zfs/modules/spl/spl-mutex.c

269 lines
6.4 KiB
C
Raw Normal View History

#include <sys/mutex.h>
#ifdef DEBUG_SUBSYSTEM
#undef DEBUG_SUBSYSTEM
#endif
#define DEBUG_SUBSYSTEM S_MUTEX
/* Mutex implementation based on those found in Solaris. This means
* they the MUTEX_DEFAULT type is an adaptive mutex. When calling
* mutex_enter() your process will spin waiting for the lock if it's
* likely the lock will be free'd shortly. If it looks like the
* lock will be held for a longer time we schedule and sleep waiting
* for it. This determination is made by checking if the holder of
* the lock is currently running on cpu or sleeping waiting to be
* scheduled. If the holder is currently running it's likely the
* lock will be shortly dropped.
*
* XXX: This is basically a rough implementation to see if this
* helps our performance. If it does a more careful implementation
* should be done, perhaps in assembly.
*/
/* 0: Never spin when trying to aquire lock
* -1: Spin until aquired or holder yeilds without dropping lock
* 1-MAX_INT: Spin for N attempts before sleeping for lock
*/
int mutex_spin_max = 100;
#ifdef DEBUG_MUTEX
int mutex_stats[MUTEX_STATS_SIZE] = { 0 };
spinlock_t mutex_stats_lock;
struct list_head mutex_stats_list;
#endif
void
__spl_mutex_init(kmutex_t *mp, char *name, int type, void *ibc)
{
int flags = KM_SLEEP;
ASSERT(mp);
ASSERT(name);
ASSERT(ibc == NULL);
ASSERT(mp->km_magic != KM_MAGIC); /* Never double init */
mp->km_magic = KM_MAGIC;
mp->km_owner = NULL;
mp->km_name = NULL;
mp->km_name_size = strlen(name) + 1;
switch (type) {
case MUTEX_DEFAULT:
mp->km_type = MUTEX_ADAPTIVE;
break;
case MUTEX_SPIN:
case MUTEX_ADAPTIVE:
mp->km_type = type;
break;
default:
SBUG();
}
/* We may be called when there is a non-zero preempt_count or
* interrupts are disabled is which case we must not sleep.
*/
if (current_thread_info()->preempt_count || irqs_disabled())
flags = KM_NOSLEEP;
/* Semaphore kmem_alloc'ed to keep struct size down (<64b) */
mp->km_sem = kmem_alloc(sizeof(struct semaphore), flags);
if (mp->km_sem == NULL)
return;
mp->km_name = kmem_alloc(mp->km_name_size, flags);
if (mp->km_name == NULL) {
kmem_free(mp->km_sem, sizeof(struct semaphore));
return;
}
sema_init(mp->km_sem, 1);
strcpy(mp->km_name, name);
#ifdef DEBUG_MUTEX
mp->km_stats = kmem_zalloc(sizeof(int) * MUTEX_STATS_SIZE, flags);
if (mp->km_stats == NULL) {
kmem_free(mp->km_name, mp->km_name_size);
kmem_free(mp->km_sem, sizeof(struct semaphore));
return;
}
spin_lock(&mutex_stats_lock);
list_add_tail(&mp->km_list, &mutex_stats_list);
spin_unlock(&mutex_stats_lock);
#endif
}
EXPORT_SYMBOL(__spl_mutex_init);
void
__spl_mutex_destroy(kmutex_t *mp)
{
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
#ifdef DEBUG_MUTEX
spin_lock(&mutex_stats_lock);
list_del_init(&mp->km_list);
spin_unlock(&mutex_stats_lock);
kmem_free(mp->km_stats, sizeof(int) * MUTEX_STATS_SIZE);
#endif
kmem_free(mp->km_name, mp->km_name_size);
kmem_free(mp->km_sem, sizeof(struct semaphore));
memset(mp, KM_POISON, sizeof(*mp));
}
EXPORT_SYMBOL(__spl_mutex_destroy);
/* Return 1 if we acquired the mutex, else zero. */
int
__mutex_tryenter(kmutex_t *mp)
{
int rc;
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
MUTEX_STAT_INC(mutex_stats, MUTEX_TRYENTER_TOTAL);
MUTEX_STAT_INC(mp->km_stats, MUTEX_TRYENTER_TOTAL);
rc = down_trylock(mp->km_sem);
if (rc == 0) {
ASSERT(mp->km_owner == NULL);
mp->km_owner = current;
MUTEX_STAT_INC(mutex_stats, MUTEX_TRYENTER_NOT_HELD);
MUTEX_STAT_INC(mp->km_stats, MUTEX_TRYENTER_NOT_HELD);
}
RETURN(!rc);
}
EXPORT_SYMBOL(__mutex_tryenter);
static void
mutex_enter_adaptive(kmutex_t *mp)
{
struct task_struct *owner;
int count = 0;
/* Lock is not held so we expect to aquire the lock */
if ((owner = mp->km_owner) == NULL) {
down(mp->km_sem);
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_NOT_HELD);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_NOT_HELD);
} else {
/* The lock is held by a currently running task which
* we expect will drop the lock before leaving the
* head of the runqueue. So the ideal thing to do
* is spin until we aquire the lock and avoid a
* context switch. However it is also possible the
* task holding the lock yields the processor with
* out dropping lock. In which case, we know it's
* going to be a while so we stop spinning and go
* to sleep waiting for the lock to be available.
* This should strike the optimum balance between
* spinning and sleeping waiting for a lock.
*/
while (task_curr(owner) && (count <= mutex_spin_max)) {
if (down_trylock(mp->km_sem) == 0) {
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_SPIN);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_SPIN);
GOTO(out, count);
}
count++;
}
/* The lock is held by a sleeping task so it's going to
* cost us minimally one context switch. We might as
* well sleep and yield the processor to other tasks.
*/
down(mp->km_sem);
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_SLEEP);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_SLEEP);
}
out:
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_TOTAL);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_TOTAL);
}
void
__mutex_enter(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
switch (mp->km_type) {
case MUTEX_SPIN:
while (down_trylock(mp->km_sem));
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_SPIN);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_SPIN);
break;
case MUTEX_ADAPTIVE:
mutex_enter_adaptive(mp);
break;
}
ASSERT(mp->km_owner == NULL);
mp->km_owner = current;
EXIT;
}
EXPORT_SYMBOL(__mutex_enter);
void
__mutex_exit(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
ASSERT(mp->km_owner == current);
mp->km_owner = NULL;
up(mp->km_sem);
EXIT;
}
EXPORT_SYMBOL(__mutex_exit);
/* Return 1 if mutex is held by current process, else zero. */
int
__mutex_owned(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
RETURN(mp->km_owner == current);
}
EXPORT_SYMBOL(__mutex_owned);
/* Return owner if mutex is owned, else NULL. */
kthread_t *
__spl_mutex_owner(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
RETURN(mp->km_owner);
}
EXPORT_SYMBOL(__spl_mutex_owner);
int
spl_mutex_init(void)
{
ENTRY;
#ifdef DEBUG_MUTEX
spin_lock_init(&mutex_stats_lock);
INIT_LIST_HEAD(&mutex_stats_list);
#endif
RETURN(0);
}
void
spl_mutex_fini(void)
{
ENTRY;
#ifdef DEBUG_MUTEX
ASSERT(list_empty(&mutex_stats_list));
#endif
EXIT;
}