
if ((zph = zpool_open_canfail(hdl, pool_name)) != NULL) {
if (hdl->libzfs_pool_handles != NULL)
zph->zpool_next = hdl->libzfs_pool_handles;
hdl->libzfs_pool_handles = zph;
}
return (zph);
}
static zpool_handle_t *
zpool_find_handle(zfs_handle_t *zhp, const char *pool_name, int len)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
zpool_handle_t *zph = hdl->libzfs_pool_handles;
while ((zph != NULL) &&
(strncmp(pool_name, zpool_get_name(zph), len) != 0))
zph = zph->zpool_next;
return (zph);
}
/*
* Returns a handle to the pool that contains the provided dataset.
* If a handle to that pool already exists then that handle is returned.
* Otherwise, a new handle is created and added to the list of handles.
*/
static zpool_handle_t *
zpool_handle(zfs_handle_t *zhp)
{
char *pool_name;
int len;
zpool_handle_t *zph;
len = strcspn(zhp->zfs_name, "/@") + 1;
pool_name = zfs_alloc(zhp->zfs_hdl, len);
(void) strlcpy(pool_name, zhp->zfs_name, len);
zph = zpool_find_handle(zhp, pool_name, len);
if (zph == NULL)
zph = zpool_add_handle(zhp, pool_name);
free(pool_name);
return (zph);
}
void
zpool_free_handles(libzfs_handle_t *hdl)
{
zpool_handle_t *next, *zph = hdl->libzfs_pool_handles;
while (zph != NULL) {
next = zph->zpool_next;
zpool_close(zph);
zph = next;
}
hdl->libzfs_pool_handles = NULL;
}
2008-11-20 20:01:55 +00:00
/*
* Utility function to gather stats (objset and zpl) for the given object.
*/
static int
2009-01-15 21:59:39 +00:00
get_stats_ioctl(zfs_handle_t *zhp, zfs_cmd_t *zc)
2008-11-20 20:01:55 +00:00
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
2009-01-15 21:59:39 +00:00
(void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name));
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, zc) != 0) {
2008-11-20 20:01:55 +00:00
if (errno == ENOMEM) {
2009-01-15 21:59:39 +00:00
if (zcmd_expand_dst_nvlist(hdl, zc) != 0) {
2008-11-20 20:01:55 +00:00
return (-1);
}
} else {
return (-1);
}
}
2009-01-15 21:59:39 +00:00
return (0);
}
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
static int
put_stats_zhdl(zfs_handle_t *zhp, zfs_cmd_t *zc)
{
nvlist_t *allprops, *userprops;
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
zhp->zfs_dmustats = zc->zc_objset_stats; /* structure assignment */
if (zcmd_read_dst_nvlist(zhp->zfs_hdl, zc, &allprops) != 0) {
2008-11-20 20:01:55 +00:00
return (-1);
}
if ((userprops = process_user_props(zhp, allprops)) == NULL) {
nvlist_free(allprops);
return (-1);
}
nvlist_free(zhp->zfs_props);
nvlist_free(zhp->zfs_user_props);
zhp->zfs_props = allprops;
zhp->zfs_user_props = userprops;
return (0);
}
2009-01-15 21:59:39 +00:00
static int
get_stats(zfs_handle_t *zhp)
{
int rc = 0;
zfs_cmd_t zc = { 0 };
if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
return (-1);
if (get_stats_ioctl(zhp, &zc) != 0)
rc = -1;
else if (put_stats_zhdl(zhp, &zc) != 0)
rc = -1;
zcmd_free_nvlists(&zc);
return (rc);
}
2008-11-20 20:01:55 +00:00
/*
* Refresh the properties currently stored in the handle.
*/
void
zfs_refresh_properties(zfs_handle_t *zhp)
{
(void) get_stats(zhp);
}
/*
* Makes a handle from the given dataset name. Used by zfs_open() and
* zfs_iter_* to create child handles on the fly.
*/
2009-01-15 21:59:39 +00:00
static int
make_dataset_handle_common(zfs_handle_t *zhp, zfs_cmd_t *zc)
2008-11-20 20:01:55 +00:00
{
char *logstr;
2009-01-15 21:59:39 +00:00
libzfs_handle_t *hdl = zhp->zfs_hdl;
2008-11-20 20:01:55 +00:00
/*
* Preserve history log string.
* any changes performed here will be
* logged as an internal event.
*/
logstr = zhp->zfs_hdl->libzfs_log_str;
zhp->zfs_hdl->libzfs_log_str = NULL;
2009-01-15 21:59:39 +00:00
top:
if (put_stats_zhdl(zhp, zc) != 0) {
2008-11-20 20:01:55 +00:00
zhp->zfs_hdl->libzfs_log_str = logstr;
2009-01-15 21:59:39 +00:00
return (-1);
2008-11-20 20:01:55 +00:00
}
2009-01-15 21:59:39 +00:00
2008-11-20 20:01:55 +00:00
if (zhp->zfs_dmustats.dds_inconsistent) {
2009-01-15 21:59:39 +00:00
zfs_cmd_t zc2 = { 0 };
2008-11-20 20:01:55 +00:00
/*
* If it is dds_inconsistent, then we've caught it in
* the middle of a 'zfs receive' or 'zfs destroy', and
* it is inconsistent from the ZPL's point of view, so
* can't be mounted. However, it could also be that we
* have crashed in the middle of one of those
* operations, in which case we need to get rid of the
* inconsistent state. We do that by either rolling
* back to the previous snapshot (which will fail if
* there is none), or destroying the filesystem. Note
* that if we are still in the middle of an active
* 'receive' or 'destroy', then the rollback and destroy
* will fail with EBUSY and we will drive on as usual.
*/
2009-01-15 21:59:39 +00:00
(void) strlcpy(zc2.zc_name, zhp->zfs_name,
sizeof (zc2.zc_name));
2008-11-20 20:01:55 +00:00
if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) {
(void) zvol_remove_link(hdl, zhp->zfs_name);
2009-01-15 21:59:39 +00:00
zc2.zc_objset_type = DMU_OST_ZVOL;
2008-11-20 20:01:55 +00:00
} else {
2009-01-15 21:59:39 +00:00
zc2.zc_objset_type = DMU_OST_ZFS;
2008-11-20 20:01:55 +00:00
}
/*
* If we can successfully destroy it, pretend that it
* never existed.
*/
2009-01-15 21:59:39 +00:00
if (ioctl(hdl->libzfs_fd, ZFS_IOC_DESTROY, &zc2) == 0) {
2008-11-20 20:01:55 +00:00
zhp->zfs_hdl->libzfs_log_str = logstr;
errno = ENOENT;
2009-01-15 21:59:39 +00:00
return (-1);
2008-11-20 20:01:55 +00:00
}
2009-01-15 21:59:39 +00:00
/* If we can successfully roll it back, reset the stats */
if (ioctl(hdl->libzfs_fd, ZFS_IOC_ROLLBACK, &zc2) == 0) {
if (get_stats_ioctl(zhp, zc) != 0) {
zhp->zfs_hdl->libzfs_log_str = logstr;
return (-1);
}
2008-11-20 20:01:55 +00:00
goto top;
2009-01-15 21:59:39 +00:00
}
2008-11-20 20:01:55 +00:00
}
/*
* We've managed to open the dataset and gather statistics. Determine
* the high-level type.
*/
if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL)
zhp->zfs_head_type = ZFS_TYPE_VOLUME;
else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS)
zhp->zfs_head_type = ZFS_TYPE_FILESYSTEM;
else
abort();
if (zhp->zfs_dmustats.dds_is_snapshot)
zhp->zfs_type = ZFS_TYPE_SNAPSHOT;
else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL)
zhp->zfs_type = ZFS_TYPE_VOLUME;
else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS)
zhp->zfs_type = ZFS_TYPE_FILESYSTEM;
else
abort(); /* we should never see any other types */
zhp->zfs_hdl->libzfs_log_str = logstr;
zhp->zpool_hdl = zpool_handle(zhp);
2009-01-15 21:59:39 +00:00
return (0);
}
zfs_handle_t *
make_dataset_handle(libzfs_handle_t *hdl, const char *path)
{
zfs_cmd_t zc = { 0 };
zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1);
if (zhp == NULL)
return (NULL);
zhp->zfs_hdl = hdl;
(void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name));
if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) {
free(zhp);
return (NULL);
}
if (get_stats_ioctl(zhp, &zc) == -1) {
zcmd_free_nvlists(&zc);
free(zhp);
return (NULL);
}
if (make_dataset_handle_common(zhp, &zc) == -1) {
free(zhp);
zhp = NULL;
}
zcmd_free_nvlists(&zc);
return (zhp);
}
static zfs_handle_t *
make_dataset_handle_zc(libzfs_handle_t *hdl, zfs_cmd_t *zc)
{
zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1);
if (zhp == NULL)
return (NULL);
zhp->zfs_hdl = hdl;
(void) strlcpy(zhp->zfs_name, zc->zc_name, sizeof (zhp->zfs_name));
if (make_dataset_handle_common(zhp, zc) == -1) {
free(zhp);
return (NULL);
}
2008-11-20 20:01:55 +00:00
return (zhp);
}
/*
* Opens the given snapshot, filesystem, or volume. The 'types'
* argument is a mask of acceptable types. The function will print an
* appropriate error message and return NULL if it can't be opened.
*/
zfs_handle_t *
zfs_open(libzfs_handle_t *hdl, const char *path, int types)
{
zfs_handle_t *zhp;
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot open '%s'"), path);
/*
* Validate the name before we even try to open it.
*/
if (!zfs_validate_name(hdl, path, ZFS_TYPE_DATASET, B_FALSE)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid dataset name"));
(void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf);
return (NULL);
}
/*
* Try to get stats for the dataset, which will tell us if it exists.
*/
errno = 0;
if ((zhp = make_dataset_handle(hdl, path)) == NULL) {
(void) zfs_standard_error(hdl, errno, errbuf);
return (NULL);
}
if (!(types & zhp->zfs_type)) {
(void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
zfs_close(zhp);
return (NULL);
}
return (zhp);
}
/*
* Release a ZFS handle. Nothing to do but free the associated memory.
*/
void
zfs_close(zfs_handle_t *zhp)
{
if (zhp->zfs_mntopts)
free(zhp->zfs_mntopts);
nvlist_free(zhp->zfs_props);
nvlist_free(zhp->zfs_user_props);
free(zhp);
}
2009-01-15 21:59:39 +00:00
typedef struct mnttab_node {
struct mnttab mtn_mt;
avl_node_t mtn_node;
} mnttab_node_t;
static int
libzfs_mnttab_cache_compare(const void *arg1, const void *arg2)
{
const mnttab_node_t *mtn1 = arg1;
const mnttab_node_t *mtn2 = arg2;
int rv;
rv = strcmp(mtn1->mtn_mt.mnt_special, mtn2->mtn_mt.mnt_special);
if (rv == 0)
return (0);
return (rv > 0 ? 1 : -1);
}
void
libzfs_mnttab_init(libzfs_handle_t *hdl)
{
struct mnttab entry;
assert(avl_numnodes(&hdl->libzfs_mnttab_cache) == 0);
avl_create(&hdl->libzfs_mnttab_cache, libzfs_mnttab_cache_compare,
sizeof (mnttab_node_t), offsetof(mnttab_node_t, mtn_node));
rewind(hdl->libzfs_mnttab);
while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
mnttab_node_t *mtn;
if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
continue;
mtn = zfs_alloc(hdl, sizeof (mnttab_node_t));
mtn->mtn_mt.mnt_special = zfs_strdup(hdl, entry.mnt_special);
mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, entry.mnt_mountp);
mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, entry.mnt_fstype);
mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, entry.mnt_mntopts);
avl_add(&hdl->libzfs_mnttab_cache, mtn);
}
}
void
libzfs_mnttab_fini(libzfs_handle_t *hdl)
{
void *cookie = NULL;
mnttab_node_t *mtn;
while (mtn = avl_destroy_nodes(&hdl->libzfs_mnttab_cache, &cookie)) {
free(mtn->mtn_mt.mnt_special);
free(mtn->mtn_mt.mnt_mountp);
free(mtn->mtn_mt.mnt_fstype);
free(mtn->mtn_mt.mnt_mntopts);
free(mtn);
}
avl_destroy(&hdl->libzfs_mnttab_cache);
}
int
libzfs_mnttab_find(libzfs_handle_t *hdl, const char *fsname,
struct mnttab *entry)
{
mnttab_node_t find;
mnttab_node_t *mtn;
if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0)
libzfs_mnttab_init(hdl);
find.mtn_mt.mnt_special = (char *)fsname;
mtn = avl_find(&hdl->libzfs_mnttab_cache, &find, NULL);
if (mtn) {
*entry = mtn->mtn_mt;
return (0);
}
return (ENOENT);
}
void
libzfs_mnttab_add(libzfs_handle_t *hdl, const char *special,
const char *mountp, const char *mntopts)
{
mnttab_node_t *mtn;
if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0)
return;
mtn = zfs_alloc(hdl, sizeof (mnttab_node_t));
mtn->mtn_mt.mnt_special = zfs_strdup(hdl, special);
mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, mountp);
mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, MNTTYPE_ZFS);
mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, mntopts);
avl_add(&hdl->libzfs_mnttab_cache, mtn);
}
void
libzfs_mnttab_remove(libzfs_handle_t *hdl, const char *fsname)
{
mnttab_node_t find;
mnttab_node_t *ret;
find.mtn_mt.mnt_special = (char *)fsname;
if (ret = avl_find(&hdl->libzfs_mnttab_cache, (void *)&find, NULL)) {
avl_remove(&hdl->libzfs_mnttab_cache, ret);
free(ret->mtn_mt.mnt_special);
free(ret->mtn_mt.mnt_mountp);
free(ret->mtn_mt.mnt_fstype);
free(ret->mtn_mt.mnt_mntopts);
free(ret);
}
}
2008-11-20 20:01:55 +00:00
int
zfs_spa_version(zfs_handle_t *zhp, int *spa_version)
{
zpool_handle_t *zpool_handle = zhp->zpool_hdl;
2008-11-20 20:01:55 +00:00
if (zpool_handle == NULL)
return (-1);
*spa_version = zpool_get_prop_int(zpool_handle,
ZPOOL_PROP_VERSION, NULL);
return (0);
}
/*
* The choice of reservation property depends on the SPA version.
*/
static int
zfs_which_resv_prop(zfs_handle_t *zhp, zfs_prop_t *resv_prop)
{
int spa_version;
if (zfs_spa_version(zhp, &spa_version) < 0)
return (-1);
if (spa_version >= SPA_VERSION_REFRESERVATION)
*resv_prop = ZFS_PROP_REFRESERVATION;
else
*resv_prop = ZFS_PROP_RESERVATION;
return (0);
}
/*
* Given an nvlist of properties to set, validates that they are correct, and
* parses any numeric properties (index, boolean, etc) if they are specified as
* strings.
*/
nvlist_t *
zfs_valid_proplist(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl,
2008-11-20 20:01:55 +00:00
uint64_t zoned, zfs_handle_t *zhp, const char *errbuf)
{
nvpair_t *elem;
uint64_t intval;
char *strval;
zfs_prop_t prop;
nvlist_t *ret;
int chosen_normal = -1;
int chosen_utf = -1;
if (nvlist_alloc(&ret, NV_UNIQUE_NAME, 0) != 0) {
(void) no_memory(hdl);
return (NULL);
}
elem = NULL;
while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) {
const char *propname = nvpair_name(elem);
/*
* Make sure this property is valid and applies to this type.
*/
if ((prop = zfs_name_to_prop(propname)) == ZPROP_INVAL) {
if (!zfs_prop_user(propname)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid property '%s'"), propname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
/*
* If this is a user property, make sure it's a
* string, and that it's less than ZAP_MAXNAMELEN.
*/
if (nvpair_type(elem) != DATA_TYPE_STRING) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a string"), propname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
if (strlen(nvpair_name(elem)) >= ZAP_MAXNAMELEN) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"property name '%s' is too long"),
propname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
(void) nvpair_value_string(elem, &strval);
if (nvlist_add_string(ret, propname, strval) != 0) {
(void) no_memory(hdl);
goto error;
}
continue;
}
if (type == ZFS_TYPE_SNAPSHOT) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"this property can not be modified for snapshots"));
(void) zfs_error(hdl, EZFS_PROPTYPE, errbuf);
goto error;
}
2008-11-20 20:01:55 +00:00
if (!zfs_prop_valid_for_type(prop, type)) {
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "'%s' does not "
"apply to datasets of this type"), propname);
(void) zfs_error(hdl, EZFS_PROPTYPE, errbuf);
goto error;
}
if (zfs_prop_readonly(prop) &&
(!zfs_prop_setonce(prop) || zhp != NULL)) {
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "'%s' is readonly"),
propname);
(void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf);
goto error;
}
if (zprop_parse_value(hdl, elem, prop, type, ret,
&strval, &intval, errbuf) != 0)
goto error;
/*
* Perform some additional checks for specific properties.
*/
switch (prop) {
case ZFS_PROP_VERSION:
{
int version;
if (zhp == NULL)
break;
version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
if (intval < version) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Can not downgrade; already at version %u"),
version);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
break;
}
case ZFS_PROP_RECORDSIZE:
case ZFS_PROP_VOLBLOCKSIZE:
/* must be power of two within SPA_{MIN,MAX}BLOCKSIZE */
if (intval < SPA_MINBLOCKSIZE ||
intval > SPA_MAXBLOCKSIZE || !ISP2(intval)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be power of 2 from %u "
"to %uk"), propname,
(uint_t)SPA_MINBLOCKSIZE,
(uint_t)SPA_MAXBLOCKSIZE >> 10);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
break;
case ZFS_PROP_SHAREISCSI:
if (strcmp(strval, "off") != 0 &&
strcmp(strval, "on") != 0 &&
strcmp(strval, "type=disk") != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be 'on', 'off', or 'type=disk'"),
propname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
break;
case ZFS_PROP_MOUNTPOINT:
{
namecheck_err_t why;
if (strcmp(strval, ZFS_MOUNTPOINT_NONE) == 0 ||
strcmp(strval, ZFS_MOUNTPOINT_LEGACY) == 0)
break;
if (mountpoint_namecheck(strval, &why)) {
switch (why) {
case NAME_ERR_LEADING_SLASH:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN,
"'%s' must be an absolute path, "
"'none', or 'legacy'"), propname);
break;
case NAME_ERR_TOOLONG:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN,
"component of '%s' is too long"),
propname);
break;
}
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
}
/*FALLTHRU*/
case ZFS_PROP_SHARESMB:
case ZFS_PROP_SHARENFS:
/*
* For the mountpoint and sharenfs or sharesmb
* properties, check if it can be set in a
* global/non-global zone based on
* the zoned property value:
*
* global zone non-global zone
* --------------------------------------------------
* zoned=on mountpoint (no) mountpoint (yes)
* sharenfs (no) sharenfs (no)
* sharesmb (no) sharesmb (no)
*
* zoned=off mountpoint (yes) N/A
* sharenfs (yes)
* sharesmb (yes)
*/
if (zoned) {
if (getzoneid() == GLOBAL_ZONEID) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be set on "
"dataset in a non-global zone"),
propname);
(void) zfs_error(hdl, EZFS_ZONED,
errbuf);
goto error;
} else if (prop == ZFS_PROP_SHARENFS ||
prop == ZFS_PROP_SHARESMB) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be set in "
"a non-global zone"), propname);
(void) zfs_error(hdl, EZFS_ZONED,
errbuf);
goto error;
}
} else if (getzoneid() != GLOBAL_ZONEID) {
/*
* If zoned property is 'off', this must be in
* a globle zone. If not, something is wrong.
*/
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be set while dataset "
"'zoned' property is set"), propname);
(void) zfs_error(hdl, EZFS_ZONED, errbuf);
goto error;
}
/*
* At this point, it is legitimate to set the
* property. Now we want to make sure that the
* property value is valid if it is sharenfs.
*/
if ((prop == ZFS_PROP_SHARENFS ||
prop == ZFS_PROP_SHARESMB) &&
strcmp(strval, "on") != 0 &&
strcmp(strval, "off") != 0) {
zfs_share_proto_t proto;
if (prop == ZFS_PROP_SHARESMB)
proto = PROTO_SMB;
else
proto = PROTO_NFS;
/*
* Must be an valid sharing protocol
* option string so init the libshare
* in order to enable the parser and
* then parse the options. We use the
* control API since we don't care about
* the current configuration and don't
* want the overhead of loading it
* until we actually do something.
*/
if (zfs_init_libshare(hdl,
SA_INIT_CONTROL_API) != SA_OK) {
/*
* An error occurred so we can't do
* anything
*/
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be set: problem "
"in share initialization"),
propname);
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
}
if (zfs_parse_options(strval, proto) != SA_OK) {
/*
* There was an error in parsing so
* deal with it by issuing an error
* message and leaving after
* uninitializing the the libshare
* interface.
*/
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be set to invalid "
"options"), propname);
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
zfs_uninit_libshare(hdl);
goto error;
}
zfs_uninit_libshare(hdl);
}
break;
case ZFS_PROP_UTF8ONLY:
chosen_utf = (int)intval;
break;
case ZFS_PROP_NORMALIZE:
chosen_normal = (int)intval;
break;
}
/*
* For changes to existing volumes, we have some additional
* checks to enforce.
*/
if (type == ZFS_TYPE_VOLUME && zhp != NULL) {
uint64_t volsize = zfs_prop_get_int(zhp,
ZFS_PROP_VOLSIZE);
uint64_t blocksize = zfs_prop_get_int(zhp,
ZFS_PROP_VOLBLOCKSIZE);
char buf[64];
switch (prop) {
case ZFS_PROP_RESERVATION:
case ZFS_PROP_REFRESERVATION:
if (intval > volsize) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' is greater than current "
"volume size"), propname);
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
}
break;
case ZFS_PROP_VOLSIZE:
if (intval % blocksize != 0) {
zfs_nicenum(blocksize, buf,
sizeof (buf));
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a multiple of "
"volume block size (%s)"),
propname, buf);
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
}
if (intval == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be zero"),
propname);
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
}
break;
}
}
}
/*
* If normalization was chosen, but no UTF8 choice was made,
* enforce rejection of non-UTF8 names.
*
* If normalization was chosen, but rejecting non-UTF8 names
* was explicitly not chosen, it is an error.
*/
if (chosen_normal > 0 && chosen_utf < 0) {
if (nvlist_add_uint64(ret,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), 1) != 0) {
(void) no_memory(hdl);
goto error;
}
} else if (chosen_normal > 0 && chosen_utf == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be set 'on' if normalization chosen"),
zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
/*
* If this is an existing volume, and someone is setting the volsize,
* make sure that it matches the reservation, or add it if necessary.
*/
if (zhp != NULL && type == ZFS_TYPE_VOLUME &&
nvlist_lookup_uint64(ret, zfs_prop_to_name(ZFS_PROP_VOLSIZE),
&intval) == 0) {
uint64_t old_volsize = zfs_prop_get_int(zhp,
ZFS_PROP_VOLSIZE);
uint64_t old_reservation;
uint64_t new_reservation;
zfs_prop_t resv_prop;
if (zfs_which_resv_prop(zhp, &resv_prop) < 0)
goto error;
old_reservation = zfs_prop_get_int(zhp, resv_prop);
if (old_volsize == old_reservation &&
nvlist_lookup_uint64(ret, zfs_prop_to_name(resv_prop),
&new_reservation) != 0) {
if (nvlist_add_uint64(ret,
zfs_prop_to_name(resv_prop), intval) != 0) {
(void) no_memory(hdl);
goto error;
}
}
}
return (ret);
error:
nvlist_free(ret);
return (NULL);
}
static int
zfs_get_perm_who(const char *who, zfs_deleg_who_type_t *who_type,
uint64_t *ret_who)
{
struct passwd *pwd;
struct group *grp;
uid_t id;
if (*who_type == ZFS_DELEG_EVERYONE || *who_type == ZFS_DELEG_CREATE ||
*who_type == ZFS_DELEG_NAMED_SET) {
*ret_who = -1;
return (0);
}
if (who == NULL && !(*who_type == ZFS_DELEG_EVERYONE))
return (EZFS_BADWHO);
if (*who_type == ZFS_DELEG_WHO_UNKNOWN &&
strcmp(who, "everyone") == 0) {
*ret_who = -1;
*who_type = ZFS_DELEG_EVERYONE;
return (0);
}
pwd = getpwnam(who);
grp = getgrnam(who);
if ((*who_type == ZFS_DELEG_USER) && pwd) {
*ret_who = pwd->pw_uid;
} else if ((*who_type == ZFS_DELEG_GROUP) && grp) {
*ret_who = grp->gr_gid;
} else if (pwd) {
*ret_who = pwd->pw_uid;
*who_type = ZFS_DELEG_USER;
} else if (grp) {
*ret_who = grp->gr_gid;
*who_type = ZFS_DELEG_GROUP;
} else {
char *end;
id = strtol(who, &end, 10);
if (errno != 0 || *end != '\0') {
return (EZFS_BADWHO);
} else {
*ret_who = id;
if (*who_type == ZFS_DELEG_WHO_UNKNOWN)
*who_type = ZFS_DELEG_USER;
}
}
return (0);
}
static void
zfs_perms_add_to_nvlist(nvlist_t *who_nvp, char *name, nvlist_t *perms_nvp)
{
if (perms_nvp != NULL) {
verify(nvlist_add_nvlist(who_nvp,
name, perms_nvp) == 0);
} else {
verify(nvlist_add_boolean(who_nvp, name) == 0);
}
}
static void
helper(zfs_deleg_who_type_t who_type, uint64_t whoid, char *whostr,
zfs_deleg_inherit_t inherit, nvlist_t *who_nvp, nvlist_t *perms_nvp,
nvlist_t *sets_nvp)
{
boolean_t do_perms, do_sets;
char name[ZFS_MAX_DELEG_NAME];
do_perms = (nvlist_next_nvpair(perms_nvp, NULL) != NULL);
do_sets = (nvlist_next_nvpair(sets_nvp, NULL) != NULL);
if (!do_perms && !do_sets)
do_perms = do_sets = B_TRUE;
if (do_perms) {
zfs_deleg_whokey(name, who_type, inherit,
(who_type == ZFS_DELEG_NAMED_SET) ?
whostr : (void *)&whoid);
zfs_perms_add_to_nvlist(who_nvp, name, perms_nvp);
}
if (do_sets) {
zfs_deleg_whokey(name, toupper(who_type), inherit,
(who_type == ZFS_DELEG_NAMED_SET) ?
whostr : (void *)&whoid);
zfs_perms_add_to_nvlist(who_nvp, name, sets_nvp);
}
}
static void
zfs_perms_add_who_nvlist(nvlist_t *who_nvp, uint64_t whoid, void *whostr,
nvlist_t *perms_nvp, nvlist_t *sets_nvp,
zfs_deleg_who_type_t who_type, zfs_deleg_inherit_t inherit)
{
if (who_type == ZFS_DELEG_NAMED_SET || who_type == ZFS_DELEG_CREATE) {
helper(who_type, whoid, whostr, 0,
who_nvp, perms_nvp, sets_nvp);
} else {
if (inherit & ZFS_DELEG_PERM_LOCAL) {
helper(who_type, whoid, whostr, ZFS_DELEG_LOCAL,
who_nvp, perms_nvp, sets_nvp);
}
if (inherit & ZFS_DELEG_PERM_DESCENDENT) {
helper(who_type, whoid, whostr, ZFS_DELEG_DESCENDENT,
who_nvp, perms_nvp, sets_nvp);
}
}
}
/*
* Construct nvlist to pass down to kernel for setting/removing permissions.
*
* The nvlist is constructed as a series of nvpairs with an optional embedded
* nvlist of permissions to remove or set. The topmost nvpairs are the actual
* base attribute named stored in the dsl.
* Arguments:
*
* whostr: is a comma separated list of users, groups, or a single set name.
* whostr may be null for everyone or create perms.
* who_type: is the type of entry in whostr. Typically this will be
* ZFS_DELEG_WHO_UNKNOWN.
* perms: common separated list of permissions. May be null if user
* is requested to remove permissions by who.
* inherit: Specifies the inheritance of the permissions. Will be either
* ZFS_DELEG_PERM_LOCAL and/or ZFS_DELEG_PERM_DESCENDENT.
* nvp The constructed nvlist to pass to zfs_perm_set().
* The output nvp will look something like this.
* ul$1234 -> {create ; destroy }
* Ul$1234 -> { @myset }
* s-$@myset - { snapshot; checksum; compression }
*/
int
zfs_build_perms(zfs_handle_t *zhp, char *whostr, char *perms,
zfs_deleg_who_type_t who_type, zfs_deleg_inherit_t inherit, nvlist_t **nvp)
{
nvlist_t *who_nvp;
nvlist_t *perms_nvp = NULL;
nvlist_t *sets_nvp = NULL;
char errbuf[1024];
char *who_tok, *perm;
int error;
*nvp = NULL;
if (perms) {
if ((error = nvlist_alloc(&perms_nvp,
NV_UNIQUE_NAME, 0)) != 0) {
return (1);
}
if ((error = nvlist_alloc(&sets_nvp,
NV_UNIQUE_NAME, 0)) != 0) {
nvlist_free(perms_nvp);
return (1);
}
}
if ((error = nvlist_alloc(&who_nvp, NV_UNIQUE_NAME, 0)) != 0) {
if (perms_nvp)
nvlist_free(perms_nvp);
if (sets_nvp)
nvlist_free(sets_nvp);
return (1);
}
if (who_type == ZFS_DELEG_NAMED_SET) {
namecheck_err_t why;
char what;
if ((error = permset_namecheck(whostr, &why, &what)) != 0) {
nvlist_free(who_nvp);
if (perms_nvp)
nvlist_free(perms_nvp);
if (sets_nvp)
nvlist_free(sets_nvp);
switch (why) {
case NAME_ERR_NO_AT:
zfs_error_aux(zhp->zfs_hdl,
dgettext(TEXT_DOMAIN,
"set definition must begin with an '@' "
"character"));
}
return (zfs_error(zhp->zfs_hdl,
EZFS_BADPERMSET, whostr));
}
}
/*
* Build up nvlist(s) of permissions. Two nvlists are maintained.
* The first nvlist perms_nvp will have normal permissions and the
* other sets_nvp will have only permssion set names in it.
*/
for (perm = strtok(perms, ","); perm; perm = strtok(NULL, ",")) {
const char *perm_canonical = zfs_deleg_canonicalize_perm(perm);
if (perm_canonical) {
verify(nvlist_add_boolean(perms_nvp,
perm_canonical) == 0);
} else if (perm[0] == '@') {
verify(nvlist_add_boolean(sets_nvp, perm) == 0);
} else {
nvlist_free(who_nvp);
nvlist_free(perms_nvp);
nvlist_free(sets_nvp);
return (zfs_error(zhp->zfs_hdl, EZFS_BADPERM, perm));
}
}
if (whostr && who_type != ZFS_DELEG_CREATE) {
who_tok = strtok(whostr, ",");
if (who_tok == NULL) {
nvlist_free(who_nvp);
if (perms_nvp)
nvlist_free(perms_nvp);
if (sets_nvp)
nvlist_free(sets_nvp);
(void) snprintf(errbuf, sizeof (errbuf),
2008-12-04 22:41:11 +00:00
dgettext(TEXT_DOMAIN, "Who string is NULL: %s"),
2008-11-20 20:01:55 +00:00
whostr);
return (zfs_error(zhp->zfs_hdl, EZFS_BADWHO, errbuf));
}
}
/*
* Now create the nvlist(s)
*/
do {
uint64_t who_id;
error = zfs_get_perm_who(who_tok, &who_type,
&who_id);
if (error) {
nvlist_free(who_nvp);
if (perms_nvp)
nvlist_free(perms_nvp);
if (sets_nvp)
nvlist_free(sets_nvp);
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN,
"Unable to determine uid/gid for "
"%s "), who_tok);
return (zfs_error(zhp->zfs_hdl, EZFS_BADWHO, errbuf));
}
/*
* add entries for both local and descendent when required
*/
zfs_perms_add_who_nvlist(who_nvp, who_id, who_tok,
perms_nvp, sets_nvp, who_type, inherit);
} while (who_tok = strtok(NULL, ","));
*nvp = who_nvp;
return (0);
}
static int
zfs_perm_set_common(zfs_handle_t *zhp, nvlist_t *nvp, boolean_t unset)
{
zfs_cmd_t zc = { 0 };
int error;
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "Cannot update 'allows' for '%s'"),
zhp->zfs_name);
if (zcmd_write_src_nvlist(zhp->zfs_hdl, &zc, nvp))
return (-1);
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
zc.zc_perm_action = unset;
error = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SET_FSACL, &zc);
if (error && errno == ENOTSUP) {
(void) snprintf(errbuf, sizeof (errbuf),
gettext("Pool must be upgraded to use 'allow/unallow'"));
zcmd_free_nvlists(&zc);
return (zfs_error(zhp->zfs_hdl, EZFS_BADVERSION, errbuf));
} else if (error) {
return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf));
}
zcmd_free_nvlists(&zc);
return (error);
}
int
zfs_perm_set(zfs_handle_t *zhp, nvlist_t *nvp)
{
return (zfs_perm_set_common(zhp, nvp, B_FALSE));
}
int
zfs_perm_remove(zfs_handle_t *zhp, nvlist_t *perms)
{
return (zfs_perm_set_common(zhp, perms, B_TRUE));
}
static int
perm_compare(const void *arg1, const void *arg2)
{
const zfs_perm_node_t *node1 = arg1;
const zfs_perm_node_t *node2 = arg2;
int ret;
ret = strcmp(node1->z_pname, node2->z_pname);
if (ret > 0)
return (1);
if (ret < 0)
return (-1);
else
return (0);
}
static void
zfs_destroy_perm_tree(avl_tree_t *tree)
{
zfs_perm_node_t *permnode;
void *cookie = NULL;
while ((permnode = avl_destroy_nodes(tree, &cookie)) != NULL)
free(permnode);
avl_destroy(tree);
}
static void
zfs_destroy_tree(avl_tree_t *tree)
{
zfs_allow_node_t *allownode;
void *cookie = NULL;
while ((allownode = avl_destroy_nodes(tree, &cookie)) != NULL) {
zfs_destroy_perm_tree(&allownode->z_localdescend);
zfs_destroy_perm_tree(&allownode->z_local);
zfs_destroy_perm_tree(&allownode->z_descend);
free(allownode);
}
avl_destroy(tree);
}
void
zfs_free_allows(zfs_allow_t *allow)
{
zfs_allow_t *allownext;
zfs_allow_t *freeallow;
allownext = allow;
while (allownext) {
zfs_destroy_tree(&allownext->z_sets);
zfs_destroy_tree(&allownext->z_crperms);
zfs_destroy_tree(&allownext->z_user);
zfs_destroy_tree(&allownext->z_group);
zfs_destroy_tree(&allownext->z_everyone);
freeallow = allownext;
allownext = allownext->z_next;
free(freeallow);
}
}
static zfs_allow_t *
zfs_alloc_perm_tree(zfs_handle_t *zhp, zfs_allow_t *prev, char *setpoint)
{
zfs_allow_t *ptree;
if ((ptree = zfs_alloc(zhp->zfs_hdl,
sizeof (zfs_allow_t))) == NULL) {
return (NULL);
}
(void) strlcpy(ptree->z_setpoint, setpoint, sizeof (ptree->z_setpoint));
avl_create(&ptree->z_sets,
perm_compare, sizeof (zfs_allow_node_t),
offsetof(zfs_allow_node_t, z_node));
avl_create(&ptree->z_crperms,
perm_compare, sizeof (zfs_allow_node_t),
offsetof(zfs_allow_node_t, z_node));
avl_create(&ptree->z_user,
perm_compare, sizeof (zfs_allow_node_t),
offsetof(zfs_allow_node_t, z_node));
avl_create(&ptree->z_group,
perm_compare, sizeof (zfs_allow_node_t),
offsetof(zfs_allow_node_t, z_node));
avl_create(&ptree->z_everyone,
perm_compare, sizeof (zfs_allow_node_t),
offsetof(zfs_allow_node_t, z_node));
if (prev)
prev->z_next = ptree;
ptree->z_next = NULL;
return (ptree);
}
/*
* Add permissions to the appropriate AVL permission tree.
* The appropriate tree may not be the requested tree.
* For example if ld indicates a local permission, but
* same permission also exists as a descendent permission
* then the permission will be removed from the descendent
* tree and add the the local+descendent tree.
*/
static int
zfs_coalesce_perm(zfs_handle_t *zhp, zfs_allow_node_t *allownode,
char *perm, char ld)
{
zfs_perm_node_t pnode, *permnode, *permnode2;
zfs_perm_node_t *newnode;
avl_index_t where, where2;
avl_tree_t *tree, *altree;
(void) strlcpy(pnode.z_pname, perm, sizeof (pnode.z_pname));
if (ld == ZFS_DELEG_NA) {
tree = &allownode->z_localdescend;
altree = &allownode->z_descend;
} else if (ld == ZFS_DELEG_LOCAL) {
tree = &allownode->z_local;
altree = &allownode->z_descend;
} else {
tree = &allownode->z_descend;
altree = &allownode->z_local;
}
permnode = avl_find(tree, &pnode, &where);
permnode2 = avl_find(altree, &pnode, &where2);
if (permnode2) {
avl_remove(altree, permnode2);
free(permnode2);
if (permnode == NULL) {
tree = &allownode->z_localdescend;
}
}
/*
* Now insert new permission in either requested location
* local/descendent or into ld when perm will exist in both.
*/
if (permnode == NULL) {
if ((newnode = zfs_alloc(zhp->zfs_hdl,
sizeof (zfs_perm_node_t))) == NULL) {
return (-1);
}
*newnode = pnode;
avl_add(tree, newnode);
}
return (0);
}
/*
* Uggh, this is going to be a bit complicated.
* we have an nvlist coming out of the kernel that
* will indicate where the permission is set and then
* it will contain allow of the various "who's", and what
* their permissions are. To further complicate this
* we will then have to coalesce the local,descendent
* and local+descendent permissions where appropriate.
* The kernel only knows about a permission as being local
* or descendent, but not both.
*
* In order to make this easier for zfs_main to deal with
* a series of AVL trees will be used to maintain
* all of this, primarily for sorting purposes as well
* as the ability to quickly locate a specific entry.
*
* What we end up with are tree's for sets, create perms,
* user, groups and everyone. With each of those trees
* we have subtrees for local, descendent and local+descendent
* permissions.
*/
int
zfs_perm_get(zfs_handle_t *zhp, zfs_allow_t **zfs_perms)
{
zfs_cmd_t zc = { 0 };
int error;
nvlist_t *nvlist;
nvlist_t *permnv, *sourcenv;
nvpair_t *who_pair, *source_pair;
nvpair_t *perm_pair;
char errbuf[1024];
zfs_allow_t *zallowp, *newallowp;
char ld;
char *nvpname;
uid_t uid;
gid_t gid;
avl_tree_t *tree;
avl_index_t where;
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
return (-1);
while (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_GET_FSACL, &zc) != 0) {
if (errno == ENOMEM) {
if (zcmd_expand_dst_nvlist(zhp->zfs_hdl, &zc) != 0) {
zcmd_free_nvlists(&zc);
return (-1);
}
} else if (errno == ENOTSUP) {
zcmd_free_nvlists(&zc);
(void) snprintf(errbuf, sizeof (errbuf),
gettext("Pool must be upgraded to use 'allow'"));
return (zfs_error(zhp->zfs_hdl,
EZFS_BADVERSION, errbuf));
} else {
zcmd_free_nvlists(&zc);
return (-1);
}
}
if (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &nvlist) != 0) {
zcmd_free_nvlists(&zc);
return (-1);
}
zcmd_free_nvlists(&zc);
source_pair = nvlist_next_nvpair(nvlist, NULL);
if (source_pair == NULL) {
*zfs_perms = NULL;
return (0);
}
*zfs_perms = zfs_alloc_perm_tree(zhp, NULL, nvpair_name(source_pair));
if (*zfs_perms == NULL) {
return (0);
}
zallowp = *zfs_perms;
for (;;) {
struct passwd *pwd;
struct group *grp;
zfs_allow_node_t *allownode;
zfs_allow_node_t findallownode;
zfs_allow_node_t *newallownode;
(void) strlcpy(zallowp->z_setpoint,
nvpair_name(source_pair),
sizeof (zallowp->z_setpoint));
if ((error = nvpair_value_nvlist(source_pair, &sourcenv)) != 0)
goto abort;
/*
* Make sure nvlist is composed correctly
*/
if (zfs_deleg_verify_nvlist(sourcenv)) {
goto abort;
}
who_pair = nvlist_next_nvpair(sourcenv, NULL);
if (who_pair == NULL) {
goto abort;
}
do {
error = nvpair_value_nvlist(who_pair, &permnv);
if (error) {
goto abort;
}
/*
* First build up the key to use
* for looking up in the various
* who trees.
*/
ld = nvpair_name(who_pair)[1];
nvpname = nvpair_name(who_pair);
switch (nvpair_name(who_pair)[0]) {
case ZFS_DELEG_USER:
case ZFS_DELEG_USER_SETS:
tree = &zallowp->z_user;
uid = atol(&nvpname[3]);
pwd = getpwuid(uid);
(void) snprintf(findallownode.z_key,
sizeof (findallownode.z_key), "user %s",
(pwd) ? pwd->pw_name :
&nvpair_name(who_pair)[3]);
break;
case ZFS_DELEG_GROUP:
case ZFS_DELEG_GROUP_SETS:
tree = &zallowp->z_group;
gid = atol(&nvpname[3]);
grp = getgrgid(gid);
(void) snprintf(findallownode.z_key,
sizeof (findallownode.z_key), "group %s",
(grp) ? grp->gr_name :
&nvpair_name(who_pair)[3]);
break;
case ZFS_DELEG_CREATE:
case ZFS_DELEG_CREATE_SETS:
tree = &zallowp->z_crperms;
(void) strlcpy(findallownode.z_key, "",
sizeof (findallownode.z_key));
break;
case ZFS_DELEG_EVERYONE:
case ZFS_DELEG_EVERYONE_SETS:
(void) snprintf(findallownode.z_key,
sizeof (findallownode.z_key), "everyone");
tree = &zallowp->z_everyone;
break;
case ZFS_DELEG_NAMED_SET:
case ZFS_DELEG_NAMED_SET_SETS:
(void) snprintf(findallownode.z_key,
sizeof (findallownode.z_key), "%s",
&nvpair_name(who_pair)[3]);
tree = &zallowp->z_sets;
break;
}
/*
* Place who in tree
*/
allownode = avl_find(tree, &findallownode, &where);
if (allownode == NULL) {
if ((newallownode = zfs_alloc(zhp->zfs_hdl,
sizeof (zfs_allow_node_t))) == NULL) {
goto abort;
}
avl_create(&newallownode->z_localdescend,
perm_compare,
sizeof (zfs_perm_node_t),
offsetof(zfs_perm_node_t, z_node));
avl_create(&newallownode->z_local,
perm_compare,
sizeof (zfs_perm_node_t),
offsetof(zfs_perm_node_t, z_node));
avl_create(&newallownode->z_descend,
perm_compare,
sizeof (zfs_perm_node_t),
offsetof(zfs_perm_node_t, z_node));
(void) strlcpy(newallownode->z_key,
findallownode.z_key,
sizeof (findallownode.z_key));
avl_insert(tree, newallownode, where);
allownode = newallownode;
}
/*
* Now iterate over the permissions and
* place them in the appropriate local,
* descendent or local+descendent tree.
*
* The permissions are added to the tree
* via zfs_coalesce_perm().
*/
perm_pair = nvlist_next_nvpair(permnv, NULL);
if (perm_pair == NULL)
goto abort;
do {
if (zfs_coalesce_perm(zhp, allownode,
nvpair_name(perm_pair), ld) != 0)
goto abort;
} while (perm_pair = nvlist_next_nvpair(permnv,
perm_pair));
} while (who_pair = nvlist_next_nvpair(sourcenv, who_pair));
source_pair = nvlist_next_nvpair(nvlist, source_pair);
if (source_pair == NULL)
break;
/*
* allocate another node from the link list of
* zfs_allow_t structures
*/
newallowp = zfs_alloc_perm_tree(zhp, zallowp,
nvpair_name(source_pair));
if (newallowp == NULL) {
goto abort;
}
zallowp = newallowp;
}
nvlist_free(nvlist);
return (0);
abort:
zfs_free_allows(*zfs_perms);
nvlist_free(nvlist);
return (-1);
}
static char *
zfs_deleg_perm_note(zfs_deleg_note_t note)
{
/*
* Don't put newlines on end of lines
*/
switch (note) {
case ZFS_DELEG_NOTE_CREATE:
return (dgettext(TEXT_DOMAIN,
"Must also have the 'mount' ability"));
case ZFS_DELEG_NOTE_DESTROY:
return (dgettext(TEXT_DOMAIN,
"Must also have the 'mount' ability"));
case ZFS_DELEG_NOTE_SNAPSHOT:
return (dgettext(TEXT_DOMAIN,
"Must also have the 'mount' ability"));
case ZFS_DELEG_NOTE_ROLLBACK:
return (dgettext(TEXT_DOMAIN,
"Must also have the 'mount' ability"));
case ZFS_DELEG_NOTE_CLONE:
return (dgettext(TEXT_DOMAIN, "Must also have the 'create' "
"ability and 'mount'\n"
"\t\t\t\tability in the origin file system"));
case ZFS_DELEG_NOTE_PROMOTE:
return (dgettext(TEXT_DOMAIN, "Must also have the 'mount'\n"
"\t\t\t\tand 'promote' ability in the origin file system"));
case ZFS_DELEG_NOTE_RENAME:
return (dgettext(TEXT_DOMAIN, "Must also have the 'mount' "
"and 'create' \n\t\t\t\tability in the new parent"));
case ZFS_DELEG_NOTE_RECEIVE:
return (dgettext(TEXT_DOMAIN, "Must also have the 'mount'"
" and 'create' ability"));
case ZFS_DELEG_NOTE_USERPROP:
return (dgettext(TEXT_DOMAIN,
"Allows changing any user property"));
case ZFS_DELEG_NOTE_ALLOW:
return (dgettext(TEXT_DOMAIN,
"Must also have the permission that is being\n"
"\t\t\t\tallowed"));
case ZFS_DELEG_NOTE_MOUNT:
return (dgettext(TEXT_DOMAIN,
"Allows mount/umount of ZFS datasets"));
case ZFS_DELEG_NOTE_SHARE:
return (dgettext(TEXT_DOMAIN,
"Allows sharing file systems over NFS or SMB\n"
"\t\t\t\tprotocols"));
case ZFS_DELEG_NOTE_NONE:
default:
return (dgettext(TEXT_DOMAIN, ""));
}
}
typedef enum {
ZFS_DELEG_SUBCOMMAND,
ZFS_DELEG_PROP,
ZFS_DELEG_OTHER
} zfs_deleg_perm_type_t;
/*
* is the permission a subcommand or other?
*/
zfs_deleg_perm_type_t
zfs_deleg_perm_type(const char *perm)
{
if (strcmp(perm, "userprop") == 0)
return (ZFS_DELEG_OTHER);
else
return (ZFS_DELEG_SUBCOMMAND);
}
static char *
zfs_deleg_perm_type_str(zfs_deleg_perm_type_t type)
{
switch (type) {
case ZFS_DELEG_SUBCOMMAND:
return (dgettext(TEXT_DOMAIN, "subcommand"));
case ZFS_DELEG_PROP:
return (dgettext(TEXT_DOMAIN, "property"));
case ZFS_DELEG_OTHER:
return (dgettext(TEXT_DOMAIN, "other"));
}
return ("");
}
/*ARGSUSED*/
static int
zfs_deleg_prop_cb(int prop, void *cb)
{
if (zfs_prop_delegatable(prop))
(void) fprintf(stderr, "%-15s %-15s\n", zfs_prop_to_name(prop),
zfs_deleg_perm_type_str(ZFS_DELEG_PROP));
return (ZPROP_CONT);
}
void
zfs_deleg_permissions(void)
{
int i;
(void) fprintf(stderr, "\n%-15s %-15s\t%s\n\n", "NAME",
"TYPE", "NOTES");
/*
* First print out the subcommands
*/
for (i = 0; zfs_deleg_perm_tab[i].z_perm != NULL; i++) {
(void) fprintf(stderr, "%-15s %-15s\t%s\n",
zfs_deleg_perm_tab[i].z_perm,
zfs_deleg_perm_type_str(
zfs_deleg_perm_type(zfs_deleg_perm_tab[i].z_perm)),
zfs_deleg_perm_note(zfs_deleg_perm_tab[i].z_note));
}
(void) zprop_iter(zfs_deleg_prop_cb, NULL, B_FALSE, B_TRUE,
ZFS_TYPE_DATASET|ZFS_TYPE_VOLUME);
}
/*
* Given a property name and value, set the property for the given dataset.
*/
int
zfs_prop_set(zfs_handle_t *zhp, const char *propname, const char *propval)
{
zfs_cmd_t zc = { 0 };
int ret = -1;
prop_changelist_t *cl = NULL;
char errbuf[1024];
libzfs_handle_t *hdl = zhp->zfs_hdl;
nvlist_t *nvl = NULL, *realprops;
zfs_prop_t prop;
boolean_t do_prefix;
uint64_t idx;
2008-11-20 20:01:55 +00:00
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot set property for '%s'"),
zhp->zfs_name);
if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0 ||
nvlist_add_string(nvl, propname, propval) != 0) {
(void) no_memory(hdl);
goto error;
}
if ((realprops = zfs_valid_proplist(hdl, zhp->zfs_type, nvl,
2008-11-20 20:01:55 +00:00
zfs_prop_get_int(zhp, ZFS_PROP_ZONED), zhp, errbuf)) == NULL)
goto error;
nvlist_free(nvl);
nvl = realprops;
prop = zfs_name_to_prop(propname);
if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL)
2008-11-20 20:01:55 +00:00
goto error;
if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"child dataset with inherited mountpoint is used "
"in a non-global zone"));
ret = zfs_error(hdl, EZFS_ZONED, errbuf);
goto error;
}
/*
* If the dataset's canmount property is being set to noauto,
* then we want to prevent unmounting & remounting it.
*/
do_prefix = !((prop == ZFS_PROP_CANMOUNT) &&
(zprop_string_to_index(prop, propval, &idx,
ZFS_TYPE_DATASET) == 0) && (idx == ZFS_CANMOUNT_NOAUTO));
2008-11-20 20:01:55 +00:00
if (do_prefix && (ret = changelist_prefix(cl)) != 0)
goto error;
2008-11-20 20:01:55 +00:00
/*
* Execute the corresponding ioctl() to set this property.
*/
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0)
goto error;
ret = zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc);
if (ret != 0) {
switch (errno) {
case ENOSPC:
/*
* For quotas and reservations, ENOSPC indicates
* something different; setting a quota or reservation
* doesn't use any disk space.
*/
switch (prop) {
case ZFS_PROP_QUOTA:
case ZFS_PROP_REFQUOTA:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"size is less than current used or "
"reserved space"));
(void) zfs_error(hdl, EZFS_PROPSPACE, errbuf);
break;
case ZFS_PROP_RESERVATION:
case ZFS_PROP_REFRESERVATION:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"size is greater than available space"));
(void) zfs_error(hdl, EZFS_PROPSPACE, errbuf);
break;
default:
(void) zfs_standard_error(hdl, errno, errbuf);
break;
}
break;
case EBUSY:
if (prop == ZFS_PROP_VOLBLOCKSIZE)
(void) zfs_error(hdl, EZFS_VOLHASDATA, errbuf);
else
(void) zfs_standard_error(hdl, EBUSY, errbuf);
break;
case EROFS:
(void) zfs_error(hdl, EZFS_DSREADONLY, errbuf);
break;
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool and or dataset must be upgraded to set this "
"property or value"));
(void) zfs_error(hdl, EZFS_BADVERSION, errbuf);
break;
case ERANGE:
if (prop == ZFS_PROP_COMPRESSION) {
(void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"property setting is not allowed on "
"bootable datasets"));
(void) zfs_error(hdl, EZFS_NOTSUP, errbuf);
} else {
(void) zfs_standard_error(hdl, errno, errbuf);
}
break;
2008-11-20 20:01:55 +00:00
case EOVERFLOW:
/*
* This platform can't address a volume this big.
*/
#ifdef _ILP32
if (prop == ZFS_PROP_VOLSIZE) {
(void) zfs_error(hdl, EZFS_VOLTOOBIG, errbuf);
break;
}
#endif
/* FALLTHROUGH */
default:
(void) zfs_standard_error(hdl, errno, errbuf);
}
} else {
if (do_prefix)
ret = changelist_postfix(cl);
/*
* Refresh the statistics so the new property value
* is reflected.
*/
if (ret == 0)
(void) get_stats(zhp);
}
error:
nvlist_free(nvl);
zcmd_free_nvlists(&zc);
if (cl)
changelist_free(cl);
return (ret);
}
/*
* Given a property, inherit the value from the parent dataset.
*/
int
zfs_prop_inherit(zfs_handle_t *zhp, const char *propname)
{
zfs_cmd_t zc = { 0 };
int ret;
prop_changelist_t *cl;
libzfs_handle_t *hdl = zhp->zfs_hdl;
char errbuf[1024];
zfs_prop_t prop;
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot inherit %s for '%s'"), propname, zhp->zfs_name);
if ((prop = zfs_name_to_prop(propname)) == ZPROP_INVAL) {
/*
* For user properties, the amount of work we have to do is very
* small, so just do it here.
*/
if (!zfs_prop_user(propname)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid property"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value));
if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc) != 0)
return (zfs_standard_error(hdl, errno, errbuf));
return (0);
}
/*
* Verify that this property is inheritable.
*/
if (zfs_prop_readonly(prop))
return (zfs_error(hdl, EZFS_PROPREADONLY, errbuf));
if (!zfs_prop_inheritable(prop))
return (zfs_error(hdl, EZFS_PROPNONINHERIT, errbuf));
/*
* Check to see if the value applies to this type
*/
if (!zfs_prop_valid_for_type(prop, zhp->zfs_type))
return (zfs_error(hdl, EZFS_PROPTYPE, errbuf));
/*
* Normalize the name, to get rid of shorthand abbrevations.
*/
propname = zfs_prop_to_name(prop);
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value));
if (prop == ZFS_PROP_MOUNTPOINT && getzoneid() == GLOBAL_ZONEID &&
zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset is used in a non-global zone"));
return (zfs_error(hdl, EZFS_ZONED, errbuf));
}
/*
* Determine datasets which will be affected by this change, if any.
*/
if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL)
2008-11-20 20:01:55 +00:00
return (-1);
if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"child dataset with inherited mountpoint is used "
"in a non-global zone"));
ret = zfs_error(hdl, EZFS_ZONED, errbuf);
goto error;
}
if ((ret = changelist_prefix(cl)) != 0)
goto error;
if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc)) != 0) {
return (zfs_standard_error(hdl, errno, errbuf));
} else {
if ((ret = changelist_postfix(cl)) != 0)
goto error;
/*
* Refresh the statistics so the new property is reflected.
*/
(void) get_stats(zhp);
}
error:
changelist_free(cl);
return (ret);
}
/*
* True DSL properties are stored in an nvlist. The following two functions
* extract them appropriately.
*/
static uint64_t
getprop_uint64(zfs_handle_t *zhp, zfs_prop_t prop, char **source)
{
nvlist_t *nv;
uint64_t value;
*source = NULL;
if (nvlist_lookup_nvlist(zhp->zfs_props,
zfs_prop_to_name(prop), &nv) == 0) {
verify(nvlist_lookup_uint64(nv, ZPROP_VALUE, &value) == 0);
(void) nvlist_lookup_string(nv, ZPROP_SOURCE, source);
} else {
value = zfs_prop_default_numeric(prop);
*source = "";
}
return (value);
}
static char *
getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source)
{
nvlist_t *nv;
char *value;
*source = NULL;
if (nvlist_lookup_nvlist(zhp->zfs_props,
zfs_prop_to_name(prop), &nv) == 0) {
verify(nvlist_lookup_string(nv, ZPROP_VALUE, &value) == 0);
(void) nvlist_lookup_string(nv, ZPROP_SOURCE, source);
} else {
if ((value = (char *)zfs_prop_default_string(prop)) == NULL)
value = "";
*source = "";
}
return (value);
}
/*
* Internal function for getting a numeric property. Both zfs_prop_get() and
* zfs_prop_get_int() are built using this interface.
*
* Certain properties can be overridden using 'mount -o'. In this case, scan
* the contents of the /etc/mnttab entry, searching for the appropriate options.
* If they differ from the on-disk values, report the current values and mark
* the source "temporary".
*/
static int
get_numeric_property(zfs_handle_t *zhp, zfs_prop_t prop, zprop_source_t *src,
char **source, uint64_t *val)
{
zfs_cmd_t zc = { 0 };
nvlist_t *zplprops = NULL;
struct mnttab mnt;
char *mntopt_on = NULL;
char *mntopt_off = NULL;
*source = NULL;
switch (prop) {
case ZFS_PROP_ATIME:
mntopt_on = MNTOPT_ATIME;
mntopt_off = MNTOPT_NOATIME;
break;
case ZFS_PROP_DEVICES:
mntopt_on = MNTOPT_DEVICES;
mntopt_off = MNTOPT_NODEVICES;
break;
case ZFS_PROP_EXEC:
mntopt_on = MNTOPT_EXEC;
mntopt_off = MNTOPT_NOEXEC;
break;
case ZFS_PROP_READONLY:
mntopt_on = MNTOPT_RO;
mntopt_off = MNTOPT_RW;
break;
case ZFS_PROP_SETUID:
mntopt_on = MNTOPT_SETUID;
mntopt_off = MNTOPT_NOSETUID;
break;
case ZFS_PROP_XATTR:
mntopt_on = MNTOPT_XATTR;
mntopt_off = MNTOPT_NOXATTR;
break;
case ZFS_PROP_NBMAND:
mntopt_on = MNTOPT_NBMAND;
mntopt_off = MNTOPT_NONBMAND;
break;
}
/*
* Because looking up the mount options is potentially expensive
* (iterating over all of /etc/mnttab), we defer its calculation until
* we're looking up a property which requires its presence.
*/
if (!zhp->zfs_mntcheck &&
(mntopt_on != NULL || prop == ZFS_PROP_MOUNTED)) {
2009-01-15 21:59:39 +00:00
libzfs_handle_t *hdl = zhp->zfs_hdl;
struct mnttab entry;
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
if (libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0) {
zhp->zfs_mntopts = zfs_strdup(hdl,
2008-11-20 20:01:55 +00:00
entry.mnt_mntopts);
if (zhp->zfs_mntopts == NULL)
return (-1);
}
zhp->zfs_mntcheck = B_TRUE;
}
if (zhp->zfs_mntopts == NULL)
mnt.mnt_mntopts = "";
else
mnt.mnt_mntopts = zhp->zfs_mntopts;
switch (prop) {
case ZFS_PROP_ATIME:
case ZFS_PROP_DEVICES:
case ZFS_PROP_EXEC:
case ZFS_PROP_READONLY:
case ZFS_PROP_SETUID:
case ZFS_PROP_XATTR:
case ZFS_PROP_NBMAND:
*val = getprop_uint64(zhp, prop, source);
if (hasmntopt(&mnt, mntopt_on) && !*val) {
*val = B_TRUE;
if (src)
*src = ZPROP_SRC_TEMPORARY;
} else if (hasmntopt(&mnt, mntopt_off) && *val) {
*val = B_FALSE;
if (src)
*src = ZPROP_SRC_TEMPORARY;
}
break;
case ZFS_PROP_CANMOUNT:
*val = getprop_uint64(zhp, prop, source);
if (*val != ZFS_CANMOUNT_ON)
*source = zhp->zfs_name;
else
*source = ""; /* default */
break;
case ZFS_PROP_QUOTA:
case ZFS_PROP_REFQUOTA:
case ZFS_PROP_RESERVATION:
case ZFS_PROP_REFRESERVATION:
*val = getprop_uint64(zhp, prop, source);
if (*val == 0)
*source = ""; /* default */
else
*source = zhp->zfs_name;
break;
case ZFS_PROP_MOUNTED:
*val = (zhp->zfs_mntopts != NULL);
break;
case ZFS_PROP_NUMCLONES:
*val = zhp->zfs_dmustats.dds_num_clones;
break;
case ZFS_PROP_VERSION:
case ZFS_PROP_NORMALIZE:
case ZFS_PROP_UTF8ONLY:
case ZFS_PROP_CASE:
if (!zfs_prop_valid_for_type(prop, zhp->zfs_head_type) ||
zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
return (-1);
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_OBJSET_ZPLPROPS, &zc)) {
zcmd_free_nvlists(&zc);
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"unable to get %s property"),
zfs_prop_to_name(prop));
return (zfs_error(zhp->zfs_hdl, EZFS_BADVERSION,
dgettext(TEXT_DOMAIN, "internal error")));
}
if (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &zplprops) != 0 ||
nvlist_lookup_uint64(zplprops, zfs_prop_to_name(prop),
val) != 0) {
zcmd_free_nvlists(&zc);
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"unable to get %s property"),
zfs_prop_to_name(prop));
return (zfs_error(zhp->zfs_hdl, EZFS_NOMEM,
dgettext(TEXT_DOMAIN, "internal error")));
}
if (zplprops)
nvlist_free(zplprops);
zcmd_free_nvlists(&zc);
break;
default:
switch (zfs_prop_get_type(prop)) {
case PROP_TYPE_NUMBER:
case PROP_TYPE_INDEX:
*val = getprop_uint64(zhp, prop, source);
/*
* If we tried to use a defalut value for a
* readonly property, it means that it was not
* present; return an error.
*/
if (zfs_prop_readonly(prop) &&
*source && (*source)[0] == '\0') {
return (-1);
}
2008-11-20 20:01:55 +00:00
break;
case PROP_TYPE_STRING:
default:
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"cannot get non-numeric property"));
return (zfs_error(zhp->zfs_hdl, EZFS_BADPROP,
dgettext(TEXT_DOMAIN, "internal error")));
}
}
return (0);
}
/*
* Calculate the source type, given the raw source string.
*/
static void
get_source(zfs_handle_t *zhp, zprop_source_t *srctype, char *source,
char *statbuf, size_t statlen)
{
if (statbuf == NULL || *srctype == ZPROP_SRC_TEMPORARY)
return;
if (source == NULL) {
*srctype = ZPROP_SRC_NONE;
} else if (source[0] == '\0') {
*srctype = ZPROP_SRC_DEFAULT;
} else {
if (strcmp(source, zhp->zfs_name) == 0) {
*srctype = ZPROP_SRC_LOCAL;
} else {
(void) strlcpy(statbuf, source, statlen);
*srctype = ZPROP_SRC_INHERITED;
}
}
}
/*
* Retrieve a property from the given object. If 'literal' is specified, then
* numbers are left as exact values. Otherwise, numbers are converted to a
* human-readable form.
*
* Returns 0 on success, or -1 on error.
*/
int
zfs_prop_get(zfs_handle_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen,
zprop_source_t *src, char *statbuf, size_t statlen, boolean_t literal)
{
char *source = NULL;
uint64_t val;
char *str;
const char *strval;
/*
* Check to see if this property applies to our object
*/
if (!zfs_prop_valid_for_type(prop, zhp->zfs_type))
return (-1);
if (src)
*src = ZPROP_SRC_NONE;
switch (prop) {
case ZFS_PROP_CREATION:
/*
* 'creation' is a time_t stored in the statistics. We convert
* this into a string unless 'literal' is specified.
*/
{
val = getprop_uint64(zhp, prop, &source);
time_t time = (time_t)val;
struct tm t;
if (literal ||
localtime_r(&time, &t) == NULL ||
strftime(propbuf, proplen, "%a %b %e %k:%M %Y",
&t) == 0)
2008-12-04 22:41:11 +00:00
(void) snprintf(propbuf, proplen, "%llu", (u_longlong_t) val);
2008-11-20 20:01:55 +00:00
}
break;
case ZFS_PROP_MOUNTPOINT:
/*
* Getting the precise mountpoint can be tricky.
*
* - for 'none' or 'legacy', return those values.
* - for inherited mountpoints, we want to take everything
* after our ancestor and append it to the inherited value.
*
* If the pool has an alternate root, we want to prepend that
* root to any values we return.
*/
2008-11-20 20:01:55 +00:00
str = getprop_string(zhp, prop, &source);
if (str[0] == '/') {
char buf[MAXPATHLEN];
char *root = buf;
2008-11-20 20:01:55 +00:00
const char *relpath = zhp->zfs_name + strlen(source);
if (relpath[0] == '/')
relpath++;
if ((zpool_get_prop(zhp->zpool_hdl,
ZPOOL_PROP_ALTROOT, buf, MAXPATHLEN, NULL)) ||
(strcmp(root, "-") == 0))
root[0] = '\0';
/*
* Special case an alternate root of '/'. This will
* avoid having multiple leading slashes in the
* mountpoint path.
*/
if (strcmp(root, "/") == 0)
root++;
/*
* If the mountpoint is '/' then skip over this
* if we are obtaining either an alternate root or
* an inherited mountpoint.
*/
if (str[1] == '\0' && (root[0] != '\0' ||
relpath[0] != '\0'))
2008-11-20 20:01:55 +00:00
str++;
if (relpath[0] == '\0')
(void) snprintf(propbuf, proplen, "%s%s",
root, str);
else
(void) snprintf(propbuf, proplen, "%s%s%s%s",
root, str, relpath[0] == '@' ? "" : "/",
relpath);
} else {
/* 'legacy' or 'none' */
(void) strlcpy(propbuf, str, proplen);
}
break;
case ZFS_PROP_ORIGIN:
(void) strlcpy(propbuf, getprop_string(zhp, prop, &source),
proplen);
/*
* If there is no parent at all, return failure to indicate that
* it doesn't apply to this dataset.
*/
if (propbuf[0] == '\0')
return (-1);
break;
case ZFS_PROP_QUOTA:
case ZFS_PROP_REFQUOTA:
case ZFS_PROP_RESERVATION:
case ZFS_PROP_REFRESERVATION:
if (get_numeric_property(zhp, prop, src, &source, &val) != 0)
return (-1);
/*
* If quota or reservation is 0, we translate this into 'none'
* (unless literal is set), and indicate that it's the default
* value. Otherwise, we print the number nicely and indicate
* that its set locally.
*/
if (val == 0) {
if (literal)
(void) strlcpy(propbuf, "0", proplen);
else
(void) strlcpy(propbuf, "none", proplen);
} else {
if (literal)
(void) snprintf(propbuf, proplen, "%llu",
(u_longlong_t)val);
else
zfs_nicenum(val, propbuf, proplen);
}
break;
case ZFS_PROP_COMPRESSRATIO:
if (get_numeric_property(zhp, prop, src, &source, &val) != 0)
return (-1);
(void) snprintf(propbuf, proplen, "%lld.%02lldx", (longlong_t)
val / 100, (longlong_t)val % 100);
break;
case ZFS_PROP_TYPE:
switch (zhp->zfs_type) {
case ZFS_TYPE_FILESYSTEM:
str = "filesystem";
break;
case ZFS_TYPE_VOLUME:
str = "volume";
break;
case ZFS_TYPE_SNAPSHOT:
str = "snapshot";
break;
default:
abort();
}
(void) snprintf(propbuf, proplen, "%s", str);
break;
case ZFS_PROP_MOUNTED:
/*
* The 'mounted' property is a pseudo-property that described
* whether the filesystem is currently mounted. Even though
* it's a boolean value, the typical values of "on" and "off"
* don't make sense, so we translate to "yes" and "no".
*/
if (get_numeric_property(zhp, ZFS_PROP_MOUNTED,
src, &source, &val) != 0)
return (-1);
if (val)
(void) strlcpy(propbuf, "yes", proplen);
else
(void) strlcpy(propbuf, "no", proplen);
break;
case ZFS_PROP_NAME:
/*
* The 'name' property is a pseudo-property derived from the
* dataset name. It is presented as a real property to simplify
* consumers.
*/
(void) strlcpy(propbuf, zhp->zfs_name, proplen);
break;
default:
switch (zfs_prop_get_type(prop)) {
case PROP_TYPE_NUMBER:
if (get_numeric_property(zhp, prop, src,
&source, &val) != 0)
return (-1);
if (literal)
(void) snprintf(propbuf, proplen, "%llu",
(u_longlong_t)val);
else
zfs_nicenum(val, propbuf, proplen);
break;
case PROP_TYPE_STRING:
(void) strlcpy(propbuf,
getprop_string(zhp, prop, &source), proplen);
break;
case PROP_TYPE_INDEX:
if (get_numeric_property(zhp, prop, src,
&source, &val) != 0)
return (-1);
if (zfs_prop_index_to_string(prop, val, &strval) != 0)
return (-1);
(void) strlcpy(propbuf, strval, proplen);
break;
default:
abort();
}
}
get_source(zhp, src, source, statbuf, statlen);
return (0);
}
/*
* Utility function to get the given numeric property. Does no validation that
* the given property is the appropriate type; should only be used with
* hard-coded property types.
*/
uint64_t
zfs_prop_get_int(zfs_handle_t *zhp, zfs_prop_t prop)
{
char *source;
uint64_t val;
(void) get_numeric_property(zhp, prop, NULL, &source, &val);
return (val);
}
int
zfs_prop_set_int(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t val)
{
char buf[64];
zfs_nicenum(val, buf, sizeof (buf));
return (zfs_prop_set(zhp, zfs_prop_to_name(prop), buf));
}
/*
* Similar to zfs_prop_get(), but returns the value as an integer.
*/
int
zfs_prop_get_numeric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *value,
zprop_source_t *src, char *statbuf, size_t statlen)
{
char *source;
/*
* Check to see if this property applies to our object
*/
if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) {
return (zfs_error_fmt(zhp->zfs_hdl, EZFS_PROPTYPE,
dgettext(TEXT_DOMAIN, "cannot get property '%s'"),
zfs_prop_to_name(prop)));
}
if (src)
*src = ZPROP_SRC_NONE;
if (get_numeric_property(zhp, prop, src, &source, value) != 0)
return (-1);
get_source(zhp, src, source, statbuf, statlen);
return (0);
}
/*
* Returns the name of the given zfs handle.
*/
const char *
zfs_get_name(const zfs_handle_t *zhp)
{
return (zhp->zfs_name);
}
/*
* Returns the type of the given zfs handle.
*/
zfs_type_t
zfs_get_type(const zfs_handle_t *zhp)
{
return (zhp->zfs_type);
}
2009-01-15 21:59:39 +00:00
static int
zfs_do_list_ioctl(zfs_handle_t *zhp, int arg, zfs_cmd_t *zc)
{
int rc;
uint64_t orig_cookie;
orig_cookie = zc->zc_cookie;
top:
(void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name));
rc = ioctl(zhp->zfs_hdl->libzfs_fd, arg, zc);
if (rc == -1) {
switch (errno) {
case ENOMEM:
/* expand nvlist memory and try again */
if (zcmd_expand_dst_nvlist(zhp->zfs_hdl, zc) != 0) {
zcmd_free_nvlists(zc);
return (-1);
}
zc->zc_cookie = orig_cookie;
goto top;
/*
* An errno value of ESRCH indicates normal completion.
* If ENOENT is returned, then the underlying dataset
* has been removed since we obtained the handle.
*/
case ESRCH:
case ENOENT:
rc = 1;
break;
default:
rc = zfs_standard_error(zhp->zfs_hdl, errno,
dgettext(TEXT_DOMAIN,
"cannot iterate filesystems"));
break;
}
}
return (rc);
}
2008-11-20 20:01:55 +00:00
/*
* Iterate over all child filesystems
*/
int
zfs_iter_filesystems(zfs_handle_t *zhp, zfs_iter_f func, void *data)
{
zfs_cmd_t zc = { 0 };
zfs_handle_t *nzhp;
int ret;
if (zhp->zfs_type != ZFS_TYPE_FILESYSTEM)
return (0);
2009-01-15 21:59:39 +00:00
if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
return (-1);
while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_DATASET_LIST_NEXT,
&zc)) == 0) {
2008-11-20 20:01:55 +00:00
/*
* Ignore private dataset names.
*/
if (dataset_name_hidden(zc.zc_name))
continue;
/*
* Silently ignore errors, as the only plausible explanation is
* that the pool has since been removed.
*/
2009-01-15 21:59:39 +00:00
if ((nzhp = make_dataset_handle_zc(zhp->zfs_hdl,
&zc)) == NULL) {
2008-11-20 20:01:55 +00:00
continue;
2009-01-15 21:59:39 +00:00
}
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
if ((ret = func(nzhp, data)) != 0) {
zcmd_free_nvlists(&zc);
2008-11-20 20:01:55 +00:00
return (ret);
2009-01-15 21:59:39 +00:00
}
2008-11-20 20:01:55 +00:00
}
2009-01-15 21:59:39 +00:00
zcmd_free_nvlists(&zc);
return ((ret < 0) ? ret : 0);
2008-11-20 20:01:55 +00:00
}
/*
* Iterate over all snapshots
*/
int
zfs_iter_snapshots(zfs_handle_t *zhp, zfs_iter_f func, void *data)
{
zfs_cmd_t zc = { 0 };
zfs_handle_t *nzhp;
int ret;
if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT)
return (0);
2009-01-15 21:59:39 +00:00
if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
return (-1);
while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_SNAPSHOT_LIST_NEXT,
&zc)) == 0) {
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
if ((nzhp = make_dataset_handle_zc(zhp->zfs_hdl,
&zc)) == NULL) {
2008-11-20 20:01:55 +00:00
continue;
2009-01-15 21:59:39 +00:00
}
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
if ((ret = func(nzhp, data)) != 0) {
zcmd_free_nvlists(&zc);
2008-11-20 20:01:55 +00:00
return (ret);
2009-01-15 21:59:39 +00:00
}
2008-11-20 20:01:55 +00:00
}
2009-01-15 21:59:39 +00:00
zcmd_free_nvlists(&zc);
return ((ret < 0) ? ret : 0);
2008-11-20 20:01:55 +00:00
}
/*
* Iterate over all children, snapshots and filesystems
*/
int
zfs_iter_children(zfs_handle_t *zhp, zfs_iter_f func, void *data)
{
int ret;
if ((ret = zfs_iter_filesystems(zhp, func, data)) != 0)
return (ret);
return (zfs_iter_snapshots(zhp, func, data));
}
/*
* Given a complete name, return just the portion that refers to the parent.
* Can return NULL if this is a pool.
*/
static int
parent_name(const char *path, char *buf, size_t buflen)
{
char *loc;
if ((loc = strrchr(path, '/')) == NULL)
return (-1);
(void) strncpy(buf, path, MIN(buflen, loc - path));
buf[loc - path] = '\0';
return (0);
}
/*
* If accept_ancestor is false, then check to make sure that the given path has
* a parent, and that it exists. If accept_ancestor is true, then find the
* closest existing ancestor for the given path. In prefixlen return the
* length of already existing prefix of the given path. We also fetch the
* 'zoned' property, which is used to validate property settings when creating
* new datasets.
*/
static int
check_parents(libzfs_handle_t *hdl, const char *path, uint64_t *zoned,
boolean_t accept_ancestor, int *prefixlen)
{
zfs_cmd_t zc = { 0 };
char parent[ZFS_MAXNAMELEN];
char *slash;
zfs_handle_t *zhp;
char errbuf[1024];
2009-01-15 21:59:39 +00:00
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot create '%s'"), path);
2008-11-20 20:01:55 +00:00
/* get parent, and check to see if this is just a pool */
if (parent_name(path, parent, sizeof (parent)) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"missing dataset name"));
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
}
/* check to see if the pool exists */
if ((slash = strchr(parent, '/')) == NULL)
slash = parent + strlen(parent);
(void) strncpy(zc.zc_name, parent, slash - parent);
zc.zc_name[slash - parent] = '\0';
if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0 &&
errno == ENOENT) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"no such pool '%s'"), zc.zc_name);
return (zfs_error(hdl, EZFS_NOENT, errbuf));
}
/* check to see if the parent dataset exists */
while ((zhp = make_dataset_handle(hdl, parent)) == NULL) {
if (errno == ENOENT && accept_ancestor) {
/*
* Go deeper to find an ancestor, give up on top level.
*/
if (parent_name(parent, parent, sizeof (parent)) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"no such pool '%s'"), zc.zc_name);
return (zfs_error(hdl, EZFS_NOENT, errbuf));
}
} else if (errno == ENOENT) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"parent does not exist"));
return (zfs_error(hdl, EZFS_NOENT, errbuf));
} else
return (zfs_standard_error(hdl, errno, errbuf));
}
*zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
/* we are in a non-global zone, but parent is in the global zone */
if (getzoneid() != GLOBAL_ZONEID && !(*zoned)) {
(void) zfs_standard_error(hdl, EPERM, errbuf);
zfs_close(zhp);
return (-1);
}
/* make sure parent is a filesystem */
if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"parent is not a filesystem"));
(void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
zfs_close(zhp);
return (-1);
}
zfs_close(zhp);
if (prefixlen != NULL)
*prefixlen = strlen(parent);
return (0);
}
/*
* Finds whether the dataset of the given type(s) exists.
*/
boolean_t
zfs_dataset_exists(libzfs_handle_t *hdl, const char *path, zfs_type_t types)
{
zfs_handle_t *zhp;
if (!zfs_validate_name(hdl, path, types, B_FALSE))
return (B_FALSE);
/*
* Try to get stats for the dataset, which will tell us if it exists.
*/
if ((zhp = make_dataset_handle(hdl, path)) != NULL) {
int ds_type = zhp->zfs_type;
zfs_close(zhp);
if (types & ds_type)
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Given a path to 'target', create all the ancestors between
* the prefixlen portion of the path, and the target itself.
* Fail if the initial prefixlen-ancestor does not already exist.
*/
int
create_parents(libzfs_handle_t *hdl, char *target, int prefixlen)
{
zfs_handle_t *h;
char *cp;
const char *opname;
/* make sure prefix exists */
cp = target + prefixlen;
if (*cp != '/') {
assert(strchr(cp, '/') == NULL);
h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM);
} else {
*cp = '\0';
h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM);
*cp = '/';
}
if (h == NULL)
return (-1);
zfs_close(h);
/*
* Attempt to create, mount, and share any ancestor filesystems,
* up to the prefixlen-long one.
*/
for (cp = target + prefixlen + 1;
cp = strchr(cp, '/'); *cp = '/', cp++) {
char *logstr;
*cp = '\0';
h = make_dataset_handle(hdl, target);
if (h) {
/* it already exists, nothing to do here */
zfs_close(h);
continue;
}
logstr = hdl->libzfs_log_str;
hdl->libzfs_log_str = NULL;
if (zfs_create(hdl, target, ZFS_TYPE_FILESYSTEM,
NULL) != 0) {
hdl->libzfs_log_str = logstr;
opname = dgettext(TEXT_DOMAIN, "create");
goto ancestorerr;
}
hdl->libzfs_log_str = logstr;
h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM);
if (h == NULL) {
opname = dgettext(TEXT_DOMAIN, "open");
goto ancestorerr;
}
if (zfs_mount(h, NULL, 0) != 0) {
opname = dgettext(TEXT_DOMAIN, "mount");
goto ancestorerr;
}
if (zfs_share(h) != 0) {
opname = dgettext(TEXT_DOMAIN, "share");
goto ancestorerr;
}
zfs_close(h);
}
return (0);
ancestorerr:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"failed to %s ancestor '%s'"), opname, target);
return (-1);
}
/*
* Creates non-existing ancestors of the given path.
*/
int
zfs_create_ancestors(libzfs_handle_t *hdl, const char *path)
{
int prefix;
uint64_t zoned;
char *path_copy;
int rc;
if (check_parents(hdl, path, &zoned, B_TRUE, &prefix) != 0)
return (-1);
if ((path_copy = strdup(path)) != NULL) {
rc = create_parents(hdl, path_copy, prefix);
free(path_copy);
}
if (path_copy == NULL || rc != 0)
return (-1);
return (0);
}
/*
* Create a new filesystem or volume.
*/
int
zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type,
nvlist_t *props)
{
zfs_cmd_t zc = { 0 };
int ret;
uint64_t size = 0;
uint64_t blocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
char errbuf[1024];
uint64_t zoned;
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot create '%s'"), path);
/* validate the path, taking care to note the extended error message */
if (!zfs_validate_name(hdl, path, type, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
/* validate parents exist */
if (check_parents(hdl, path, &zoned, B_FALSE, NULL) != 0)
return (-1);
/*
* The failure modes when creating a dataset of a different type over
* one that already exists is a little strange. In particular, if you
* try to create a dataset on top of an existing dataset, the ioctl()
* will return ENOENT, not EEXIST. To prevent this from happening, we
* first try to see if the dataset exists.
*/
(void) strlcpy(zc.zc_name, path, sizeof (zc.zc_name));
if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset already exists"));
return (zfs_error(hdl, EZFS_EXISTS, errbuf));
}
if (type == ZFS_TYPE_VOLUME)
zc.zc_objset_type = DMU_OST_ZVOL;
else
zc.zc_objset_type = DMU_OST_ZFS;
if (props && (props = zfs_valid_proplist(hdl, type, props,
2008-11-20 20:01:55 +00:00
zoned, NULL, errbuf)) == 0)
return (-1);
if (type == ZFS_TYPE_VOLUME) {
/*
* If we are creating a volume, the size and block size must
* satisfy a few restraints. First, the blocksize must be a
* valid block size between SPA_{MIN,MAX}BLOCKSIZE. Second, the
* volsize must be a multiple of the block size, and cannot be
* zero.
*/
if (props == NULL || nvlist_lookup_uint64(props,
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &size) != 0) {
nvlist_free(props);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"missing volume size"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
if ((ret = nvlist_lookup_uint64(props,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
&blocksize)) != 0) {
if (ret == ENOENT) {
blocksize = zfs_prop_default_numeric(
ZFS_PROP_VOLBLOCKSIZE);
} else {
nvlist_free(props);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"missing volume block size"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
}
if (size == 0) {
nvlist_free(props);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"volume size cannot be zero"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
if (size % blocksize != 0) {
nvlist_free(props);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"volume size must be a multiple of volume block "
"size"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
}
if (props && zcmd_write_src_nvlist(hdl, &zc, props) != 0)
return (-1);
nvlist_free(props);
/* create the dataset */
ret = zfs_ioctl(hdl, ZFS_IOC_CREATE, &zc);
if (ret == 0 && type == ZFS_TYPE_VOLUME) {
ret = zvol_create_link(hdl, path);
if (ret) {
(void) zfs_standard_error(hdl, errno,
dgettext(TEXT_DOMAIN,
"Volume successfully created, but device links "
"were not created"));
zcmd_free_nvlists(&zc);
return (-1);
}
}
zcmd_free_nvlists(&zc);
/* check for failure */
if (ret != 0) {
char parent[ZFS_MAXNAMELEN];
(void) parent_name(path, parent, sizeof (parent));
switch (errno) {
case ENOENT:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"no such parent '%s'"), parent);
return (zfs_error(hdl, EZFS_NOENT, errbuf));
case EINVAL:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"parent '%s' is not a filesystem"), parent);
return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
case EDOM:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"volume block size must be power of 2 from "
"%u to %uk"),
(uint_t)SPA_MINBLOCKSIZE,
(uint_t)SPA_MAXBLOCKSIZE >> 10);
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool must be upgraded to set this "
"property or value"));
return (zfs_error(hdl, EZFS_BADVERSION, errbuf));
#ifdef _ILP32
case EOVERFLOW:
/*
* This platform can't address a volume this big.
*/
if (type == ZFS_TYPE_VOLUME)
return (zfs_error(hdl, EZFS_VOLTOOBIG,
errbuf));
#endif
/* FALLTHROUGH */
default:
return (zfs_standard_error(hdl, errno, errbuf));
}
}
return (0);
}
/*
* Destroys the given dataset. The caller must make sure that the filesystem
* isn't mounted, and that there are no active dependents.
*/
int
zfs_destroy(zfs_handle_t *zhp)
{
zfs_cmd_t zc = { 0 };
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if (ZFS_IS_VOLUME(zhp)) {
/*
* If user doesn't have permissions to unshare volume, then
* abort the request. This would only happen for a
* non-privileged user.
*/
if (zfs_unshare_iscsi(zhp) != 0) {
return (-1);
}
if (zvol_remove_link(zhp->zfs_hdl, zhp->zfs_name) != 0)
return (-1);
zc.zc_objset_type = DMU_OST_ZVOL;
} else {
zc.zc_objset_type = DMU_OST_ZFS;
}
if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY, &zc) != 0) {
return (zfs_standard_error_fmt(zhp->zfs_hdl, errno,
dgettext(TEXT_DOMAIN, "cannot destroy '%s'"),
zhp->zfs_name));
}
remove_mountpoint(zhp);
return (0);
}
struct destroydata {
char *snapname;
boolean_t gotone;
boolean_t closezhp;
};
static int
zfs_remove_link_cb(zfs_handle_t *zhp, void *arg)
{
struct destroydata *dd = arg;
zfs_handle_t *szhp;
char name[ZFS_MAXNAMELEN];
boolean_t closezhp = dd->closezhp;
int rv;
(void) strlcpy(name, zhp->zfs_name, sizeof (name));
(void) strlcat(name, "@", sizeof (name));
(void) strlcat(name, dd->snapname, sizeof (name));
szhp = make_dataset_handle(zhp->zfs_hdl, name);
if (szhp) {
dd->gotone = B_TRUE;
zfs_close(szhp);
}
if (zhp->zfs_type == ZFS_TYPE_VOLUME) {
(void) zvol_remove_link(zhp->zfs_hdl, name);
/*
* NB: this is simply a best-effort. We don't want to
* return an error, because then we wouldn't visit all
* the volumes.
*/
}
dd->closezhp = B_TRUE;
rv = zfs_iter_filesystems(zhp, zfs_remove_link_cb, arg);
if (closezhp)
zfs_close(zhp);
return (rv);
}
/*
* Destroys all snapshots with the given name in zhp & descendants.
*/
int
zfs_destroy_snaps(zfs_handle_t *zhp, char *snapname)
{
zfs_cmd_t zc = { 0 };
int ret;
struct destroydata dd = { 0 };
dd.snapname = snapname;
(void) zfs_remove_link_cb(zhp, &dd);
if (!dd.gotone) {
return (zfs_standard_error_fmt(zhp->zfs_hdl, ENOENT,
dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"),
zhp->zfs_name, snapname));
}
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value));
ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY_SNAPS, &zc);
if (ret != 0) {
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot destroy '%s@%s'"), zc.zc_name, snapname);
switch (errno) {
case EEXIST:
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"snapshot is cloned"));
return (zfs_error(zhp->zfs_hdl, EZFS_EXISTS, errbuf));
default:
return (zfs_standard_error(zhp->zfs_hdl, errno,
errbuf));
}
}
return (0);
}
/*
* Clones the given dataset. The target must be of the same type as the source.
*/
int
zfs_clone(zfs_handle_t *zhp, const char *target, nvlist_t *props)
{
zfs_cmd_t zc = { 0 };
char parent[ZFS_MAXNAMELEN];
int ret;
char errbuf[1024];
libzfs_handle_t *hdl = zhp->zfs_hdl;
zfs_type_t type;
uint64_t zoned;
assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT);
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot create '%s'"), target);
/* validate the target name */
if (!zfs_validate_name(hdl, target, ZFS_TYPE_FILESYSTEM, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
/* validate parents exist */
if (check_parents(hdl, target, &zoned, B_FALSE, NULL) != 0)
return (-1);
(void) parent_name(target, parent, sizeof (parent));
/* do the clone */
if (ZFS_IS_VOLUME(zhp)) {
zc.zc_objset_type = DMU_OST_ZVOL;
type = ZFS_TYPE_VOLUME;
} else {
zc.zc_objset_type = DMU_OST_ZFS;
type = ZFS_TYPE_FILESYSTEM;
}
if (props) {
if ((props = zfs_valid_proplist(hdl, type, props, zoned,
zhp, errbuf)) == NULL)
2008-11-20 20:01:55 +00:00
return (-1);
if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) {
nvlist_free(props);
return (-1);
}
nvlist_free(props);
}
(void) strlcpy(zc.zc_name, target, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, zhp->zfs_name, sizeof (zc.zc_value));
ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_CREATE, &zc);
zcmd_free_nvlists(&zc);
if (ret != 0) {
switch (errno) {
case ENOENT:
/*
* The parent doesn't exist. We should have caught this
* above, but there may a race condition that has since
* destroyed the parent.
*
* At this point, we don't know whether it's the source
* that doesn't exist anymore, or whether the target
* dataset doesn't exist.
*/
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"no such parent '%s'"), parent);
return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf));
case EXDEV:
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"source and target pools differ"));
return (zfs_error(zhp->zfs_hdl, EZFS_CROSSTARGET,
errbuf));
default:
return (zfs_standard_error(zhp->zfs_hdl, errno,
errbuf));
}
} else if (ZFS_IS_VOLUME(zhp)) {
ret = zvol_create_link(zhp->zfs_hdl, target);
}
return (ret);
}
typedef struct promote_data {
char cb_mountpoint[MAXPATHLEN];
const char *cb_target;
const char *cb_errbuf;
uint64_t cb_pivot_txg;
} promote_data_t;
static int
promote_snap_cb(zfs_handle_t *zhp, void *data)
{
promote_data_t *pd = data;
zfs_handle_t *szhp;
char snapname[MAXPATHLEN];
int rv = 0;
/* We don't care about snapshots after the pivot point */
if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > pd->cb_pivot_txg) {
zfs_close(zhp);
return (0);
}
/* Remove the device link if it's a zvol. */
if (ZFS_IS_VOLUME(zhp))
(void) zvol_remove_link(zhp->zfs_hdl, zhp->zfs_name);
/* Check for conflicting names */
(void) strlcpy(snapname, pd->cb_target, sizeof (snapname));
(void) strlcat(snapname, strchr(zhp->zfs_name, '@'), sizeof (snapname));
szhp = make_dataset_handle(zhp->zfs_hdl, snapname);
if (szhp != NULL) {
zfs_close(szhp);
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"snapshot name '%s' from origin \n"
"conflicts with '%s' from target"),
zhp->zfs_name, snapname);
rv = zfs_error(zhp->zfs_hdl, EZFS_EXISTS, pd->cb_errbuf);
}
zfs_close(zhp);
return (rv);
}
static int
promote_snap_done_cb(zfs_handle_t *zhp, void *data)
{
promote_data_t *pd = data;
/* We don't care about snapshots after the pivot point */
if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) <= pd->cb_pivot_txg) {
/* Create the device link if it's a zvol. */
if (ZFS_IS_VOLUME(zhp))
(void) zvol_create_link(zhp->zfs_hdl, zhp->zfs_name);
}
zfs_close(zhp);
return (0);
}
/*
* Promotes the given clone fs to be the clone parent.
*/
int
zfs_promote(zfs_handle_t *zhp)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
zfs_cmd_t zc = { 0 };
char parent[MAXPATHLEN];
char *cp;
int ret;
zfs_handle_t *pzhp;
promote_data_t pd;
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot promote '%s'"), zhp->zfs_name);
if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"snapshots can not be promoted"));
return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
}
(void) strlcpy(parent, zhp->zfs_dmustats.dds_origin, sizeof (parent));
if (parent[0] == '\0') {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"not a cloned filesystem"));
return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
}
cp = strchr(parent, '@');
*cp = '\0';
/* Walk the snapshots we will be moving */
pzhp = zfs_open(hdl, zhp->zfs_dmustats.dds_origin, ZFS_TYPE_SNAPSHOT);
if (pzhp == NULL)
return (-1);
pd.cb_pivot_txg = zfs_prop_get_int(pzhp, ZFS_PROP_CREATETXG);
zfs_close(pzhp);
pd.cb_target = zhp->zfs_name;
pd.cb_errbuf = errbuf;
pzhp = zfs_open(hdl, parent, ZFS_TYPE_DATASET);
if (pzhp == NULL)
return (-1);
(void) zfs_prop_get(pzhp, ZFS_PROP_MOUNTPOINT, pd.cb_mountpoint,
sizeof (pd.cb_mountpoint), NULL, NULL, 0, FALSE);
ret = zfs_iter_snapshots(pzhp, promote_snap_cb, &pd);
if (ret != 0) {
zfs_close(pzhp);
return (-1);
}
/* issue the ioctl */
(void) strlcpy(zc.zc_value, zhp->zfs_dmustats.dds_origin,
sizeof (zc.zc_value));
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
ret = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc);
if (ret != 0) {
int save_errno = errno;
(void) zfs_iter_snapshots(pzhp, promote_snap_done_cb, &pd);
zfs_close(pzhp);
switch (save_errno) {
case EEXIST:
/*
* There is a conflicting snapshot name. We
* should have caught this above, but they could
* have renamed something in the mean time.
*/
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"conflicting snapshot name from parent '%s'"),
parent);
return (zfs_error(hdl, EZFS_EXISTS, errbuf));
default:
return (zfs_standard_error(hdl, save_errno, errbuf));
}
} else {
(void) zfs_iter_snapshots(zhp, promote_snap_done_cb, &pd);
}
zfs_close(pzhp);
return (ret);
}
struct createdata {
const char *cd_snapname;
int cd_ifexists;
};
static int
zfs_create_link_cb(zfs_handle_t *zhp, void *arg)
{
struct createdata *cd = arg;
int ret;
if (zhp->zfs_type == ZFS_TYPE_VOLUME) {
char name[MAXPATHLEN];
(void) strlcpy(name, zhp->zfs_name, sizeof (name));
(void) strlcat(name, "@", sizeof (name));
(void) strlcat(name, cd->cd_snapname, sizeof (name));
(void) zvol_create_link_common(zhp->zfs_hdl, name,
cd->cd_ifexists);
/*
* NB: this is simply a best-effort. We don't want to
* return an error, because then we wouldn't visit all
* the volumes.
*/
}
ret = zfs_iter_filesystems(zhp, zfs_create_link_cb, cd);
zfs_close(zhp);
return (ret);
}
/*
* Takes a snapshot of the given dataset.
*/
int
zfs_snapshot(libzfs_handle_t *hdl, const char *path, boolean_t recursive,
nvlist_t *props)
2008-11-20 20:01:55 +00:00
{
const char *delim;
char parent[ZFS_MAXNAMELEN];
2008-11-20 20:01:55 +00:00
zfs_handle_t *zhp;
zfs_cmd_t zc = { 0 };
int ret;
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot snapshot '%s'"), path);
/* validate the target name */
if (!zfs_validate_name(hdl, path, ZFS_TYPE_SNAPSHOT, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
if (props) {
if ((props = zfs_valid_proplist(hdl, ZFS_TYPE_SNAPSHOT,
props, B_FALSE, NULL, errbuf)) == NULL)
return (-1);
if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) {
nvlist_free(props);
return (-1);
}
nvlist_free(props);
}
2008-11-20 20:01:55 +00:00
/* make sure the parent exists and is of the appropriate type */
delim = strchr(path, '@');
(void) strncpy(parent, path, delim - path);
parent[delim - path] = '\0';
if ((zhp = zfs_open(hdl, parent, ZFS_TYPE_FILESYSTEM |
ZFS_TYPE_VOLUME)) == NULL) {
zcmd_free_nvlists(&zc);
2008-11-20 20:01:55 +00:00
return (-1);
}
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, delim+1, sizeof (zc.zc_value));
if (ZFS_IS_VOLUME(zhp))
zc.zc_objset_type = DMU_OST_ZVOL;
else
zc.zc_objset_type = DMU_OST_ZFS;
zc.zc_cookie = recursive;
ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SNAPSHOT, &zc);
zcmd_free_nvlists(&zc);
2008-11-20 20:01:55 +00:00
/*
* if it was recursive, the one that actually failed will be in
* zc.zc_name.
*/
if (ret != 0)
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot create snapshot '%s@%s'"), zc.zc_name, zc.zc_value);
if (ret == 0 && recursive) {
struct createdata cd;
cd.cd_snapname = delim + 1;
cd.cd_ifexists = B_FALSE;
(void) zfs_iter_filesystems(zhp, zfs_create_link_cb, &cd);
}
if (ret == 0 && zhp->zfs_type == ZFS_TYPE_VOLUME) {
ret = zvol_create_link(zhp->zfs_hdl, path);
if (ret != 0) {
(void) zfs_standard_error(hdl, errno,
dgettext(TEXT_DOMAIN,
"Volume successfully snapshotted, but device links "
"were not created"));
zfs_close(zhp);
return (-1);
}
}
if (ret != 0)
(void) zfs_standard_error(hdl, errno, errbuf);
zfs_close(zhp);
return (ret);
}
/*
* Destroy any more recent snapshots. We invoke this callback on any dependents
* of the snapshot first. If the 'cb_dependent' member is non-zero, then this
* is a dependent and we should just destroy it without checking the transaction
* group.
*/
typedef struct rollback_data {
const char *cb_target; /* the snapshot */
uint64_t cb_create; /* creation time reference */
boolean_t cb_error;
boolean_t cb_dependent;
boolean_t cb_force;
} rollback_data_t;
static int
rollback_destroy(zfs_handle_t *zhp, void *data)
{
rollback_data_t *cbp = data;
if (!cbp->cb_dependent) {
if (strcmp(zhp->zfs_name, cbp->cb_target) != 0 &&
zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT &&
zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) >
cbp->cb_create) {
char *logstr;
cbp->cb_dependent = B_TRUE;
cbp->cb_error |= zfs_iter_dependents(zhp, B_FALSE,
rollback_destroy, cbp);
cbp->cb_dependent = B_FALSE;
logstr = zhp->zfs_hdl->libzfs_log_str;
zhp->zfs_hdl->libzfs_log_str = NULL;
cbp->cb_error |= zfs_destroy(zhp);
zhp->zfs_hdl->libzfs_log_str = logstr;
}
} else {
/* We must destroy this clone; first unmount it */
prop_changelist_t *clp;
clp = changelist_gather(zhp, ZFS_PROP_NAME, 0,
2008-11-20 20:01:55 +00:00
cbp->cb_force ? MS_FORCE: 0);
if (clp == NULL || changelist_prefix(clp) != 0) {
cbp->cb_error = B_TRUE;
zfs_close(zhp);
return (0);
}
if (zfs_destroy(zhp) != 0)
cbp->cb_error = B_TRUE;
else
changelist_remove(clp, zhp->zfs_name);
(void) changelist_postfix(clp);
changelist_free(clp);
}
zfs_close(zhp);
return (0);
}
/*
* Given a dataset, rollback to a specific snapshot, discarding any
* data changes since then and making it the active dataset.
*
* Any snapshots more recent than the target are destroyed, along with
* their dependents.
*/
int
zfs_rollback(zfs_handle_t *zhp, zfs_handle_t *snap, boolean_t force)
{
rollback_data_t cb = { 0 };
int err;
zfs_cmd_t zc = { 0 };
boolean_t restore_resv = 0;
uint64_t old_volsize, new_volsize;
zfs_prop_t resv_prop;
assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM ||
zhp->zfs_type == ZFS_TYPE_VOLUME);
/*
* Destroy all recent snapshots and its dependends.
*/
cb.cb_force = force;
cb.cb_target = snap->zfs_name;
cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG);
(void) zfs_iter_children(zhp, rollback_destroy, &cb);
if (cb.cb_error)
return (-1);
/*
* Now that we have verified that the snapshot is the latest,
* rollback to the given snapshot.
*/
if (zhp->zfs_type == ZFS_TYPE_VOLUME) {
if (zvol_remove_link(zhp->zfs_hdl, zhp->zfs_name) != 0)
return (-1);
if (zfs_which_resv_prop(zhp, &resv_prop) < 0)
return (-1);
old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE);
restore_resv =
(old_volsize == zfs_prop_get_int(zhp, resv_prop));
}
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if (ZFS_IS_VOLUME(zhp))
zc.zc_objset_type = DMU_OST_ZVOL;
else
zc.zc_objset_type = DMU_OST_ZFS;
/*
* We rely on zfs_iter_children() to verify that there are no
* newer snapshots for the given dataset. Therefore, we can
* simply pass the name on to the ioctl() call. There is still
* an unlikely race condition where the user has taken a
* snapshot since we verified that this was the most recent.
*
*/
if ((err = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_ROLLBACK, &zc)) != 0) {
(void) zfs_standard_error_fmt(zhp->zfs_hdl, errno,
dgettext(TEXT_DOMAIN, "cannot rollback '%s'"),
zhp->zfs_name);
return (err);
}
/*
* For volumes, if the pre-rollback volsize matched the pre-
* rollback reservation and the volsize has changed then set
* the reservation property to the post-rollback volsize.
* Make a new handle since the rollback closed the dataset.
*/
if ((zhp->zfs_type == ZFS_TYPE_VOLUME) &&
(zhp = make_dataset_handle(zhp->zfs_hdl, zhp->zfs_name))) {
if (err = zvol_create_link(zhp->zfs_hdl, zhp->zfs_name)) {
zfs_close(zhp);
return (err);
}
if (restore_resv) {
new_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE);
if (old_volsize != new_volsize)
err = zfs_prop_set_int(zhp, resv_prop,
new_volsize);
}
zfs_close(zhp);
}
return (err);
}
/*
* Iterate over all dependents for a given dataset. This includes both
* hierarchical dependents (children) and data dependents (snapshots and
* clones). The bulk of the processing occurs in get_dependents() in
* libzfs_graph.c.
*/
int
zfs_iter_dependents(zfs_handle_t *zhp, boolean_t allowrecursion,
zfs_iter_f func, void *data)
{
char **dependents;
size_t count;
int i;
zfs_handle_t *child;
int ret = 0;
if (get_dependents(zhp->zfs_hdl, allowrecursion, zhp->zfs_name,
&dependents, &count) != 0)
return (-1);
for (i = 0; i < count; i++) {
if ((child = make_dataset_handle(zhp->zfs_hdl,
dependents[i])) == NULL)
continue;
if ((ret = func(child, data)) != 0)
break;
}
for (i = 0; i < count; i++)
free(dependents[i]);
free(dependents);
return (ret);
}
/*
* Renames the given dataset.
*/
int
zfs_rename(zfs_handle_t *zhp, const char *target, boolean_t recursive)
{
int ret;
zfs_cmd_t zc = { 0 };
char *delim;
prop_changelist_t *cl = NULL;
zfs_handle_t *zhrp = NULL;
char *parentname = NULL;
char parent[ZFS_MAXNAMELEN];
libzfs_handle_t *hdl = zhp->zfs_hdl;
char errbuf[1024];
/* if we have the same exact name, just return success */
if (strcmp(zhp->zfs_name, target) == 0)
return (0);
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot rename to '%s'"), target);
/*
* Make sure the target name is valid
*/
if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) {
if ((strchr(target, '@') == NULL) ||
*target == '@') {
/*
* Snapshot target name is abbreviated,
* reconstruct full dataset name
*/
(void) strlcpy(parent, zhp->zfs_name,
sizeof (parent));
delim = strchr(parent, '@');
if (strchr(target, '@') == NULL)
*(++delim) = '\0';
else
*delim = '\0';
(void) strlcat(parent, target, sizeof (parent));
target = parent;
} else {
/*
* Make sure we're renaming within the same dataset.
*/
delim = strchr(target, '@');
if (strncmp(zhp->zfs_name, target, delim - target)
!= 0 || zhp->zfs_name[delim - target] != '@') {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"snapshots must be part of same "
"dataset"));
return (zfs_error(hdl, EZFS_CROSSTARGET,
errbuf));
}
}
if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
} else {
if (recursive) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"recursive rename must be a snapshot"));
return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
}
if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
uint64_t unused;
/* validate parents */
if (check_parents(hdl, target, &unused, B_FALSE, NULL) != 0)
return (-1);
(void) parent_name(target, parent, sizeof (parent));
/* make sure we're in the same pool */
verify((delim = strchr(target, '/')) != NULL);
if (strncmp(zhp->zfs_name, target, delim - target) != 0 ||
zhp->zfs_name[delim - target] != '/') {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"datasets must be within same pool"));
return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));
}
/* new name cannot be a child of the current dataset name */
if (strncmp(parent, zhp->zfs_name,
strlen(zhp->zfs_name)) == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"New dataset name cannot be a descendent of "
"current dataset name"));
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
}
}
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zhp->zfs_name);
if (getzoneid() == GLOBAL_ZONEID &&
zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset is used in a non-global zone"));
return (zfs_error(hdl, EZFS_ZONED, errbuf));
}
if (recursive) {
struct destroydata dd;
parentname = zfs_strdup(zhp->zfs_hdl, zhp->zfs_name);
if (parentname == NULL) {
ret = -1;
goto error;
}
delim = strchr(parentname, '@');
*delim = '\0';
zhrp = zfs_open(zhp->zfs_hdl, parentname, ZFS_TYPE_DATASET);
if (zhrp == NULL) {
ret = -1;
goto error;
}
dd.snapname = delim + 1;
dd.gotone = B_FALSE;
dd.closezhp = B_TRUE;
/* We remove any zvol links prior to renaming them */
ret = zfs_iter_filesystems(zhrp, zfs_remove_link_cb, &dd);
if (ret) {
goto error;
}
} else {
if ((cl = changelist_gather(zhp, ZFS_PROP_NAME, 0, 0)) == NULL)
2008-11-20 20:01:55 +00:00
return (-1);
if (changelist_haszonedchild(cl)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"child dataset with inherited mountpoint is used "
"in a non-global zone"));
(void) zfs_error(hdl, EZFS_ZONED, errbuf);
goto error;
}
if ((ret = changelist_prefix(cl)) != 0)
goto error;
}
if (ZFS_IS_VOLUME(zhp))
zc.zc_objset_type = DMU_OST_ZVOL;
else
zc.zc_objset_type = DMU_OST_ZFS;
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value));
zc.zc_cookie = recursive;
if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_RENAME, &zc)) != 0) {
/*
* if it was recursive, the one that actually failed will
* be in zc.zc_name
*/
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot rename '%s'"), zc.zc_name);
if (recursive && errno == EEXIST) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"a child dataset already has a snapshot "
"with the new name"));
(void) zfs_error(hdl, EZFS_EXISTS, errbuf);
} else {
(void) zfs_standard_error(zhp->zfs_hdl, errno, errbuf);
}
/*
* On failure, we still want to remount any filesystems that
* were previously mounted, so we don't alter the system state.
*/
if (recursive) {
struct createdata cd;
/* only create links for datasets that had existed */
cd.cd_snapname = delim + 1;
cd.cd_ifexists = B_TRUE;
(void) zfs_iter_filesystems(zhrp, zfs_create_link_cb,
&cd);
} else {
(void) changelist_postfix(cl);
}
} else {
if (recursive) {
struct createdata cd;
/* only create links for datasets that had existed */
cd.cd_snapname = strchr(target, '@') + 1;
cd.cd_ifexists = B_TRUE;
ret = zfs_iter_filesystems(zhrp, zfs_create_link_cb,
&cd);
} else {
changelist_rename(cl, zfs_get_name(zhp), target);
ret = changelist_postfix(cl);
}
}
error:
if (parentname) {
free(parentname);
}
if (zhrp) {
zfs_close(zhrp);
}
if (cl) {
changelist_free(cl);
}
return (ret);
}
/*
* Given a zvol dataset, issue the ioctl to create the appropriate minor node,
* poke devfsadm to create the /dev link, and then wait for the link to appear.
*/
int
zvol_create_link(libzfs_handle_t *hdl, const char *dataset)
{
return (zvol_create_link_common(hdl, dataset, B_FALSE));
}
static int
zvol_create_link_common(libzfs_handle_t *hdl, const char *dataset, int ifexists)
{
zfs_cmd_t zc = { 0 };
di_devlink_handle_t dhdl;
priv_set_t *priv_effective;
int privileged;
(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
/*
* Issue the appropriate ioctl.
*/
if (ioctl(hdl->libzfs_fd, ZFS_IOC_CREATE_MINOR, &zc) != 0) {
switch (errno) {
case EEXIST:
/*
* Silently ignore the case where the link already
* exists. This allows 'zfs volinit' to be run multiple
* times without errors.
*/
return (0);
case ENOENT:
/*
* Dataset does not exist in the kernel. If we
* don't care (see zfs_rename), then ignore the
* error quietly.
*/
if (ifexists) {
return (0);
}
/* FALLTHROUGH */
default:
return (zfs_standard_error_fmt(hdl, errno,
dgettext(TEXT_DOMAIN, "cannot create device links "
"for '%s'"), dataset));
}
}
/*
* If privileged call devfsadm and wait for the links to
* magically appear.
* Otherwise, print out an informational message.
*/
priv_effective = priv_allocset();
(void) getppriv(PRIV_EFFECTIVE, priv_effective);
privileged = (priv_isfullset(priv_effective) == B_TRUE);
priv_freeset(priv_effective);
if (privileged) {
if ((dhdl = di_devlink_init(ZFS_DRIVER,
DI_MAKE_LINK)) == NULL) {
zfs_error_aux(hdl, strerror(errno));
(void) zfs_error_fmt(hdl, errno,
2008-11-20 20:01:55 +00:00
dgettext(TEXT_DOMAIN, "cannot create device links "
"for '%s'"), dataset);
(void) ioctl(hdl->libzfs_fd, ZFS_IOC_REMOVE_MINOR, &zc);
return (-1);
} else {
(void) di_devlink_fini(&dhdl);
}
} else {
char pathname[MAXPATHLEN];
struct stat64 statbuf;
int i;
#define MAX_WAIT 10
/*
* This is the poor mans way of waiting for the link
* to show up. If after 10 seconds we still don't
* have it, then print out a message.
*/
(void) snprintf(pathname, sizeof (pathname), "/dev/zvol/dsk/%s",
dataset);
for (i = 0; i != MAX_WAIT; i++) {
if (stat64(pathname, &statbuf) == 0)
break;
(void) sleep(1);
}
if (i == MAX_WAIT)
(void) printf(gettext("%s may not be immediately "
"available\n"), pathname);
}
return (0);
}
/*
* Remove a minor node for the given zvol and the associated /dev links.
*/
int
zvol_remove_link(libzfs_handle_t *hdl, const char *dataset)
{
zfs_cmd_t zc = { 0 };
(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
if (ioctl(hdl->libzfs_fd, ZFS_IOC_REMOVE_MINOR, &zc) != 0) {
switch (errno) {
case ENXIO:
/*
* Silently ignore the case where the link no longer
* exists, so that 'zfs volfini' can be run multiple
* times without errors.
*/
return (0);
default:
return (zfs_standard_error_fmt(hdl, errno,
dgettext(TEXT_DOMAIN, "cannot remove device "
"links for '%s'"), dataset));
}
}
return (0);
}
nvlist_t *
zfs_get_user_props(zfs_handle_t *zhp)
{
return (zhp->zfs_user_props);
}
/*
* This function is used by 'zfs list' to determine the exact set of columns to
* display, and their maximum widths. This does two main things:
*
* - If this is a list of all properties, then expand the list to include
* all native properties, and set a flag so that for each dataset we look
* for new unique user properties and add them to the list.
*
* - For non fixed-width properties, keep track of the maximum width seen
* so that we can size the column appropriately.
*/
int
zfs_expand_proplist(zfs_handle_t *zhp, zprop_list_t **plp)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
zprop_list_t *entry;
zprop_list_t **last, **start;
nvlist_t *userprops, *propval;
nvpair_t *elem;
char *strval;
char buf[ZFS_MAXPROPLEN];
if (zprop_expand_list(hdl, plp, ZFS_TYPE_DATASET) != 0)
return (-1);
userprops = zfs_get_user_props(zhp);
entry = *plp;
if (entry->pl_all && nvlist_next_nvpair(userprops, NULL) != NULL) {
/*
* Go through and add any user properties as necessary. We
* start by incrementing our list pointer to the first
* non-native property.
*/
start = plp;
while (*start != NULL) {
if ((*start)->pl_prop == ZPROP_INVAL)
break;
start = &(*start)->pl_next;
}
elem = NULL;
while ((elem = nvlist_next_nvpair(userprops, elem)) != NULL) {
/*
* See if we've already found this property in our list.
*/
for (last = start; *last != NULL;
last = &(*last)->pl_next) {
if (strcmp((*last)->pl_user_prop,
nvpair_name(elem)) == 0)
break;
}
if (*last == NULL) {
if ((entry = zfs_alloc(hdl,
sizeof (zprop_list_t))) == NULL ||
((entry->pl_user_prop = zfs_strdup(hdl,
nvpair_name(elem)))) == NULL) {
free(entry);
return (-1);
}
entry->pl_prop = ZPROP_INVAL;
entry->pl_width = strlen(nvpair_name(elem));
entry->pl_all = B_TRUE;
*last = entry;
}
}
}
/*
* Now go through and check the width of any non-fixed columns
*/
for (entry = *plp; entry != NULL; entry = entry->pl_next) {
if (entry->pl_fixed)
continue;
if (entry->pl_prop != ZPROP_INVAL) {
if (zfs_prop_get(zhp, entry->pl_prop,
buf, sizeof (buf), NULL, NULL, 0, B_FALSE) == 0) {
if (strlen(buf) > entry->pl_width)
entry->pl_width = strlen(buf);
}
} else if (nvlist_lookup_nvlist(userprops,
entry->pl_user_prop, &propval) == 0) {
verify(nvlist_lookup_string(propval,
ZPROP_VALUE, &strval) == 0);
if (strlen(strval) > entry->pl_width)
entry->pl_width = strlen(strval);
}
}
return (0);
}
int
zfs_iscsi_perm_check(libzfs_handle_t *hdl, char *dataset, ucred_t *cred)
{
zfs_cmd_t zc = { 0 };
nvlist_t *nvp;
gid_t gid;
uid_t uid;
const gid_t *groups;
int group_cnt;
int error;
if (nvlist_alloc(&nvp, NV_UNIQUE_NAME, 0) != 0)
return (no_memory(hdl));
uid = ucred_geteuid(cred);
gid = ucred_getegid(cred);
group_cnt = ucred_getgroups(cred, &groups);
if (uid == (uid_t)-1 || gid == (uid_t)-1 || group_cnt == (uid_t)-1)
return (1);
if (nvlist_add_uint32(nvp, ZFS_DELEG_PERM_UID, uid) != 0) {
nvlist_free(nvp);
return (1);
}
if (nvlist_add_uint32(nvp, ZFS_DELEG_PERM_GID, gid) != 0) {
nvlist_free(nvp);
return (1);
}
if (nvlist_add_uint32_array(nvp,
ZFS_DELEG_PERM_GROUPS, (uint32_t *)groups, group_cnt) != 0) {
nvlist_free(nvp);
return (1);
}
(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
if (zcmd_write_src_nvlist(hdl, &zc, nvp))
return (-1);
error = ioctl(hdl->libzfs_fd, ZFS_IOC_ISCSI_PERM_CHECK, &zc);
nvlist_free(nvp);
return (error);
}
int
zfs_deleg_share_nfs(libzfs_handle_t *hdl, char *dataset, char *path,
void *export, void *sharetab, int sharemax, zfs_share_op_t operation)
{
zfs_cmd_t zc = { 0 };
int error;
(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value));
zc.zc_share.z_sharedata = (uint64_t)(uintptr_t)sharetab;
zc.zc_share.z_exportdata = (uint64_t)(uintptr_t)export;
zc.zc_share.z_sharetype = operation;
zc.zc_share.z_sharemax = sharemax;
error = ioctl(hdl->libzfs_fd, ZFS_IOC_SHARE, &zc);
return (error);
}