zfs/module/icp/algs/aes/aes_impl_aesni.c

124 lines
3.7 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#if defined(__x86_64) && defined(HAVE_AES)
#include <linux/simd_x86.h>
/* These functions are used to execute AES-NI instructions: */
extern int rijndael_key_setup_enc_intel(uint32_t rk[],
const uint32_t cipherKey[], uint64_t keyBits);
extern int rijndael_key_setup_dec_intel(uint32_t rk[],
const uint32_t cipherKey[], uint64_t keyBits);
extern void aes_encrypt_intel(const uint32_t rk[], int Nr,
const uint32_t pt[4], uint32_t ct[4]);
extern void aes_decrypt_intel(const uint32_t rk[], int Nr,
const uint32_t ct[4], uint32_t pt[4]);
#include <aes/aes_impl.h>
/*
* Expand the 32-bit AES cipher key array into the encryption and decryption
* key schedules.
*
* Parameters:
* key AES key schedule to be initialized
* keyarr32 User key
* keyBits AES key size (128, 192, or 256 bits)
*/
static void
aes_aesni_generate(aes_key_t *key, const uint32_t *keyarr32, int keybits)
{
kfpu_begin();
key->nr = rijndael_key_setup_enc_intel(&(key->encr_ks.ks32[0]),
keyarr32, keybits);
key->nr = rijndael_key_setup_dec_intel(&(key->decr_ks.ks32[0]),
keyarr32, keybits);
kfpu_end();
}
/*
* Encrypt one block of data. The block is assumed to be an array
* of four uint32_t values, so copy for alignment (and byte-order
* reversal for little endian systems might be necessary on the
* input and output byte streams.
* The size of the key schedule depends on the number of rounds
* (which can be computed from the size of the key), i.e. 4*(Nr + 1).
*
* Parameters:
* rk Key schedule, of aes_ks_t (60 32-bit integers)
* Nr Number of rounds
* pt Input block (plain text)
* ct Output block (crypto text). Can overlap with pt
*/
static void
aes_aesni_encrypt(const uint32_t rk[], int Nr, const uint32_t pt[4],
uint32_t ct[4])
{
kfpu_begin();
aes_encrypt_intel(rk, Nr, pt, ct);
kfpu_end();
}
/*
* Decrypt one block of data. The block is assumed to be an array
* of four uint32_t values, so copy for alignment (and byte-order
* reversal for little endian systems might be necessary on the
* input and output byte streams.
* The size of the key schedule depends on the number of rounds
* (which can be computed from the size of the key), i.e. 4*(Nr + 1).
*
* Parameters:
* rk Key schedule, of aes_ks_t (60 32-bit integers)
* Nr Number of rounds
* ct Input block (crypto text)
* pt Output block (plain text). Can overlap with pt
*/
static void
aes_aesni_decrypt(const uint32_t rk[], int Nr, const uint32_t ct[4],
uint32_t pt[4])
{
kfpu_begin();
aes_decrypt_intel(rk, Nr, ct, pt);
kfpu_end();
}
static boolean_t
aes_aesni_will_work(void)
{
return (zfs_aes_available());
}
const aes_impl_ops_t aes_aesni_impl = {
.generate = &aes_aesni_generate,
.encrypt = &aes_aesni_encrypt,
.decrypt = &aes_aesni_decrypt,
.is_supported = &aes_aesni_will_work,
.needs_byteswap = B_FALSE,
.name = "aesni"
};
#endif /* defined(__x86_64) && defined(HAVE_AES) */