zfs/lib/libzfs/libzfs_mount.c

1660 lines
42 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2021 by Delphix. All rights reserved.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
* Copyright 2017 RackTop Systems.
* Copyright (c) 2018 Datto Inc.
* Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
2008-11-20 20:01:55 +00:00
*/
/*
* Routines to manage ZFS mounts. We separate all the nasty routines that have
* to deal with the OS. The following functions are the main entry points --
* they are used by mount and unmount and when changing a filesystem's
* mountpoint.
*
* zfs_is_mounted()
* zfs_mount()
* zfs_mount_at()
* zfs_unmount()
* zfs_unmountall()
2008-11-20 20:01:55 +00:00
*
* This file also contains the functions used to manage sharing filesystems via
* NFS and iSCSI:
*
* zfs_is_shared()
* zfs_share()
* zfs_unshare()
2008-11-20 20:01:55 +00:00
*
* zfs_is_shared_nfs()
* zfs_is_shared_smb()
* zfs_share_proto()
* zfs_shareall();
* zfs_unshare_nfs()
* zfs_unshare_smb()
* zfs_unshareall_nfs()
2008-11-20 20:01:55 +00:00
* zfs_unshareall_smb()
* zfs_unshareall()
* zfs_unshareall_bypath()
*
* The following functions are available for pool consumers, and will
* mount/unmount and share/unshare all datasets within pool:
*
* zpool_enable_datasets()
* zpool_disable_datasets()
2008-11-20 20:01:55 +00:00
*/
#include <dirent.h>
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
2008-11-20 20:01:55 +00:00
#include <libgen.h>
#include <libintl.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <zone.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/vfs.h>
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 17:36:48 +00:00
#include <sys/dsl_crypt.h>
2008-11-20 20:01:55 +00:00
#include <libzfs.h>
#include "libzfs_impl.h"
#include <thread_pool.h>
2008-11-20 20:01:55 +00:00
#include <libshare.h>
#include <sys/systeminfo.h>
#define MAXISALEN 257 /* based on sysinfo(2) man page */
static int mount_tp_nthr = 512; /* tpool threads for multi-threaded mounting */
static void zfs_mount_task(void *);
2008-11-20 20:01:55 +00:00
zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
zfs_share_proto_t);
/*
* The share protocols table must be in the same order as the zfs_share_proto_t
2008-11-20 20:01:55 +00:00
* enum in libzfs_impl.h
*/
proto_table_t proto_table[PROTO_END] = {
{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
};
zfs_share_proto_t nfs_only[] = {
PROTO_NFS,
PROTO_END
};
zfs_share_proto_t smb_only[] = {
PROTO_SMB,
PROTO_END
};
zfs_share_proto_t share_all_proto[] = {
PROTO_NFS,
PROTO_SMB,
PROTO_END
};
static boolean_t
dir_is_empty_stat(const char *dirname)
{
struct stat st;
/*
* We only want to return false if the given path is a non empty
* directory, all other errors are handled elsewhere.
*/
if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
return (B_TRUE);
}
/*
* An empty directory will still have two entries in it, one
* entry for each of "." and "..".
*/
if (st.st_size > 2) {
return (B_FALSE);
}
return (B_TRUE);
}
static boolean_t
dir_is_empty_readdir(const char *dirname)
2008-11-20 20:01:55 +00:00
{
DIR *dirp;
struct dirent64 *dp;
int dirfd;
2008-11-20 20:01:55 +00:00
if ((dirfd = openat(AT_FDCWD, dirname,
O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
2008-11-20 20:01:55 +00:00
return (B_TRUE);
}
if ((dirp = fdopendir(dirfd)) == NULL) {
(void) close(dirfd);
return (B_TRUE);
}
2008-11-20 20:01:55 +00:00
while ((dp = readdir64(dirp)) != NULL) {
if (strcmp(dp->d_name, ".") == 0 ||
strcmp(dp->d_name, "..") == 0)
continue;
(void) closedir(dirp);
return (B_FALSE);
}
(void) closedir(dirp);
return (B_TRUE);
}
/*
* Returns true if the specified directory is empty. If we can't open the
* directory at all, return true so that the mount can fail with a more
* informative error message.
*/
static boolean_t
dir_is_empty(const char *dirname)
{
struct statfs64 st;
/*
* If the statvfs call fails or the filesystem is not a ZFS
* filesystem, fall back to the slow path which uses readdir.
*/
if ((statfs64(dirname, &st) != 0) ||
(st.f_type != ZFS_SUPER_MAGIC)) {
return (dir_is_empty_readdir(dirname));
}
/*
* At this point, we know the provided path is on a ZFS
* filesystem, so we can use stat instead of readdir to
* determine if the directory is empty or not. We try to avoid
* using readdir because that requires opening "dirname"; this
* open file descriptor can potentially end up in a child
* process if there's a concurrent fork, thus preventing the
* zfs_mount() from otherwise succeeding (the open file
* descriptor inherited by the child process will cause the
* parent's mount to fail with EBUSY). The performance
* implications of replacing the open, read, and close with a
* single stat is nice; but is not the main motivation for the
* added complexity.
*/
return (dir_is_empty_stat(dirname));
}
2008-11-20 20:01:55 +00:00
/*
* Checks to see if the mount is active. If the filesystem is mounted, we fill
* in 'where' with the current mountpoint, and return 1. Otherwise, we return
* 0.
*/
boolean_t
is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
{
2009-01-15 21:59:39 +00:00
struct mnttab entry;
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
2008-11-20 20:01:55 +00:00
return (B_FALSE);
if (where != NULL)
*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
return (B_TRUE);
}
boolean_t
zfs_is_mounted(zfs_handle_t *zhp, char **where)
{
return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
}
/*
* Checks any higher order concerns about whether the given dataset is
* mountable, false otherwise. zfs_is_mountable_internal specifically assumes
* that the caller has verified the sanity of mounting the dataset at
* mountpoint to the extent the caller wants.
*/
static boolean_t
zfs_is_mountable_internal(zfs_handle_t *zhp, const char *mountpoint)
{
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
getzoneid() == GLOBAL_ZONEID)
return (B_FALSE);
return (B_TRUE);
}
2008-11-20 20:01:55 +00:00
/*
* Returns true if the given dataset is mountable, false otherwise. Returns the
* mountpoint in 'buf'.
*/
boolean_t
2008-11-20 20:01:55 +00:00
zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 16:48:13 +00:00
zprop_source_t *source, int flags)
2008-11-20 20:01:55 +00:00
{
char sourceloc[MAXNAMELEN];
2008-11-20 20:01:55 +00:00
zprop_source_t sourcetype;
if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
B_FALSE))
2008-11-20 20:01:55 +00:00
return (B_FALSE);
verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
&sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
return (B_FALSE);
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
return (B_FALSE);
if (!zfs_is_mountable_internal(zhp, buf))
2008-11-20 20:01:55 +00:00
return (B_FALSE);
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 16:48:13 +00:00
if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
return (B_FALSE);
2008-11-20 20:01:55 +00:00
if (source)
*source = sourcetype;
return (B_TRUE);
}
2010-12-17 00:16:25 +00:00
/*
* The filesystem is mounted by invoking the system mount utility rather
* than by the system call mount(2). This ensures that the /etc/mtab
* file is correctly locked for the update. Performing our own locking
* and /etc/mtab update requires making an unsafe assumption about how
* the mount utility performs its locking. Unfortunately, this also means
* in the case of a mount failure we do not have the exact errno. We must
* make due with return value from the mount process.
*
* In the long term a shared library called libmount is under development
* which provides a common API to address the locking and errno issues.
* Once the standard mount utility has been updated to use this library
* we can add an autoconf check to conditionally use it.
*
* http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
*/
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 18:44:07 +00:00
static int
zfs_add_option(zfs_handle_t *zhp, char *options, int len,
zfs_prop_t prop, char *on, char *off)
{
char *source;
uint64_t value;
/* Skip adding duplicate default options */
if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
return (0);
/*
* zfs_prop_get_int() is not used to ensure our mount options
* are not influenced by the current /proc/self/mounts contents.
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 18:44:07 +00:00
*/
value = getprop_uint64(zhp, prop, &source);
(void) strlcat(options, ",", len);
(void) strlcat(options, value ? on : off, len);
return (0);
}
static int
zfs_add_options(zfs_handle_t *zhp, char *options, int len)
{
int error = 0;
error = zfs_add_option(zhp, options, len,
ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
/*
* don't add relatime/strictatime when atime=off, otherwise strictatime
* will force atime=on
*/
if (strstr(options, MNTOPT_NOATIME) == NULL) {
error = zfs_add_option(zhp, options, len,
ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
}
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 18:44:07 +00:00
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
return (error);
}
int
zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
{
char mountpoint[ZFS_MAXPROPLEN];
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
flags))
return (0);
return (zfs_mount_at(zhp, options, flags, mountpoint));
}
2008-11-20 20:01:55 +00:00
/*
* Mount the given filesystem.
*/
int
zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
const char *mountpoint)
2008-11-20 20:01:55 +00:00
{
struct stat buf;
char mntopts[MNT_LINE_MAX];
char overlay[ZFS_MAXPROPLEN];
char prop_encroot[MAXNAMELEN];
boolean_t is_encroot;
zfs_handle_t *encroot_hp = zhp;
2008-11-20 20:01:55 +00:00
libzfs_handle_t *hdl = zhp->zfs_hdl;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 17:36:48 +00:00
uint64_t keystatus;
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 18:44:07 +00:00
int remount = 0, rc;
2008-11-20 20:01:55 +00:00
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 18:44:07 +00:00
if (options == NULL) {
2010-12-17 00:16:25 +00:00
(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 18:44:07 +00:00
} else {
2008-11-20 20:01:55 +00:00
(void) strlcpy(mntopts, options, sizeof (mntopts));
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 18:44:07 +00:00
}
if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
remount = 1;
2008-11-20 20:01:55 +00:00
/* Potentially duplicates some checks if invoked by zfs_mount(). */
if (!zfs_is_mountable_internal(zhp, mountpoint))
return (0);
/*
* If the pool is imported read-only then all mounts must be read-only
*/
if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
2010-12-17 00:16:25 +00:00
(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 18:44:07 +00:00
/*
* Append default mount options which apply to the mount point.
* This is done because under Linux (unlike Solaris) multiple mount
* points may reference a single super block. This means that just
* given a super block there is no back reference to update the per
* mount point options.
*/
rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
if (rc) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"default options unavailable"));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
mountpoint));
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 17:36:48 +00:00
/*
* If the filesystem is encrypted the key must be loaded in order to
* mount. If the key isn't loaded, the MS_CRYPT flag decides whether
* or not we attempt to load the keys. Note: we must call
* zfs_refresh_properties() here since some callers of this function
* (most notably zpool_enable_datasets()) may implicitly load our key
* by loading the parent's key first.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
zfs_refresh_properties(zhp);
keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
/*
* If the key is unavailable and MS_CRYPT is set give the
* user a chance to enter the key. Otherwise just fail
* immediately.
*/
if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
if (flags & MS_CRYPT) {
rc = zfs_crypto_get_encryption_root(zhp,
&is_encroot, prop_encroot);
if (rc) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Failed to get encryption root for "
"'%s'."), zfs_get_name(zhp));
return (rc);
}
if (!is_encroot) {
encroot_hp = zfs_open(hdl, prop_encroot,
ZFS_TYPE_DATASET);
if (encroot_hp == NULL)
return (hdl->libzfs_error);
}
rc = zfs_crypto_load_key(encroot_hp,
B_FALSE, NULL);
if (!is_encroot)
zfs_close(encroot_hp);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 17:36:48 +00:00
if (rc)
return (rc);
} else {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"encryption key not loaded"));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
mountpoint));
}
}
}
2010-12-17 00:16:25 +00:00
/*
* Append zfsutil option so the mount helper allow the mount
*/
strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
2008-11-20 20:01:55 +00:00
/* Create the directory if it doesn't already exist */
if (lstat(mountpoint, &buf) != 0) {
if (mkdirp(mountpoint, 0755) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"failed to create mountpoint: %s"),
strerror(errno));
2008-11-20 20:01:55 +00:00
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
mountpoint));
}
}
/*
* Overlay mounts are enabled by default but may be disabled
* via the 'overlay' property. The -O flag remains for compatibility.
*/
if (!(flags & MS_OVERLAY)) {
if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
if (strcmp(overlay, "on") == 0) {
flags |= MS_OVERLAY;
}
}
}
2008-11-20 20:01:55 +00:00
/*
* Determine if the mountpoint is empty. If so, refuse to perform the
* mount. We don't perform this check if 'remount' is
* specified or if overlay option (-O) is given
2008-11-20 20:01:55 +00:00
*/
if ((flags & MS_OVERLAY) == 0 && !remount &&
!dir_is_empty(mountpoint)) {
2008-11-20 20:01:55 +00:00
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"directory is not empty"));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
}
/* perform the mount */
rc = do_mount(zhp, mountpoint, mntopts, flags);
2010-12-17 00:16:25 +00:00
if (rc) {
2008-11-20 20:01:55 +00:00
/*
* Generic errors are nasty, but there are just way too many
* from mount(), and they're well-understood. We pick a few
* common ones to improve upon.
*/
2010-12-17 00:16:25 +00:00
if (rc == EBUSY) {
2008-11-20 20:01:55 +00:00
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"mountpoint or dataset is busy"));
2010-12-17 00:16:25 +00:00
} else if (rc == EPERM) {
2008-11-20 20:01:55 +00:00
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Insufficient privileges"));
2010-12-17 00:16:25 +00:00
} else if (rc == ENOTSUP) {
char buf[256];
int spa_version;
VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
(void) snprintf(buf, sizeof (buf),
dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
"file system on a version %d pool. Pool must be"
" upgraded to mount this file system."),
(u_longlong_t)zfs_prop_get_int(zhp,
ZFS_PROP_VERSION), spa_version);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
2008-11-20 20:01:55 +00:00
} else {
2010-12-17 00:16:25 +00:00
zfs_error_aux(hdl, strerror(rc));
2008-11-20 20:01:55 +00:00
}
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
zhp->zfs_name));
}
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 18:44:07 +00:00
/* remove the mounted entry before re-adding on remount */
if (remount)
libzfs_mnttab_remove(hdl, zhp->zfs_name);
2009-01-15 21:59:39 +00:00
/* add the mounted entry into our cache */
2010-12-17 00:16:25 +00:00
libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
2008-11-20 20:01:55 +00:00
return (0);
}
/*
* Unmount a single filesystem.
*/
static int
unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
{
int error;
error = do_unmount(mountpoint, flags);
if (error != 0) {
int libzfs_err;
switch (error) {
case EBUSY:
libzfs_err = EZFS_BUSY;
break;
case EIO:
libzfs_err = EZFS_IO;
break;
case ENOENT:
libzfs_err = EZFS_NOENT;
break;
case ENOMEM:
libzfs_err = EZFS_NOMEM;
break;
case EPERM:
libzfs_err = EZFS_PERM;
break;
default:
libzfs_err = EZFS_UMOUNTFAILED;
}
return (zfs_error_fmt(hdl, libzfs_err,
2008-11-20 20:01:55 +00:00
dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
mountpoint));
}
return (0);
}
/*
* Unmount the given filesystem.
*/
int
zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
{
2009-01-15 21:59:39 +00:00
libzfs_handle_t *hdl = zhp->zfs_hdl;
struct mnttab entry;
2008-11-20 20:01:55 +00:00
char *mntpt = NULL;
boolean_t encroot, unmounted = B_FALSE;
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
/* check to see if we need to unmount the filesystem */
2008-11-20 20:01:55 +00:00
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
2009-01-15 21:59:39 +00:00
libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
2008-11-20 20:01:55 +00:00
/*
* mountpoint may have come from a call to
* getmnt/getmntany if it isn't NULL. If it is NULL,
2009-01-15 21:59:39 +00:00
* we know it comes from libzfs_mnttab_find which can
* then get freed later. We strdup it to play it safe.
2008-11-20 20:01:55 +00:00
*/
if (mountpoint == NULL)
Fix "zfs destroy" when "sharenfs=on" is used When using "zfs destroy" on a dataset that is using "sharenfs=on" and has been automatically exported (by libzfs), the dataset will not be automatically unexported as it should be. This workflow appears to have been broken by this commit: 3fd3e56cfd543d7d7a1bf502bfc0db6e24139668 In that change, the "zfs_unmount" function was modified to use the "mnt.mnt_special" field when determining the mount point that is being unmounted, rather than "mnt.mnt_mountp". As a result, when "mntpt" is passed into "zfs_unshare_proto", it's value is now the dataset name rather than the mountpoint. Thus, when this value is used with the "is_shared" function (via "zfs_unshare_proto") it will not find a match (since that function assumes it'll be passed the mountpoint) and incorrectly reports that the dataset is not shared. This can be easily reproduced with the following commands: $ sudo zpool create tank xvdb $ sudo zfs create -o sharenfs=on tank/fish $ sudo zfs destroy tank/fish $ sudo zfs list -r tank NAME USED AVAIL REFER MOUNTPOINT tank 97.5K 7.27G 24K /tank $ sudo exportfs /tank/fish <world> $ sudo cat /etc/dfs/sharetab /tank/fish - nfs rw,crossmnt At this point, the "tank/fish" filesystem doesn't exist, but it's still listed as exported when looking at "exportfs" and "/etc/dfs/sharetab". Also note, this change brings us back in-sync with the illumos code, as it pertains to this one line; on illumos, "mnt.mnt_mountp" is used. Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: George Wilson <george.wilson@delphix.com> Signed-off-by: Prakash Surya <prakash.surya@delphix.com> Issue #6143 Closes #7941
2018-09-21 15:47:42 +00:00
mntpt = zfs_strdup(hdl, entry.mnt_mountp);
2008-11-20 20:01:55 +00:00
else
2009-01-15 21:59:39 +00:00
mntpt = zfs_strdup(hdl, mountpoint);
2008-11-20 20:01:55 +00:00
/*
* Unshare and unmount the filesystem
*/
if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) {
free(mntpt);
2008-11-20 20:01:55 +00:00
return (-1);
}
Remove dependency on sharetab file and refactor sharing logic == Motivation and Context The current implementation of 'sharenfs' and 'sharesmb' relies on the use of the sharetab file. The use of this file is os-specific and not required by linux or freebsd. Currently the code must maintain updates to this file which adds complexity and presents a significant performance impact when sharing many datasets. In addition, concurrently running 'zfs sharenfs' command results in missing entries in the sharetab file leading to unexpected failures. == Description This change removes the sharetab logic from the linux and freebsd implementation of 'sharenfs' and 'sharesmb'. It still preserves an os-specific library which contains the logic required for sharing NFS or SMB. The following entry points exist in the vastly simplified libshare library: - sa_enable_share -- shares a dataset but may not commit the change - sa_disable_share -- unshares a dataset but may not commit the change - sa_is_shared -- determine if a dataset is shared - sa_commit_share -- notify NFS/SMB subsystem to commit the shares - sa_validate_shareopts -- determine if sharing options are valid The sa_commit_share entry point is provided as a performance enhancement and is not required. The sa_enable_share/sa_disable_share may commit the share as part of the implementation. Libshare provides a framework for both NFS and SMB but some operating systems may not fully support these protocols or all features of the protocol. NFS Operation: For linux, libshare updates /etc/exports.d/zfs.exports to add and remove shares and then commits the changes by invoking 'exportfs -r'. This file, is automatically read by the kernel NFS implementation which makes for better integration with the NFS systemd service. For FreeBSD, libshare updates /etc/zfs/exports to add and remove shares and then commits the changes by sending a SIGHUP to mountd. SMB Operation: For linux, libshare adds and removes files in /var/lib/samba/usershares by calling the 'net' command directly. There is no need to commit the changes. FreeBSD does not support SMB. == Performance Results To test sharing performance we created a pool with an increasing number of datasets and invoked various zfs actions that would enable and disable sharing. The performance testing was limited to NFS sharing. The following tests were performed on an 8 vCPU system with 128GB and a pool comprised of 4 50GB SSDs: Scale testing: - Share all filesystems in parallel -- zfs sharenfs=on <dataset> & - Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> & Functional testing: - share each filesystem serially -- zfs share -a - unshare each filesystem serially -- zfs unshare -a - reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool> For 'zfs sharenfs=on' scale testing we saw an average reduction in time of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time of 83.36%. Functional testing also shows a huge improvement: - zfs share -- 97.97% reduction in time - zfs unshare -- 96.47% reduction in time - zfs inhert -r sharenfs -- 99.01% reduction in time Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Bryant G. Ly <bryangly@gmail.com> Signed-off-by: George Wilson <gwilson@delphix.com> External-Issue: DLPX-68690 Closes #1603 Closes #7692 Closes #7943 Closes #10300
2020-07-13 16:19:18 +00:00
zfs_commit_all_shares();
2008-11-20 20:01:55 +00:00
2009-01-15 21:59:39 +00:00
if (unmount_one(hdl, mntpt, flags) != 0) {
2008-11-20 20:01:55 +00:00
free(mntpt);
(void) zfs_shareall(zhp);
Remove dependency on sharetab file and refactor sharing logic == Motivation and Context The current implementation of 'sharenfs' and 'sharesmb' relies on the use of the sharetab file. The use of this file is os-specific and not required by linux or freebsd. Currently the code must maintain updates to this file which adds complexity and presents a significant performance impact when sharing many datasets. In addition, concurrently running 'zfs sharenfs' command results in missing entries in the sharetab file leading to unexpected failures. == Description This change removes the sharetab logic from the linux and freebsd implementation of 'sharenfs' and 'sharesmb'. It still preserves an os-specific library which contains the logic required for sharing NFS or SMB. The following entry points exist in the vastly simplified libshare library: - sa_enable_share -- shares a dataset but may not commit the change - sa_disable_share -- unshares a dataset but may not commit the change - sa_is_shared -- determine if a dataset is shared - sa_commit_share -- notify NFS/SMB subsystem to commit the shares - sa_validate_shareopts -- determine if sharing options are valid The sa_commit_share entry point is provided as a performance enhancement and is not required. The sa_enable_share/sa_disable_share may commit the share as part of the implementation. Libshare provides a framework for both NFS and SMB but some operating systems may not fully support these protocols or all features of the protocol. NFS Operation: For linux, libshare updates /etc/exports.d/zfs.exports to add and remove shares and then commits the changes by invoking 'exportfs -r'. This file, is automatically read by the kernel NFS implementation which makes for better integration with the NFS systemd service. For FreeBSD, libshare updates /etc/zfs/exports to add and remove shares and then commits the changes by sending a SIGHUP to mountd. SMB Operation: For linux, libshare adds and removes files in /var/lib/samba/usershares by calling the 'net' command directly. There is no need to commit the changes. FreeBSD does not support SMB. == Performance Results To test sharing performance we created a pool with an increasing number of datasets and invoked various zfs actions that would enable and disable sharing. The performance testing was limited to NFS sharing. The following tests were performed on an 8 vCPU system with 128GB and a pool comprised of 4 50GB SSDs: Scale testing: - Share all filesystems in parallel -- zfs sharenfs=on <dataset> & - Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> & Functional testing: - share each filesystem serially -- zfs share -a - unshare each filesystem serially -- zfs unshare -a - reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool> For 'zfs sharenfs=on' scale testing we saw an average reduction in time of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time of 83.36%. Functional testing also shows a huge improvement: - zfs share -- 97.97% reduction in time - zfs unshare -- 96.47% reduction in time - zfs inhert -r sharenfs -- 99.01% reduction in time Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Bryant G. Ly <bryangly@gmail.com> Signed-off-by: George Wilson <gwilson@delphix.com> External-Issue: DLPX-68690 Closes #1603 Closes #7692 Closes #7943 Closes #10300
2020-07-13 16:19:18 +00:00
zfs_commit_all_shares();
2008-11-20 20:01:55 +00:00
return (-1);
}
2009-01-15 21:59:39 +00:00
libzfs_mnttab_remove(hdl, zhp->zfs_name);
2008-11-20 20:01:55 +00:00
free(mntpt);
unmounted = B_TRUE;
}
/*
* If the MS_CRYPT flag is provided we must ensure we attempt to
* unload the dataset's key regardless of whether we did any work
* to unmount it. We only do this for encryption roots.
*/
if ((flags & MS_CRYPT) != 0 &&
zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
zfs_refresh_properties(zhp);
if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
unmounted) {
(void) zfs_mount(zhp, NULL, 0);
return (-1);
}
if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_AVAILABLE &&
zfs_crypto_unload_key(zhp) != 0) {
(void) zfs_mount(zhp, NULL, 0);
return (-1);
}
2008-11-20 20:01:55 +00:00
}
return (0);
}
/*
* Unmount this filesystem and any children inheriting the mountpoint property.
* To do this, just act like we're changing the mountpoint property, but don't
* remount the filesystems afterwards.
*/
int
zfs_unmountall(zfs_handle_t *zhp, int flags)
{
prop_changelist_t *clp;
int ret;
clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
CL_GATHER_ITER_MOUNTED, flags);
2008-11-20 20:01:55 +00:00
if (clp == NULL)
return (-1);
ret = changelist_prefix(clp);
changelist_free(clp);
return (ret);
}
boolean_t
zfs_is_shared(zfs_handle_t *zhp)
{
zfs_share_type_t rc = 0;
zfs_share_proto_t *curr_proto;
if (ZFS_IS_VOLUME(zhp))
return (B_FALSE);
2008-11-20 20:01:55 +00:00
for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
curr_proto++)
rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
return (rc ? B_TRUE : B_FALSE);
}
Remove dependency on sharetab file and refactor sharing logic == Motivation and Context The current implementation of 'sharenfs' and 'sharesmb' relies on the use of the sharetab file. The use of this file is os-specific and not required by linux or freebsd. Currently the code must maintain updates to this file which adds complexity and presents a significant performance impact when sharing many datasets. In addition, concurrently running 'zfs sharenfs' command results in missing entries in the sharetab file leading to unexpected failures. == Description This change removes the sharetab logic from the linux and freebsd implementation of 'sharenfs' and 'sharesmb'. It still preserves an os-specific library which contains the logic required for sharing NFS or SMB. The following entry points exist in the vastly simplified libshare library: - sa_enable_share -- shares a dataset but may not commit the change - sa_disable_share -- unshares a dataset but may not commit the change - sa_is_shared -- determine if a dataset is shared - sa_commit_share -- notify NFS/SMB subsystem to commit the shares - sa_validate_shareopts -- determine if sharing options are valid The sa_commit_share entry point is provided as a performance enhancement and is not required. The sa_enable_share/sa_disable_share may commit the share as part of the implementation. Libshare provides a framework for both NFS and SMB but some operating systems may not fully support these protocols or all features of the protocol. NFS Operation: For linux, libshare updates /etc/exports.d/zfs.exports to add and remove shares and then commits the changes by invoking 'exportfs -r'. This file, is automatically read by the kernel NFS implementation which makes for better integration with the NFS systemd service. For FreeBSD, libshare updates /etc/zfs/exports to add and remove shares and then commits the changes by sending a SIGHUP to mountd. SMB Operation: For linux, libshare adds and removes files in /var/lib/samba/usershares by calling the 'net' command directly. There is no need to commit the changes. FreeBSD does not support SMB. == Performance Results To test sharing performance we created a pool with an increasing number of datasets and invoked various zfs actions that would enable and disable sharing. The performance testing was limited to NFS sharing. The following tests were performed on an 8 vCPU system with 128GB and a pool comprised of 4 50GB SSDs: Scale testing: - Share all filesystems in parallel -- zfs sharenfs=on <dataset> & - Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> & Functional testing: - share each filesystem serially -- zfs share -a - unshare each filesystem serially -- zfs unshare -a - reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool> For 'zfs sharenfs=on' scale testing we saw an average reduction in time of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time of 83.36%. Functional testing also shows a huge improvement: - zfs share -- 97.97% reduction in time - zfs unshare -- 96.47% reduction in time - zfs inhert -r sharenfs -- 99.01% reduction in time Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Bryant G. Ly <bryangly@gmail.com> Signed-off-by: George Wilson <gwilson@delphix.com> External-Issue: DLPX-68690 Closes #1603 Closes #7692 Closes #7943 Closes #10300
2020-07-13 16:19:18 +00:00
/*
* Unshare a filesystem by mountpoint.
*/
int
unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
zfs_share_proto_t proto)
{
int err;
err = sa_disable_share(mountpoint, proto_table[proto].p_name);
if (err != SA_OK) {
return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
name, sa_errorstr(err)));
}
return (0);
}
/*
* Query libshare for the given mountpoint and protocol, returning
* a zfs_share_type_t value.
*/
zfs_share_type_t
is_shared(const char *mountpoint, zfs_share_proto_t proto)
{
if (sa_is_shared(mountpoint, proto_table[proto].p_name)) {
switch (proto) {
case PROTO_NFS:
return (SHARED_NFS);
case PROTO_SMB:
return (SHARED_SMB);
default:
return (SHARED_NOT_SHARED);
}
}
return (SHARED_NOT_SHARED);
}
/*
* Share the given filesystem according to the options in the specified
* protocol specific properties (sharenfs, sharesmb). We rely
* on "libshare" to do the dirty work for us.
*/
int
zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
{
char mountpoint[ZFS_MAXPROPLEN];
char shareopts[ZFS_MAXPROPLEN];
char sourcestr[ZFS_MAXPROPLEN];
zfs_share_proto_t *curr_proto;
zprop_source_t sourcetype;
int err = 0;
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
return (0);
for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
/*
* Return success if there are no share options.
*/
if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
shareopts, sizeof (shareopts), &sourcetype, sourcestr,
ZFS_MAXPROPLEN, B_FALSE) != 0 ||
strcmp(shareopts, "off") == 0)
continue;
/*
* If the 'zoned' property is set, then zfs_is_mountable()
* will have already bailed out if we are in the global zone.
* But local zones cannot be NFS servers, so we ignore it for
* local zones as well.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
continue;
err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
proto_table[*curr_proto].p_name);
if (err != SA_OK) {
return (zfs_error_fmt(zhp->zfs_hdl,
proto_table[*curr_proto].p_share_err,
dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
zfs_get_name(zhp), sa_errorstr(err)));
}
}
return (0);
}
2008-11-20 20:01:55 +00:00
int
zfs_share(zfs_handle_t *zhp)
{
assert(!ZFS_IS_VOLUME(zhp));
2008-11-20 20:01:55 +00:00
return (zfs_share_proto(zhp, share_all_proto));
}
int
zfs_unshare(zfs_handle_t *zhp)
{
assert(!ZFS_IS_VOLUME(zhp));
2008-11-20 20:01:55 +00:00
return (zfs_unshareall(zhp));
}
/*
* Check to see if the filesystem is currently shared.
*/
zfs_share_type_t
zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
{
char *mountpoint;
zfs_share_type_t rc;
if (!zfs_is_mounted(zhp, &mountpoint))
return (SHARED_NOT_SHARED);
Remove dependency on sharetab file and refactor sharing logic == Motivation and Context The current implementation of 'sharenfs' and 'sharesmb' relies on the use of the sharetab file. The use of this file is os-specific and not required by linux or freebsd. Currently the code must maintain updates to this file which adds complexity and presents a significant performance impact when sharing many datasets. In addition, concurrently running 'zfs sharenfs' command results in missing entries in the sharetab file leading to unexpected failures. == Description This change removes the sharetab logic from the linux and freebsd implementation of 'sharenfs' and 'sharesmb'. It still preserves an os-specific library which contains the logic required for sharing NFS or SMB. The following entry points exist in the vastly simplified libshare library: - sa_enable_share -- shares a dataset but may not commit the change - sa_disable_share -- unshares a dataset but may not commit the change - sa_is_shared -- determine if a dataset is shared - sa_commit_share -- notify NFS/SMB subsystem to commit the shares - sa_validate_shareopts -- determine if sharing options are valid The sa_commit_share entry point is provided as a performance enhancement and is not required. The sa_enable_share/sa_disable_share may commit the share as part of the implementation. Libshare provides a framework for both NFS and SMB but some operating systems may not fully support these protocols or all features of the protocol. NFS Operation: For linux, libshare updates /etc/exports.d/zfs.exports to add and remove shares and then commits the changes by invoking 'exportfs -r'. This file, is automatically read by the kernel NFS implementation which makes for better integration with the NFS systemd service. For FreeBSD, libshare updates /etc/zfs/exports to add and remove shares and then commits the changes by sending a SIGHUP to mountd. SMB Operation: For linux, libshare adds and removes files in /var/lib/samba/usershares by calling the 'net' command directly. There is no need to commit the changes. FreeBSD does not support SMB. == Performance Results To test sharing performance we created a pool with an increasing number of datasets and invoked various zfs actions that would enable and disable sharing. The performance testing was limited to NFS sharing. The following tests were performed on an 8 vCPU system with 128GB and a pool comprised of 4 50GB SSDs: Scale testing: - Share all filesystems in parallel -- zfs sharenfs=on <dataset> & - Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> & Functional testing: - share each filesystem serially -- zfs share -a - unshare each filesystem serially -- zfs unshare -a - reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool> For 'zfs sharenfs=on' scale testing we saw an average reduction in time of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time of 83.36%. Functional testing also shows a huge improvement: - zfs share -- 97.97% reduction in time - zfs unshare -- 96.47% reduction in time - zfs inhert -r sharenfs -- 99.01% reduction in time Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Bryant G. Ly <bryangly@gmail.com> Signed-off-by: George Wilson <gwilson@delphix.com> External-Issue: DLPX-68690 Closes #1603 Closes #7692 Closes #7943 Closes #10300
2020-07-13 16:19:18 +00:00
if ((rc = is_shared(mountpoint, proto))
!= SHARED_NOT_SHARED) {
2008-11-20 20:01:55 +00:00
if (where != NULL)
*where = mountpoint;
else
free(mountpoint);
return (rc);
} else {
free(mountpoint);
return (SHARED_NOT_SHARED);
}
}
boolean_t
zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
{
return (zfs_is_shared_proto(zhp, where,
PROTO_NFS) != SHARED_NOT_SHARED);
}
boolean_t
zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
{
return (zfs_is_shared_proto(zhp, where,
PROTO_SMB) != SHARED_NOT_SHARED);
}
/*
* zfs_parse_options(options, proto)
*
* Call the legacy parse interface to get the protocol specific
* options using the NULL arg to indicate that this is a "parse" only.
*/
int
zfs_parse_options(char *options, zfs_share_proto_t proto)
{
Remove dependency on sharetab file and refactor sharing logic == Motivation and Context The current implementation of 'sharenfs' and 'sharesmb' relies on the use of the sharetab file. The use of this file is os-specific and not required by linux or freebsd. Currently the code must maintain updates to this file which adds complexity and presents a significant performance impact when sharing many datasets. In addition, concurrently running 'zfs sharenfs' command results in missing entries in the sharetab file leading to unexpected failures. == Description This change removes the sharetab logic from the linux and freebsd implementation of 'sharenfs' and 'sharesmb'. It still preserves an os-specific library which contains the logic required for sharing NFS or SMB. The following entry points exist in the vastly simplified libshare library: - sa_enable_share -- shares a dataset but may not commit the change - sa_disable_share -- unshares a dataset but may not commit the change - sa_is_shared -- determine if a dataset is shared - sa_commit_share -- notify NFS/SMB subsystem to commit the shares - sa_validate_shareopts -- determine if sharing options are valid The sa_commit_share entry point is provided as a performance enhancement and is not required. The sa_enable_share/sa_disable_share may commit the share as part of the implementation. Libshare provides a framework for both NFS and SMB but some operating systems may not fully support these protocols or all features of the protocol. NFS Operation: For linux, libshare updates /etc/exports.d/zfs.exports to add and remove shares and then commits the changes by invoking 'exportfs -r'. This file, is automatically read by the kernel NFS implementation which makes for better integration with the NFS systemd service. For FreeBSD, libshare updates /etc/zfs/exports to add and remove shares and then commits the changes by sending a SIGHUP to mountd. SMB Operation: For linux, libshare adds and removes files in /var/lib/samba/usershares by calling the 'net' command directly. There is no need to commit the changes. FreeBSD does not support SMB. == Performance Results To test sharing performance we created a pool with an increasing number of datasets and invoked various zfs actions that would enable and disable sharing. The performance testing was limited to NFS sharing. The following tests were performed on an 8 vCPU system with 128GB and a pool comprised of 4 50GB SSDs: Scale testing: - Share all filesystems in parallel -- zfs sharenfs=on <dataset> & - Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> & Functional testing: - share each filesystem serially -- zfs share -a - unshare each filesystem serially -- zfs unshare -a - reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool> For 'zfs sharenfs=on' scale testing we saw an average reduction in time of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time of 83.36%. Functional testing also shows a huge improvement: - zfs share -- 97.97% reduction in time - zfs unshare -- 96.47% reduction in time - zfs inhert -r sharenfs -- 99.01% reduction in time Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Bryant G. Ly <bryangly@gmail.com> Signed-off-by: George Wilson <gwilson@delphix.com> External-Issue: DLPX-68690 Closes #1603 Closes #7692 Closes #7943 Closes #10300
2020-07-13 16:19:18 +00:00
return (sa_validate_shareopts(options, proto_table[proto].p_name));
}
void
zfs_commit_proto(zfs_share_proto_t *proto)
{
zfs_share_proto_t *curr_proto;
for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
sa_commit_shares(proto_table[*curr_proto].p_name);
}
}
void
zfs_commit_nfs_shares(void)
{
zfs_commit_proto(nfs_only);
}
void
zfs_commit_smb_shares(void)
{
zfs_commit_proto(smb_only);
}
void
zfs_commit_all_shares(void)
{
zfs_commit_proto(share_all_proto);
}
void
zfs_commit_shares(const char *proto)
{
if (proto == NULL)
zfs_commit_proto(share_all_proto);
else if (strcmp(proto, "nfs") == 0)
zfs_commit_proto(nfs_only);
else if (strcmp(proto, "smb") == 0)
zfs_commit_proto(smb_only);
2008-11-20 20:01:55 +00:00
}
int
zfs_share_nfs(zfs_handle_t *zhp)
{
return (zfs_share_proto(zhp, nfs_only));
}
int
zfs_share_smb(zfs_handle_t *zhp)
{
return (zfs_share_proto(zhp, smb_only));
}
int
zfs_shareall(zfs_handle_t *zhp)
{
return (zfs_share_proto(zhp, share_all_proto));
}
/*
* Unshare the given filesystem.
*/
int
zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
zfs_share_proto_t *proto)
{
2009-01-15 21:59:39 +00:00
libzfs_handle_t *hdl = zhp->zfs_hdl;
struct mnttab entry;
2008-11-20 20:01:55 +00:00
char *mntpt = NULL;
/* check to see if need to unmount the filesystem */
if (mountpoint != NULL)
mntpt = zfs_strdup(hdl, mountpoint);
2008-11-20 20:01:55 +00:00
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
2009-01-15 21:59:39 +00:00
libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
2008-11-20 20:01:55 +00:00
zfs_share_proto_t *curr_proto;
if (mountpoint == NULL)
mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
for (curr_proto = proto; *curr_proto != PROTO_END;
curr_proto++) {
2008-11-20 20:01:55 +00:00
Remove dependency on sharetab file and refactor sharing logic == Motivation and Context The current implementation of 'sharenfs' and 'sharesmb' relies on the use of the sharetab file. The use of this file is os-specific and not required by linux or freebsd. Currently the code must maintain updates to this file which adds complexity and presents a significant performance impact when sharing many datasets. In addition, concurrently running 'zfs sharenfs' command results in missing entries in the sharetab file leading to unexpected failures. == Description This change removes the sharetab logic from the linux and freebsd implementation of 'sharenfs' and 'sharesmb'. It still preserves an os-specific library which contains the logic required for sharing NFS or SMB. The following entry points exist in the vastly simplified libshare library: - sa_enable_share -- shares a dataset but may not commit the change - sa_disable_share -- unshares a dataset but may not commit the change - sa_is_shared -- determine if a dataset is shared - sa_commit_share -- notify NFS/SMB subsystem to commit the shares - sa_validate_shareopts -- determine if sharing options are valid The sa_commit_share entry point is provided as a performance enhancement and is not required. The sa_enable_share/sa_disable_share may commit the share as part of the implementation. Libshare provides a framework for both NFS and SMB but some operating systems may not fully support these protocols or all features of the protocol. NFS Operation: For linux, libshare updates /etc/exports.d/zfs.exports to add and remove shares and then commits the changes by invoking 'exportfs -r'. This file, is automatically read by the kernel NFS implementation which makes for better integration with the NFS systemd service. For FreeBSD, libshare updates /etc/zfs/exports to add and remove shares and then commits the changes by sending a SIGHUP to mountd. SMB Operation: For linux, libshare adds and removes files in /var/lib/samba/usershares by calling the 'net' command directly. There is no need to commit the changes. FreeBSD does not support SMB. == Performance Results To test sharing performance we created a pool with an increasing number of datasets and invoked various zfs actions that would enable and disable sharing. The performance testing was limited to NFS sharing. The following tests were performed on an 8 vCPU system with 128GB and a pool comprised of 4 50GB SSDs: Scale testing: - Share all filesystems in parallel -- zfs sharenfs=on <dataset> & - Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> & Functional testing: - share each filesystem serially -- zfs share -a - unshare each filesystem serially -- zfs unshare -a - reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool> For 'zfs sharenfs=on' scale testing we saw an average reduction in time of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time of 83.36%. Functional testing also shows a huge improvement: - zfs share -- 97.97% reduction in time - zfs unshare -- 96.47% reduction in time - zfs inhert -r sharenfs -- 99.01% reduction in time Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Bryant G. Ly <bryangly@gmail.com> Signed-off-by: George Wilson <gwilson@delphix.com> External-Issue: DLPX-68690 Closes #1603 Closes #7692 Closes #7943 Closes #10300
2020-07-13 16:19:18 +00:00
if (is_shared(mntpt, *curr_proto)) {
if (unshare_one(hdl, zhp->zfs_name,
mntpt, *curr_proto) != 0) {
if (mntpt != NULL)
free(mntpt);
return (-1);
}
2008-11-20 20:01:55 +00:00
}
}
}
if (mntpt != NULL)
free(mntpt);
return (0);
}
int
zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
{
return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
}
int
zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
{
return (zfs_unshare_proto(zhp, mountpoint, smb_only));
}
/*
* Same as zfs_unmountall(), but for NFS and SMB unshares.
*/
static int
2008-11-20 20:01:55 +00:00
zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
{
prop_changelist_t *clp;
int ret;
clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
2008-11-20 20:01:55 +00:00
if (clp == NULL)
return (-1);
ret = changelist_unshare(clp, proto);
changelist_free(clp);
return (ret);
}
int
zfs_unshareall_nfs(zfs_handle_t *zhp)
{
return (zfs_unshareall_proto(zhp, nfs_only));
}
int
zfs_unshareall_smb(zfs_handle_t *zhp)
{
return (zfs_unshareall_proto(zhp, smb_only));
}
int
zfs_unshareall(zfs_handle_t *zhp)
{
return (zfs_unshareall_proto(zhp, share_all_proto));
}
int
zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
{
return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
}
int
zfs_unshareall_bytype(zfs_handle_t *zhp, const char *mountpoint,
const char *proto)
{
if (proto == NULL)
return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
if (strcmp(proto, "nfs") == 0)
return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
else if (strcmp(proto, "smb") == 0)
return (zfs_unshare_proto(zhp, mountpoint, smb_only));
else
return (1);
}
2008-11-20 20:01:55 +00:00
/*
* Remove the mountpoint associated with the current dataset, if necessary.
* We only remove the underlying directory if:
*
* - The mountpoint is not 'none' or 'legacy'
* - The mountpoint is non-empty
* - The mountpoint is the default or inherited
* - The 'zoned' property is set, or we're in a local zone
*
* Any other directories we leave alone.
*/
void
remove_mountpoint(zfs_handle_t *zhp)
{
char mountpoint[ZFS_MAXPROPLEN];
zprop_source_t source;
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
&source, 0))
2008-11-20 20:01:55 +00:00
return;
if (source == ZPROP_SRC_DEFAULT ||
source == ZPROP_SRC_INHERITED) {
/*
* Try to remove the directory, silently ignoring any errors.
* The filesystem may have since been removed or moved around,
* and this error isn't really useful to the administrator in
* any way.
*/
(void) rmdir(mountpoint);
}
}
/*
* Add the given zfs handle to the cb_handles array, dynamically reallocating
* the array if it is out of space.
*/
void
libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
{
if (cbp->cb_alloc == cbp->cb_used) {
size_t newsz;
zfs_handle_t **newhandles;
newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
newhandles = zfs_realloc(zhp->zfs_hdl,
cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
newsz * sizeof (zfs_handle_t *));
cbp->cb_handles = newhandles;
cbp->cb_alloc = newsz;
}
cbp->cb_handles[cbp->cb_used++] = zhp;
}
2008-11-20 20:01:55 +00:00
/*
* Recursive helper function used during file system enumeration
*/
2008-11-20 20:01:55 +00:00
static int
zfs_iter_cb(zfs_handle_t *zhp, void *data)
2008-11-20 20:01:55 +00:00
{
get_all_cb_t *cbp = data;
2008-11-20 20:01:55 +00:00
if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
2008-11-20 20:01:55 +00:00
zfs_close(zhp);
return (0);
}
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
zfs_close(zhp);
return (0);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 17:36:48 +00:00
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_UNAVAILABLE) {
zfs_close(zhp);
return (0);
}
OpenZFS 2605, 6980, 6902 2605 want to resume interrupted zfs send Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Richard Elling <Richard.Elling@RichardElling.com> Reviewed by: Xin Li <delphij@freebsd.org> Reviewed by: Arne Jansen <sensille@gmx.net> Approved by: Dan McDonald <danmcd@omniti.com> Ported-by: kernelOfTruth <kerneloftruth@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/2605 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/9c3fd12 6980 6902 causes zfs send to break due to 32-bit/64-bit struct mismatch Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6980 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ea4a67f Porting notes: - All rsend and snapshop tests enabled and updated for Linux. - Fix misuse of input argument in traverse_visitbp(). - Fix ISO C90 warnings and errors. - Fix gcc 'missing braces around initializer' in 'struct send_thread_arg to_arg =' warning. - Replace 4 argument fletcher_4_native() with 3 argument version, this change was made in OpenZFS 4185 which has not been ported. - Part of the sections for 'zfs receive' and 'zfs send' was rewritten and reordered to approximate upstream. - Fix mktree xattr creation, 'user.' prefix required. - Minor fixes to newly enabled test cases - Long holds for volumes allowed during receive for minor registration.
2016-01-06 21:22:48 +00:00
/*
* If this filesystem is inconsistent and has a receive resume
* token, we can not mount it.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
zfs_close(zhp);
return (0);
}
libzfs_add_handle(cbp, zhp);
if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
zfs_close(zhp);
return (-1);
2008-11-20 20:01:55 +00:00
}
return (0);
2008-11-20 20:01:55 +00:00
}
/*
* Sort comparator that compares two mountpoint paths. We sort these paths so
* that subdirectories immediately follow their parents. This means that we
* effectively treat the '/' character as the lowest value non-nul char.
* Since filesystems from non-global zones can have the same mountpoint
* as other filesystems, the comparator sorts global zone filesystems to
* the top of the list. This means that the global zone will traverse the
* filesystem list in the correct order and can stop when it sees the
* first zoned filesystem. In a non-global zone, only the delegated
* filesystems are seen.
*
* An example sorted list using this comparator would look like:
*
* /foo
* /foo/bar
* /foo/bar/baz
* /foo/baz
* /foo.bar
* /foo (NGZ1)
* /foo (NGZ2)
*
* The mounting code depends on this ordering to deterministically iterate
* over filesystems in order to spawn parallel mount tasks.
*/
static int
mountpoint_cmp(const void *arga, const void *argb)
2008-11-20 20:01:55 +00:00
{
zfs_handle_t *const *zap = arga;
zfs_handle_t *za = *zap;
zfs_handle_t *const *zbp = argb;
zfs_handle_t *zb = *zbp;
2008-11-20 20:01:55 +00:00
char mounta[MAXPATHLEN];
char mountb[MAXPATHLEN];
const char *a = mounta;
const char *b = mountb;
2008-11-20 20:01:55 +00:00
boolean_t gota, gotb;
uint64_t zoneda, zonedb;
zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
if (zoneda && !zonedb)
return (1);
if (!zoneda && zonedb)
return (-1);
2008-11-20 20:01:55 +00:00
gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
if (gota) {
verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
2008-11-20 20:01:55 +00:00
sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
}
gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
if (gotb) {
verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
2008-11-20 20:01:55 +00:00
sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
}
2008-11-20 20:01:55 +00:00
if (gota && gotb) {
while (*a != '\0' && (*a == *b)) {
a++;
b++;
}
if (*a == *b)
return (0);
if (*a == '\0')
return (-1);
if (*b == '\0')
return (1);
if (*a == '/')
return (-1);
if (*b == '/')
return (1);
return (*a < *b ? -1 : *a > *b);
}
2008-11-20 20:01:55 +00:00
if (gota)
return (-1);
if (gotb)
return (1);
/*
* If neither filesystem has a mountpoint, revert to sorting by
* dataset name.
*/
return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
2008-11-20 20:01:55 +00:00
}
/*
Fix race in parallel mount's thread dispatching algorithm Strategy of parallel mount is as follows. 1) Initial thread dispatching is to select sets of mount points that don't have dependencies on other sets, hence threads can/should run lock-less and shouldn't race with other threads for other sets. Each thread dispatched corresponds to top level directory which may or may not have datasets to be mounted on sub directories. 2) Subsequent recursive thread dispatching for each thread from 1) is to mount datasets for each set of mount points. The mount points within each set have dependencies (i.e. child directories), so child directories are processed only after parent directory completes. The problem is that the initial thread dispatching in zfs_foreach_mountpoint() can be multi-threaded when it needs to be single-threaded, and this puts threads under race condition. This race appeared as mount/unmount issues on ZoL for ZoL having different timing regarding mount(2) execution due to fork(2)/exec(2) of mount(8). `zfs unmount -a` which expects proper mount order can't unmount if the mounts were reordered by the race condition. There are currently two known patterns of input list `handles` in `zfs_foreach_mountpoint(..,handles,..)` which cause the race condition. 1) #8833 case where input is `/a /a /a/b` after sorting. The problem is that libzfs_path_contains() can't correctly handle an input list with two same top level directories. There is a race between two POSIX threads A and B, * ThreadA for "/a" for test1 and "/a/b" * ThreadB for "/a" for test0/a and in case of #8833, ThreadA won the race. Two threads were created because "/a" wasn't considered as `"/a" contains "/a"`. 2) #8450 case where input is `/ /var/data /var/data/test` after sorting. The problem is that libzfs_path_contains() can't correctly handle an input list containing "/". There is a race between two POSIX threads A and B, * ThreadA for "/" and "/var/data/test" * ThreadB for "/var/data" and in case of #8450, ThreadA won the race. Two threads were created because "/var/data" wasn't considered as `"/" contains "/var/data"`. In other words, if there is (at least one) "/" in the input list, the initial thread dispatching must be single-threaded since every directory is a child of "/", meaning they all directly or indirectly depend on "/". In both cases, the first non_descendant_idx() call fails to correctly determine "path1-contains-path2", and as a result the initial thread dispatching creates another thread when it needs to be single-threaded. Fix a conditional in libzfs_path_contains() to consider above two. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com> Closes #8450 Closes #8833 Closes #8878
2019-07-09 16:31:46 +00:00
* Return true if path2 is a child of path1 or path2 equals path1 or
* path1 is "/" (path2 is always a child of "/").
2008-11-20 20:01:55 +00:00
*/
static boolean_t
libzfs_path_contains(const char *path1, const char *path2)
2008-11-20 20:01:55 +00:00
{
Fix race in parallel mount's thread dispatching algorithm Strategy of parallel mount is as follows. 1) Initial thread dispatching is to select sets of mount points that don't have dependencies on other sets, hence threads can/should run lock-less and shouldn't race with other threads for other sets. Each thread dispatched corresponds to top level directory which may or may not have datasets to be mounted on sub directories. 2) Subsequent recursive thread dispatching for each thread from 1) is to mount datasets for each set of mount points. The mount points within each set have dependencies (i.e. child directories), so child directories are processed only after parent directory completes. The problem is that the initial thread dispatching in zfs_foreach_mountpoint() can be multi-threaded when it needs to be single-threaded, and this puts threads under race condition. This race appeared as mount/unmount issues on ZoL for ZoL having different timing regarding mount(2) execution due to fork(2)/exec(2) of mount(8). `zfs unmount -a` which expects proper mount order can't unmount if the mounts were reordered by the race condition. There are currently two known patterns of input list `handles` in `zfs_foreach_mountpoint(..,handles,..)` which cause the race condition. 1) #8833 case where input is `/a /a /a/b` after sorting. The problem is that libzfs_path_contains() can't correctly handle an input list with two same top level directories. There is a race between two POSIX threads A and B, * ThreadA for "/a" for test1 and "/a/b" * ThreadB for "/a" for test0/a and in case of #8833, ThreadA won the race. Two threads were created because "/a" wasn't considered as `"/a" contains "/a"`. 2) #8450 case where input is `/ /var/data /var/data/test` after sorting. The problem is that libzfs_path_contains() can't correctly handle an input list containing "/". There is a race between two POSIX threads A and B, * ThreadA for "/" and "/var/data/test" * ThreadB for "/var/data" and in case of #8450, ThreadA won the race. Two threads were created because "/var/data" wasn't considered as `"/" contains "/var/data"`. In other words, if there is (at least one) "/" in the input list, the initial thread dispatching must be single-threaded since every directory is a child of "/", meaning they all directly or indirectly depend on "/". In both cases, the first non_descendant_idx() call fails to correctly determine "path1-contains-path2", and as a result the initial thread dispatching creates another thread when it needs to be single-threaded. Fix a conditional in libzfs_path_contains() to consider above two. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com> Closes #8450 Closes #8833 Closes #8878
2019-07-09 16:31:46 +00:00
return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
(strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
}
/*
* Given a mountpoint specified by idx in the handles array, find the first
* non-descendent of that mountpoint and return its index. Descendant paths
* start with the parent's path. This function relies on the ordering
* enforced by mountpoint_cmp().
*/
static int
non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
{
char parent[ZFS_MAXPROPLEN];
char child[ZFS_MAXPROPLEN];
int i;
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
for (i = idx + 1; i < num_handles; i++) {
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
if (!libzfs_path_contains(parent, child))
break;
}
return (i);
}
typedef struct mnt_param {
libzfs_handle_t *mnt_hdl;
tpool_t *mnt_tp;
zfs_handle_t **mnt_zhps; /* filesystems to mount */
size_t mnt_num_handles;
int mnt_idx; /* Index of selected entry to mount */
zfs_iter_f mnt_func;
void *mnt_data;
} mnt_param_t;
/*
* Allocate and populate the parameter struct for mount function, and
* schedule mounting of the entry selected by idx.
*/
static void
zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
{
mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
2008-11-20 20:01:55 +00:00
mnt_param->mnt_hdl = hdl;
mnt_param->mnt_tp = tp;
mnt_param->mnt_zhps = handles;
mnt_param->mnt_num_handles = num_handles;
mnt_param->mnt_idx = idx;
mnt_param->mnt_func = func;
mnt_param->mnt_data = data;
(void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
}
/*
* This is the structure used to keep state of mounting or sharing operations
* during a call to zpool_enable_datasets().
*/
typedef struct mount_state {
2008-11-20 20:01:55 +00:00
/*
* ms_mntstatus is set to -1 if any mount fails. While multiple threads
* could update this variable concurrently, no synchronization is
* needed as it's only ever set to -1.
2008-11-20 20:01:55 +00:00
*/
int ms_mntstatus;
int ms_mntflags;
const char *ms_mntopts;
} mount_state_t;
static int
zfs_mount_one(zfs_handle_t *zhp, void *arg)
{
mount_state_t *ms = arg;
int ret = 0;
2008-11-20 20:01:55 +00:00
/*
* don't attempt to mount encrypted datasets with
* unloaded keys
2008-11-20 20:01:55 +00:00
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_UNAVAILABLE)
return (0);
if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
ret = ms->ms_mntstatus = -1;
return (ret);
}
static int
zfs_share_one(zfs_handle_t *zhp, void *arg)
{
mount_state_t *ms = arg;
int ret = 0;
if (zfs_share(zhp) != 0)
ret = ms->ms_mntstatus = -1;
return (ret);
}
/*
* Thread pool function to mount one file system. On completion, it finds and
* schedules its children to be mounted. This depends on the sorting done in
* zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
* each descending from the previous) will have no parallelism since we always
* have to wait for the parent to finish mounting before we can schedule
* its children.
*/
static void
zfs_mount_task(void *arg)
{
mnt_param_t *mp = arg;
int idx = mp->mnt_idx;
zfs_handle_t **handles = mp->mnt_zhps;
size_t num_handles = mp->mnt_num_handles;
char mountpoint[ZFS_MAXPROPLEN];
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
return;
2008-11-20 20:01:55 +00:00
/*
* We dispatch tasks to mount filesystems with mountpoints underneath
* this one. We do this by dispatching the next filesystem with a
* descendant mountpoint of the one we just mounted, then skip all of
* its descendants, dispatch the next descendant mountpoint, and so on.
* The non_descendant_idx() function skips over filesystems that are
* descendants of the filesystem we just dispatched.
2008-11-20 20:01:55 +00:00
*/
for (int i = idx + 1; i < num_handles;
i = non_descendant_idx(handles, num_handles, i)) {
char child[ZFS_MAXPROPLEN];
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
if (!libzfs_path_contains(mountpoint, child))
break; /* not a descendant, return */
zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
mp->mnt_func, mp->mnt_data, mp->mnt_tp);
}
free(mp);
}
2009-02-18 20:51:31 +00:00
/*
* Issue the func callback for each ZFS handle contained in the handles
* array. This function is used to mount all datasets, and so this function
* guarantees that filesystems for parent mountpoints are called before their
* children. As such, before issuing any callbacks, we first sort the array
* of handles by mountpoint.
*
* Callbacks are issued in one of two ways:
*
* 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
* environment variable is set, then we issue callbacks sequentially.
*
* 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
* environment variable is not set, then we use a tpool to dispatch threads
* to mount filesystems in parallel. This function dispatches tasks to mount
* the filesystems at the top-level mountpoints, and these tasks in turn
* are responsible for recursively mounting filesystems in their children
* mountpoints.
*/
void
zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
{
zoneid_t zoneid = getzoneid();
/*
* The ZFS_SERIAL_MOUNT environment variable is an undocumented
* variable that can be used as a convenience to do a/b comparison
* of serial vs. parallel mounting.
*/
boolean_t serial_mount = !parallel ||
(getenv("ZFS_SERIAL_MOUNT") != NULL);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 17:36:48 +00:00
/*
* Sort the datasets by mountpoint. See mountpoint_cmp for details
* of how these are sorted.
*/
qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
if (serial_mount) {
for (int i = 0; i < num_handles; i++) {
func(handles[i], data);
}
return;
2008-11-20 20:01:55 +00:00
}
/*
* Issue the callback function for each dataset using a parallel
* algorithm that uses a thread pool to manage threads.
*/
tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
/*
* There may be multiple "top level" mountpoints outside of the pool's
* root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
* these.
2008-11-20 20:01:55 +00:00
*/
for (int i = 0; i < num_handles;
i = non_descendant_idx(handles, num_handles, i)) {
/*
* Since the mountpoints have been sorted so that the zoned
* filesystems are at the end, a zoned filesystem seen from
* the global zone means that we're done.
*/
if (zoneid == GLOBAL_ZONEID &&
zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
break;
zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
tp);
2008-11-20 20:01:55 +00:00
}
tpool_wait(tp); /* wait for all scheduled mounts to complete */
tpool_destroy(tp);
}
/*
* Mount and share all datasets within the given pool. This assumes that no
* datasets within the pool are currently mounted.
*/
#pragma weak zpool_mount_datasets = zpool_enable_datasets
int
zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
{
get_all_cb_t cb = { 0 };
mount_state_t ms = { 0 };
zfs_handle_t *zfsp;
int ret = 0;
if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
ZFS_TYPE_DATASET)) == NULL)
goto out;
/*
* Gather all non-snapshot datasets within the pool. Start by adding
* the root filesystem for this pool to the list, and then iterate
* over all child filesystems.
*/
libzfs_add_handle(&cb, zfsp);
if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
goto out;
/*
* Mount all filesystems
*/
ms.ms_mntopts = mntopts;
ms.ms_mntflags = flags;
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
zfs_mount_one, &ms, B_TRUE);
if (ms.ms_mntstatus != 0)
ret = ms.ms_mntstatus;
/*
* Share all filesystems that need to be shared. This needs to be
* a separate pass because libshare is not mt-safe, and so we need
* to share serially.
*/
ms.ms_mntstatus = 0;
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
zfs_share_one, &ms, B_FALSE);
if (ms.ms_mntstatus != 0)
ret = ms.ms_mntstatus;
Remove dependency on sharetab file and refactor sharing logic == Motivation and Context The current implementation of 'sharenfs' and 'sharesmb' relies on the use of the sharetab file. The use of this file is os-specific and not required by linux or freebsd. Currently the code must maintain updates to this file which adds complexity and presents a significant performance impact when sharing many datasets. In addition, concurrently running 'zfs sharenfs' command results in missing entries in the sharetab file leading to unexpected failures. == Description This change removes the sharetab logic from the linux and freebsd implementation of 'sharenfs' and 'sharesmb'. It still preserves an os-specific library which contains the logic required for sharing NFS or SMB. The following entry points exist in the vastly simplified libshare library: - sa_enable_share -- shares a dataset but may not commit the change - sa_disable_share -- unshares a dataset but may not commit the change - sa_is_shared -- determine if a dataset is shared - sa_commit_share -- notify NFS/SMB subsystem to commit the shares - sa_validate_shareopts -- determine if sharing options are valid The sa_commit_share entry point is provided as a performance enhancement and is not required. The sa_enable_share/sa_disable_share may commit the share as part of the implementation. Libshare provides a framework for both NFS and SMB but some operating systems may not fully support these protocols or all features of the protocol. NFS Operation: For linux, libshare updates /etc/exports.d/zfs.exports to add and remove shares and then commits the changes by invoking 'exportfs -r'. This file, is automatically read by the kernel NFS implementation which makes for better integration with the NFS systemd service. For FreeBSD, libshare updates /etc/zfs/exports to add and remove shares and then commits the changes by sending a SIGHUP to mountd. SMB Operation: For linux, libshare adds and removes files in /var/lib/samba/usershares by calling the 'net' command directly. There is no need to commit the changes. FreeBSD does not support SMB. == Performance Results To test sharing performance we created a pool with an increasing number of datasets and invoked various zfs actions that would enable and disable sharing. The performance testing was limited to NFS sharing. The following tests were performed on an 8 vCPU system with 128GB and a pool comprised of 4 50GB SSDs: Scale testing: - Share all filesystems in parallel -- zfs sharenfs=on <dataset> & - Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> & Functional testing: - share each filesystem serially -- zfs share -a - unshare each filesystem serially -- zfs unshare -a - reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool> For 'zfs sharenfs=on' scale testing we saw an average reduction in time of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time of 83.36%. Functional testing also shows a huge improvement: - zfs share -- 97.97% reduction in time - zfs unshare -- 96.47% reduction in time - zfs inhert -r sharenfs -- 99.01% reduction in time Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Bryant G. Ly <bryangly@gmail.com> Signed-off-by: George Wilson <gwilson@delphix.com> External-Issue: DLPX-68690 Closes #1603 Closes #7692 Closes #7943 Closes #10300
2020-07-13 16:19:18 +00:00
else
zfs_commit_all_shares();
2008-11-20 20:01:55 +00:00
out:
for (int i = 0; i < cb.cb_used; i++)
zfs_close(cb.cb_handles[i]);
free(cb.cb_handles);
2008-11-20 20:01:55 +00:00
return (ret);
}
static int
mountpoint_compare(const void *a, const void *b)
{
const char *mounta = *((char **)a);
const char *mountb = *((char **)b);
return (strcmp(mountb, mounta));
}
/* alias for 2002/240 */
#pragma weak zpool_unmount_datasets = zpool_disable_datasets
2008-11-20 20:01:55 +00:00
/*
* Unshare and unmount all datasets within the given pool. We don't want to
* rely on traversing the DSL to discover the filesystems within the pool,
* because this may be expensive (if not all of them are mounted), and can fail
* arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts
* and gather all the filesystems that are currently mounted.
2008-11-20 20:01:55 +00:00
*/
int
zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
{
int used, alloc;
FILE *mnttab;
2008-11-20 20:01:55 +00:00
struct mnttab entry;
size_t namelen;
char **mountpoints = NULL;
zfs_handle_t **datasets = NULL;
libzfs_handle_t *hdl = zhp->zpool_hdl;
int i;
int ret = -1;
int flags = (force ? MS_FORCE : 0);
namelen = strlen(zhp->zpool_name);
if ((mnttab = fopen(MNTTAB, "re")) == NULL)
return (ENOENT);
2008-11-20 20:01:55 +00:00
used = alloc = 0;
while (getmntent(mnttab, &entry) == 0) {
2008-11-20 20:01:55 +00:00
/*
* Ignore non-ZFS entries.
*/
if (entry.mnt_fstype == NULL ||
strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
continue;
/*
* Ignore filesystems not within this pool.
*/
if (entry.mnt_mountp == NULL ||
strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
(entry.mnt_special[namelen] != '/' &&
entry.mnt_special[namelen] != '\0'))
continue;
/*
* At this point we've found a filesystem within our pool. Add
* it to our growing list.
*/
if (used == alloc) {
if (alloc == 0) {
if ((mountpoints = zfs_alloc(hdl,
8 * sizeof (void *))) == NULL)
goto out;
if ((datasets = zfs_alloc(hdl,
8 * sizeof (void *))) == NULL)
goto out;
alloc = 8;
} else {
void *ptr;
if ((ptr = zfs_realloc(hdl, mountpoints,
alloc * sizeof (void *),
alloc * 2 * sizeof (void *))) == NULL)
goto out;
mountpoints = ptr;
if ((ptr = zfs_realloc(hdl, datasets,
alloc * sizeof (void *),
alloc * 2 * sizeof (void *))) == NULL)
goto out;
datasets = ptr;
alloc *= 2;
}
}
if ((mountpoints[used] = zfs_strdup(hdl,
entry.mnt_mountp)) == NULL)
goto out;
/*
* This is allowed to fail, in case there is some I/O error. It
* is only used to determine if we need to remove the underlying
* mountpoint, so failure is not fatal.
*/
datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
used++;
}
/*
* At this point, we have the entire list of filesystems, so sort it by
* mountpoint.
*/
qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
/*
* Walk through and first unshare everything.
*/
for (i = 0; i < used; i++) {
zfs_share_proto_t *curr_proto;
for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
curr_proto++) {
Remove dependency on sharetab file and refactor sharing logic == Motivation and Context The current implementation of 'sharenfs' and 'sharesmb' relies on the use of the sharetab file. The use of this file is os-specific and not required by linux or freebsd. Currently the code must maintain updates to this file which adds complexity and presents a significant performance impact when sharing many datasets. In addition, concurrently running 'zfs sharenfs' command results in missing entries in the sharetab file leading to unexpected failures. == Description This change removes the sharetab logic from the linux and freebsd implementation of 'sharenfs' and 'sharesmb'. It still preserves an os-specific library which contains the logic required for sharing NFS or SMB. The following entry points exist in the vastly simplified libshare library: - sa_enable_share -- shares a dataset but may not commit the change - sa_disable_share -- unshares a dataset but may not commit the change - sa_is_shared -- determine if a dataset is shared - sa_commit_share -- notify NFS/SMB subsystem to commit the shares - sa_validate_shareopts -- determine if sharing options are valid The sa_commit_share entry point is provided as a performance enhancement and is not required. The sa_enable_share/sa_disable_share may commit the share as part of the implementation. Libshare provides a framework for both NFS and SMB but some operating systems may not fully support these protocols or all features of the protocol. NFS Operation: For linux, libshare updates /etc/exports.d/zfs.exports to add and remove shares and then commits the changes by invoking 'exportfs -r'. This file, is automatically read by the kernel NFS implementation which makes for better integration with the NFS systemd service. For FreeBSD, libshare updates /etc/zfs/exports to add and remove shares and then commits the changes by sending a SIGHUP to mountd. SMB Operation: For linux, libshare adds and removes files in /var/lib/samba/usershares by calling the 'net' command directly. There is no need to commit the changes. FreeBSD does not support SMB. == Performance Results To test sharing performance we created a pool with an increasing number of datasets and invoked various zfs actions that would enable and disable sharing. The performance testing was limited to NFS sharing. The following tests were performed on an 8 vCPU system with 128GB and a pool comprised of 4 50GB SSDs: Scale testing: - Share all filesystems in parallel -- zfs sharenfs=on <dataset> & - Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> & Functional testing: - share each filesystem serially -- zfs share -a - unshare each filesystem serially -- zfs unshare -a - reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool> For 'zfs sharenfs=on' scale testing we saw an average reduction in time of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time of 83.36%. Functional testing also shows a huge improvement: - zfs share -- 97.97% reduction in time - zfs unshare -- 96.47% reduction in time - zfs inhert -r sharenfs -- 99.01% reduction in time Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Bryant G. Ly <bryangly@gmail.com> Signed-off-by: George Wilson <gwilson@delphix.com> External-Issue: DLPX-68690 Closes #1603 Closes #7692 Closes #7943 Closes #10300
2020-07-13 16:19:18 +00:00
if (is_shared(mountpoints[i], *curr_proto) &&
2008-11-20 20:01:55 +00:00
unshare_one(hdl, mountpoints[i],
mountpoints[i], *curr_proto) != 0)
goto out;
}
}
Remove dependency on sharetab file and refactor sharing logic == Motivation and Context The current implementation of 'sharenfs' and 'sharesmb' relies on the use of the sharetab file. The use of this file is os-specific and not required by linux or freebsd. Currently the code must maintain updates to this file which adds complexity and presents a significant performance impact when sharing many datasets. In addition, concurrently running 'zfs sharenfs' command results in missing entries in the sharetab file leading to unexpected failures. == Description This change removes the sharetab logic from the linux and freebsd implementation of 'sharenfs' and 'sharesmb'. It still preserves an os-specific library which contains the logic required for sharing NFS or SMB. The following entry points exist in the vastly simplified libshare library: - sa_enable_share -- shares a dataset but may not commit the change - sa_disable_share -- unshares a dataset but may not commit the change - sa_is_shared -- determine if a dataset is shared - sa_commit_share -- notify NFS/SMB subsystem to commit the shares - sa_validate_shareopts -- determine if sharing options are valid The sa_commit_share entry point is provided as a performance enhancement and is not required. The sa_enable_share/sa_disable_share may commit the share as part of the implementation. Libshare provides a framework for both NFS and SMB but some operating systems may not fully support these protocols or all features of the protocol. NFS Operation: For linux, libshare updates /etc/exports.d/zfs.exports to add and remove shares and then commits the changes by invoking 'exportfs -r'. This file, is automatically read by the kernel NFS implementation which makes for better integration with the NFS systemd service. For FreeBSD, libshare updates /etc/zfs/exports to add and remove shares and then commits the changes by sending a SIGHUP to mountd. SMB Operation: For linux, libshare adds and removes files in /var/lib/samba/usershares by calling the 'net' command directly. There is no need to commit the changes. FreeBSD does not support SMB. == Performance Results To test sharing performance we created a pool with an increasing number of datasets and invoked various zfs actions that would enable and disable sharing. The performance testing was limited to NFS sharing. The following tests were performed on an 8 vCPU system with 128GB and a pool comprised of 4 50GB SSDs: Scale testing: - Share all filesystems in parallel -- zfs sharenfs=on <dataset> & - Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> & Functional testing: - share each filesystem serially -- zfs share -a - unshare each filesystem serially -- zfs unshare -a - reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool> For 'zfs sharenfs=on' scale testing we saw an average reduction in time of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time of 83.36%. Functional testing also shows a huge improvement: - zfs share -- 97.97% reduction in time - zfs unshare -- 96.47% reduction in time - zfs inhert -r sharenfs -- 99.01% reduction in time Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Bryant G. Ly <bryangly@gmail.com> Signed-off-by: George Wilson <gwilson@delphix.com> External-Issue: DLPX-68690 Closes #1603 Closes #7692 Closes #7943 Closes #10300
2020-07-13 16:19:18 +00:00
zfs_commit_all_shares();
2008-11-20 20:01:55 +00:00
/*
* Now unmount everything, removing the underlying directories as
* appropriate.
*/
for (i = 0; i < used; i++) {
if (unmount_one(hdl, mountpoints[i], flags) != 0)
goto out;
}
for (i = 0; i < used; i++) {
if (datasets[i])
remove_mountpoint(datasets[i]);
}
ret = 0;
out:
(void) fclose(mnttab);
2008-11-20 20:01:55 +00:00
for (i = 0; i < used; i++) {
if (datasets[i])
zfs_close(datasets[i]);
free(mountpoints[i]);
}
free(datasets);
free(mountpoints);
return (ret);
}