zfs/module/zfs/rrwlock.c

268 lines
7.5 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
2009-08-18 18:43:27 +00:00
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
2008-11-20 20:01:55 +00:00
* Use is subject to license terms.
*/
Linux ZVOL implementation; kernel-side changes At last a useful user space interface for the Linux ZFS port arrives. With the addition of the ZVOL real ZFS based block devices are available and can be compared head to head with Linux's MD and LVM block drivers. The Linux ZVOL has not yet had any performance work done but from a user perspective it should be functionally complete and behave like any other Linux block device. The ZVOL has so far been tested using zconfig.sh on the following x86_64 based platforms: FC11, CHAOS4, RHEL5, RHEL6, and SLES11. However, more testing is required to ensure everything is working as designed. What follows in a somewhat detailed list of changes includes in this commit to make ZVOL's possible. A few other issues were addressed in the context of these changes which will also be mentioned. * Added module/zfs/zvol.c which is based off the original Solaris ZVOL implementation but rewritten to intergrate with the Linux block device APIs. The basic design remains the similar in Linux with the major change being request processing. Request processing is handled by registering a request function which the elevator calls once all request merges is finished and the elevator unplugs. This function is called under a spin lock and the request structure is passed to the block driver to be queued for IO. The elevator must be notified asyncronously once the request completes or fails with an error. This allows us the block driver a chance to handle many request concurrently. For the ZVOL we maintain a taskq with a service thread per core. As requests are delivered by the elevator each request is dispatched to the taskq. The task queue handles each request with a write or read helper function which basically copies the request data in to our out of the DMU object. Writes single completion as soon as the DMU has the data unless they are marked sync. Reads are all handled syncronously however the elevator will merge many small reads in to a large read before it submitting the request. * Cachine is worth specifically mentioning. Because both the Linux VFS and the ZFS ARC both want to fully manage the cache we unfortunately end up with two caches. This means our memory foot print is larger than otherwise expected, and it means we have an extra copy between the caches, but it does not impact correctness. All syncs are barrior requests I believe are handled correctly. Longer term there is lots of room for improvement here but it will require fairly extensive changes to either the Linux VFS and VM layer, or additional DMU interfaces to handle managing buffer not directly allocated by the ARC. * Added module/zfs/include/sys/blkdev.h which contains all the Linux compatibility foo which is required to handle changes in the Linux block APIs from 2.6.18 thru 2.6.31 based kernels. * The dmu_{read,write}_uio interfaces which don't make sense on Linux have been modified to dmu_{read,write}_req functions which consume the standard Linux IO request structure. Their function fundamentally remains the same so this happily worked out pretty cleanly. * The /dev/zfs character device is no longer created through the half implemented Solaris driver DDI interfaces. It is now simply created with it's own major number as a Linux misc device which greatly simplifies everything. It is only capable of handling ioctls() but this fits nicely because that's all it ever has to do. The ZVOL devices unlike in Solaris do not leverage the same major number as /dev/zfs but instead register their own major. Because only one major is allocated and space is reserved for 16 partitions per-device there is a limit of 16384 concurrent ZVOL devices. By using multiple majors like the scsi driver this limit could be addressed if it becomes a problem. * The {spa,zfs,zvol}_busy() functions have all be removed because they are not required on a Linux system. Under Linux the registered module exit function will not be called while the are still references to the module. Once the exit function is called however it must succeed or block, it may not fail so returning an error on module unload makes to sense under Linux. * With the addition of ZVOL support all the HAVE_ZVOL defines were removed for obvious reasons. However, the HAVE_ZPL defines have been relocated in to the linux-{kernel,user}-disk topic branches and must remain until the ZPL is implemented.
2009-11-20 19:06:59 +00:00
#ifdef HAVE_ZPL
2008-11-20 20:01:55 +00:00
#include <sys/refcount.h>
#include <sys/rrwlock.h>
/*
* This file contains the implementation of a re-entrant read
* reader/writer lock (aka "rrwlock").
*
* This is a normal reader/writer lock with the additional feature
* of allowing threads who have already obtained a read lock to
* re-enter another read lock (re-entrant read) - even if there are
* waiting writers.
*
* Callers who have not obtained a read lock give waiting writers priority.
*
* The rrwlock_t lock does not allow re-entrant writers, nor does it
* allow a re-entrant mix of reads and writes (that is, it does not
* allow a caller who has already obtained a read lock to be able to
* then grab a write lock without first dropping all read locks, and
* vice versa).
*
* The rrwlock_t uses tsd (thread specific data) to keep a list of
* nodes (rrw_node_t), where each node keeps track of which specific
* lock (rrw_node_t::rn_rrl) the thread has grabbed. Since re-entering
* should be rare, a thread that grabs multiple reads on the same rrwlock_t
* will store multiple rrw_node_ts of the same 'rrn_rrl'. Nodes on the
* tsd list can represent a different rrwlock_t. This allows a thread
* to enter multiple and unique rrwlock_ts for read locks at the same time.
*
* Since using tsd exposes some overhead, the rrwlock_t only needs to
* keep tsd data when writers are waiting. If no writers are waiting, then
* a reader just bumps the anonymous read count (rr_anon_rcount) - no tsd
* is needed. Once a writer attempts to grab the lock, readers then
* keep tsd data and bump the linked readers count (rr_linked_rcount).
*
* If there are waiting writers and there are anonymous readers, then a
* reader doesn't know if it is a re-entrant lock. But since it may be one,
* we allow the read to proceed (otherwise it could deadlock). Since once
* waiting writers are active, readers no longer bump the anonymous count,
* the anonymous readers will eventually flush themselves out. At this point,
* readers will be able to tell if they are a re-entrant lock (have a
* rrw_node_t entry for the lock) or not. If they are a re-entrant lock, then
* we must let the proceed. If they are not, then the reader blocks for the
* waiting writers. Hence, we do not starve writers.
*/
/* global key for TSD */
uint_t rrw_tsd_key;
typedef struct rrw_node {
struct rrw_node *rn_next;
rrwlock_t *rn_rrl;
} rrw_node_t;
static rrw_node_t *
rrn_find(rrwlock_t *rrl)
{
rrw_node_t *rn;
if (refcount_count(&rrl->rr_linked_rcount) == 0)
return (NULL);
for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
if (rn->rn_rrl == rrl)
return (rn);
}
return (NULL);
}
/*
* Add a node to the head of the singly linked list.
*/
static void
rrn_add(rrwlock_t *rrl)
{
rrw_node_t *rn;
rn = kmem_alloc(sizeof (*rn), KM_SLEEP);
rn->rn_rrl = rrl;
rn->rn_next = tsd_get(rrw_tsd_key);
VERIFY(tsd_set(rrw_tsd_key, rn) == 0);
}
/*
* If a node is found for 'rrl', then remove the node from this
* thread's list and return TRUE; otherwise return FALSE.
*/
static boolean_t
rrn_find_and_remove(rrwlock_t *rrl)
{
rrw_node_t *rn;
rrw_node_t *prev = NULL;
if (refcount_count(&rrl->rr_linked_rcount) == 0)
2009-08-18 18:43:27 +00:00
return (B_FALSE);
2008-11-20 20:01:55 +00:00
for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
if (rn->rn_rrl == rrl) {
if (prev)
prev->rn_next = rn->rn_next;
else
VERIFY(tsd_set(rrw_tsd_key, rn->rn_next) == 0);
kmem_free(rn, sizeof (*rn));
return (B_TRUE);
}
prev = rn;
}
return (B_FALSE);
}
void
rrw_init(rrwlock_t *rrl)
{
mutex_init(&rrl->rr_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&rrl->rr_cv, NULL, CV_DEFAULT, NULL);
rrl->rr_writer = NULL;
refcount_create(&rrl->rr_anon_rcount);
refcount_create(&rrl->rr_linked_rcount);
rrl->rr_writer_wanted = B_FALSE;
}
void
rrw_destroy(rrwlock_t *rrl)
{
mutex_destroy(&rrl->rr_lock);
cv_destroy(&rrl->rr_cv);
ASSERT(rrl->rr_writer == NULL);
refcount_destroy(&rrl->rr_anon_rcount);
refcount_destroy(&rrl->rr_linked_rcount);
}
static void
rrw_enter_read(rrwlock_t *rrl, void *tag)
{
mutex_enter(&rrl->rr_lock);
2009-08-18 18:43:27 +00:00
#if !defined(DEBUG) && defined(_KERNEL)
if (!rrl->rr_writer && !rrl->rr_writer_wanted) {
rrl->rr_anon_rcount.rc_count++;
mutex_exit(&rrl->rr_lock);
return;
}
DTRACE_PROBE(zfs__rrwfastpath__rdmiss);
#endif
2008-11-20 20:01:55 +00:00
ASSERT(rrl->rr_writer != curthread);
ASSERT(refcount_count(&rrl->rr_anon_rcount) >= 0);
while (rrl->rr_writer || (rrl->rr_writer_wanted &&
refcount_is_zero(&rrl->rr_anon_rcount) &&
rrn_find(rrl) == NULL))
cv_wait(&rrl->rr_cv, &rrl->rr_lock);
if (rrl->rr_writer_wanted) {
/* may or may not be a re-entrant enter */
rrn_add(rrl);
(void) refcount_add(&rrl->rr_linked_rcount, tag);
} else {
(void) refcount_add(&rrl->rr_anon_rcount, tag);
}
ASSERT(rrl->rr_writer == NULL);
mutex_exit(&rrl->rr_lock);
}
static void
rrw_enter_write(rrwlock_t *rrl)
{
mutex_enter(&rrl->rr_lock);
ASSERT(rrl->rr_writer != curthread);
while (refcount_count(&rrl->rr_anon_rcount) > 0 ||
refcount_count(&rrl->rr_linked_rcount) > 0 ||
rrl->rr_writer != NULL) {
rrl->rr_writer_wanted = B_TRUE;
cv_wait(&rrl->rr_cv, &rrl->rr_lock);
}
rrl->rr_writer_wanted = B_FALSE;
rrl->rr_writer = curthread;
mutex_exit(&rrl->rr_lock);
}
void
rrw_enter(rrwlock_t *rrl, krw_t rw, void *tag)
{
if (rw == RW_READER)
rrw_enter_read(rrl, tag);
else
rrw_enter_write(rrl);
}
void
rrw_exit(rrwlock_t *rrl, void *tag)
{
mutex_enter(&rrl->rr_lock);
2009-08-18 18:43:27 +00:00
#if !defined(DEBUG) && defined(_KERNEL)
if (!rrl->rr_writer && rrl->rr_linked_rcount.rc_count == 0) {
rrl->rr_anon_rcount.rc_count--;
if (rrl->rr_anon_rcount.rc_count == 0)
cv_broadcast(&rrl->rr_cv);
mutex_exit(&rrl->rr_lock);
return;
}
DTRACE_PROBE(zfs__rrwfastpath__exitmiss);
#endif
2008-11-20 20:01:55 +00:00
ASSERT(!refcount_is_zero(&rrl->rr_anon_rcount) ||
!refcount_is_zero(&rrl->rr_linked_rcount) ||
rrl->rr_writer != NULL);
if (rrl->rr_writer == NULL) {
2009-08-18 18:43:27 +00:00
int64_t count;
if (rrn_find_and_remove(rrl))
count = refcount_remove(&rrl->rr_linked_rcount, tag);
else
count = refcount_remove(&rrl->rr_anon_rcount, tag);
if (count == 0)
cv_broadcast(&rrl->rr_cv);
2008-11-20 20:01:55 +00:00
} else {
ASSERT(rrl->rr_writer == curthread);
ASSERT(refcount_is_zero(&rrl->rr_anon_rcount) &&
refcount_is_zero(&rrl->rr_linked_rcount));
rrl->rr_writer = NULL;
cv_broadcast(&rrl->rr_cv);
}
mutex_exit(&rrl->rr_lock);
}
boolean_t
rrw_held(rrwlock_t *rrl, krw_t rw)
{
boolean_t held;
mutex_enter(&rrl->rr_lock);
if (rw == RW_WRITER) {
held = (rrl->rr_writer == curthread);
} else {
held = (!refcount_is_zero(&rrl->rr_anon_rcount) ||
!refcount_is_zero(&rrl->rr_linked_rcount));
}
mutex_exit(&rrl->rr_lock);
return (held);
}
Linux ZVOL implementation; kernel-side changes At last a useful user space interface for the Linux ZFS port arrives. With the addition of the ZVOL real ZFS based block devices are available and can be compared head to head with Linux's MD and LVM block drivers. The Linux ZVOL has not yet had any performance work done but from a user perspective it should be functionally complete and behave like any other Linux block device. The ZVOL has so far been tested using zconfig.sh on the following x86_64 based platforms: FC11, CHAOS4, RHEL5, RHEL6, and SLES11. However, more testing is required to ensure everything is working as designed. What follows in a somewhat detailed list of changes includes in this commit to make ZVOL's possible. A few other issues were addressed in the context of these changes which will also be mentioned. * Added module/zfs/zvol.c which is based off the original Solaris ZVOL implementation but rewritten to intergrate with the Linux block device APIs. The basic design remains the similar in Linux with the major change being request processing. Request processing is handled by registering a request function which the elevator calls once all request merges is finished and the elevator unplugs. This function is called under a spin lock and the request structure is passed to the block driver to be queued for IO. The elevator must be notified asyncronously once the request completes or fails with an error. This allows us the block driver a chance to handle many request concurrently. For the ZVOL we maintain a taskq with a service thread per core. As requests are delivered by the elevator each request is dispatched to the taskq. The task queue handles each request with a write or read helper function which basically copies the request data in to our out of the DMU object. Writes single completion as soon as the DMU has the data unless they are marked sync. Reads are all handled syncronously however the elevator will merge many small reads in to a large read before it submitting the request. * Cachine is worth specifically mentioning. Because both the Linux VFS and the ZFS ARC both want to fully manage the cache we unfortunately end up with two caches. This means our memory foot print is larger than otherwise expected, and it means we have an extra copy between the caches, but it does not impact correctness. All syncs are barrior requests I believe are handled correctly. Longer term there is lots of room for improvement here but it will require fairly extensive changes to either the Linux VFS and VM layer, or additional DMU interfaces to handle managing buffer not directly allocated by the ARC. * Added module/zfs/include/sys/blkdev.h which contains all the Linux compatibility foo which is required to handle changes in the Linux block APIs from 2.6.18 thru 2.6.31 based kernels. * The dmu_{read,write}_uio interfaces which don't make sense on Linux have been modified to dmu_{read,write}_req functions which consume the standard Linux IO request structure. Their function fundamentally remains the same so this happily worked out pretty cleanly. * The /dev/zfs character device is no longer created through the half implemented Solaris driver DDI interfaces. It is now simply created with it's own major number as a Linux misc device which greatly simplifies everything. It is only capable of handling ioctls() but this fits nicely because that's all it ever has to do. The ZVOL devices unlike in Solaris do not leverage the same major number as /dev/zfs but instead register their own major. Because only one major is allocated and space is reserved for 16 partitions per-device there is a limit of 16384 concurrent ZVOL devices. By using multiple majors like the scsi driver this limit could be addressed if it becomes a problem. * The {spa,zfs,zvol}_busy() functions have all be removed because they are not required on a Linux system. Under Linux the registered module exit function will not be called while the are still references to the module. Once the exit function is called however it must succeed or block, it may not fail so returning an error on module unload makes to sense under Linux. * With the addition of ZVOL support all the HAVE_ZVOL defines were removed for obvious reasons. However, the HAVE_ZPL defines have been relocated in to the linux-{kernel,user}-disk topic branches and must remain until the ZPL is implemented.
2009-11-20 19:06:59 +00:00
#endif /* HAVE_ZPL */