zfs/include/sys/vdev.h

230 lines
8.7 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
2008-11-20 20:01:55 +00:00
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
2008-11-20 20:01:55 +00:00
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
Add support for boot environment data to be stored in the label Modern bootloaders leverage data stored in the root filesystem to enable some of their powerful features. GRUB specifically has a grubenv file which can store large amounts of configuration data that can be read and written at boot time and during normal operation. This allows sysadmins to configure useful features like automated failover after failed boot attempts. Unfortunately, due to the Copy-on-Write nature of ZFS, the standard behavior of these tools cannot handle writing to ZFS files safely at boot time. We need an alternative way to store data that allows the bootloader to make changes to the data. This work is very similar to work that was done on Illumos to enable similar functionality in the FreeBSD bootloader. This patch is different in that the data being stored is a raw grubenv file; this file can store arbitrary variables and values, and the scripting provided by grub is powerful enough that special structures are not required to implement advanced behavior. We repurpose the second padding area in each label to store the grubenv file, protected by an embedded checksum. We add two ioctls to get and set this data, and libzfs_core and libzfs functions to access them more easily. There are no direct command line interfaces to these functions; these will be added directly to the bootloader utilities. Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #10009
2020-05-07 16:36:33 +00:00
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright (c) 2017, Intel Corporation.
* Copyright (c) 2019, Datto Inc. All rights reserved.
2008-11-20 20:01:55 +00:00
*/
#ifndef _SYS_VDEV_H
#define _SYS_VDEV_H
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/dmu.h>
#include <sys/space_map.h>
Set aside a metaslab for ZIL blocks Mixing ZIL and normal allocations has several problems: 1. The ZIL allocations are allocated, written to disk, and then a few seconds later freed. This leaves behind holes (free segments) where the ZIL blocks used to be, which increases fragmentation, which negatively impacts performance. 2. When under moderate load, ZIL allocations are of 128KB. If the pool is fairly fragmented, there may not be many free chunks of that size. This causes ZFS to load more metaslabs to locate free segments of 128KB or more. The loading happens synchronously (from zil_commit()), and can take around a second even if the metaslab's spacemap is cached in the ARC. All concurrent synchronous operations on this filesystem must wait while the metaslab is loading. This can cause a significant performance impact. 3. If the pool is very fragmented, there may be zero free chunks of 128KB or more. In this case, the ZIL falls back to txg_wait_synced(), which has an enormous performance impact. These problems can be eliminated by using a dedicated log device ("slog"), even one with the same performance characteristics as the normal devices. This change sets aside one metaslab from each top-level vdev that is preferentially used for ZIL allocations (vdev_log_mg, spa_embedded_log_class). From an allocation perspective, this is similar to having a dedicated log device, and it eliminates the above-mentioned performance problems. Log (ZIL) blocks can be allocated from the following locations. Each one is tried in order until the allocation succeeds: 1. dedicated log vdevs, aka "slog" (spa_log_class) 2. embedded slog metaslabs (spa_embedded_log_class) 3. other metaslabs in normal vdevs (spa_normal_class) The space required for the embedded slog metaslabs is usually between 0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop" space that is not available for user data. On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity, and recordsize=8k, testing shows a ~50% performance increase on random 8k sync writes. On even more fragmented systems (which hit problem #3 above and call txg_wait_synced()), the performance improvement can be arbitrarily large (>100x). Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Don Brady <don.brady@delphix.com> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #11389
2021-01-21 23:12:54 +00:00
#include <sys/metaslab.h>
2008-11-20 20:01:55 +00:00
#include <sys/fs/zfs.h>
#ifdef __cplusplus
extern "C" {
#endif
2009-01-15 21:59:39 +00:00
typedef enum vdev_dtl_type {
DTL_MISSING, /* 0% replication: no copies of the data */
DTL_PARTIAL, /* less than 100% replication: some copies missing */
DTL_SCRUB, /* unable to fully repair during scrub/resilver */
DTL_OUTAGE, /* temporarily missing (used to attempt detach) */
DTL_TYPES
} vdev_dtl_type_t;
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-03 22:09:28 +00:00
extern int zfs_nocacheflush;
2008-11-20 20:01:55 +00:00
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 21:51:51 +00:00
typedef boolean_t vdev_open_children_func_t(vdev_t *vd);
extern void vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
__attribute__((format(printf, 2, 3)));
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 14:39:36 +00:00
extern void vdev_dbgmsg_print_tree(vdev_t *, int);
2008-11-20 20:01:55 +00:00
extern int vdev_open(vdev_t *);
extern void vdev_open_children(vdev_t *);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 21:51:51 +00:00
extern void vdev_open_children_subset(vdev_t *, vdev_open_children_func_t *);
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 14:39:36 +00:00
extern int vdev_validate(vdev_t *);
extern int vdev_copy_path_strict(vdev_t *, vdev_t *);
extern void vdev_copy_path_relaxed(vdev_t *, vdev_t *);
2008-11-20 20:01:55 +00:00
extern void vdev_close(vdev_t *);
extern int vdev_create(vdev_t *, uint64_t txg, boolean_t isreplace);
extern void vdev_reopen(vdev_t *);
extern int vdev_validate_aux(vdev_t *vd);
extern zio_t *vdev_probe(vdev_t *vd, zio_t *pio);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
extern boolean_t vdev_is_concrete(vdev_t *vd);
extern boolean_t vdev_is_bootable(vdev_t *vd);
2008-11-20 20:01:55 +00:00
extern vdev_t *vdev_lookup_top(spa_t *spa, uint64_t vdev);
extern vdev_t *vdev_lookup_by_guid(vdev_t *vd, uint64_t guid);
extern int vdev_count_leaves(spa_t *spa);
2009-01-15 21:59:39 +00:00
extern void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t d,
uint64_t txg, uint64_t size);
extern boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t d,
uint64_t txg, uint64_t size);
extern boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t d);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 21:51:51 +00:00
extern boolean_t vdev_default_need_resilver(vdev_t *vd, const dva_t *dva,
size_t psize, uint64_t phys_birth);
extern boolean_t vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva,
size_t psize, uint64_t phys_birth);
2008-11-20 20:01:55 +00:00
extern void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 18:05:50 +00:00
boolean_t scrub_done, boolean_t rebuild_done);
2009-01-15 21:59:39 +00:00
extern boolean_t vdev_dtl_required(vdev_t *vd);
extern boolean_t vdev_resilver_needed(vdev_t *vd,
uint64_t *minp, uint64_t *maxp);
extern void vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj,
dmu_tx_t *tx);
extern uint64_t vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx);
extern void vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
extern void vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx);
extern void vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset,
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
uint64_t size);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
extern void spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev,
uint64_t offset, uint64_t size, dmu_tx_t *tx);
Add subcommand to wait for background zfs activity to complete Currently the best way to wait for the completion of a long-running operation in a pool, like a scrub or device removal, is to poll 'zpool status' and parse its output, which is neither efficient nor convenient. This change adds a 'wait' subcommand to the zpool command. When invoked, 'zpool wait' will block until a specified type of background activity completes. Currently, this subcommand can wait for any of the following: - Scrubs or resilvers to complete - Devices to initialized - Devices to be replaced - Devices to be removed - Checkpoints to be discarded - Background freeing to complete For example, a scrub that is in progress could be waited for by running zpool wait -t scrub <pool> This also adds a -w flag to the attach, checkpoint, initialize, replace, remove, and scrub subcommands. When used, this flag makes the operations kicked off by these subcommands synchronous instead of asynchronous. This functionality is implemented using a new ioctl. The type of activity to wait for is provided as input to the ioctl, and the ioctl blocks until all activity of that type has completed. An ioctl was used over other methods of kernel-userspace communiction primarily for the sake of portability. Porting Notes: This is ported from Delphix OS change DLPX-44432. The following changes were made while porting: - Added ZoL-style ioctl input declaration. - Reorganized error handling in zpool_initialize in libzfs to integrate better with changes made for TRIM support. - Fixed check for whether a checkpoint discard is in progress. Previously it also waited if the pool had a checkpoint, instead of just if a checkpoint was being discarded. - Exposed zfs_initialize_chunk_size as a ZoL-style tunable. - Updated more existing tests to make use of new 'zpool wait' functionality, tests that don't exist in Delphix OS. - Used existing ZoL tunable zfs_scan_suspend_progress, together with zinject, in place of a new tunable zfs_scan_max_blks_per_txg. - Added support for a non-integral interval argument to zpool wait. Future work: ZoL has support for trimming devices, which Delphix OS does not. In the future, 'zpool wait' could be extended to add the ability to wait for trim operations to complete. Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: John Gallagher <john.gallagher@delphix.com> Closes #9162
2019-09-14 01:09:06 +00:00
extern boolean_t vdev_replace_in_progress(vdev_t *vdev);
2008-11-20 20:01:55 +00:00
extern void vdev_hold(vdev_t *);
extern void vdev_rele(vdev_t *);
2008-11-20 20:01:55 +00:00
extern int vdev_metaslab_init(vdev_t *vd, uint64_t txg);
extern void vdev_metaslab_fini(vdev_t *vd);
2009-07-02 22:44:48 +00:00
extern void vdev_metaslab_set_size(vdev_t *);
extern void vdev_expand(vdev_t *vd, uint64_t txg);
extern void vdev_split(vdev_t *vd);
extern void vdev_deadman(vdev_t *vd, const char *tag);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 21:51:51 +00:00
typedef void vdev_xlate_func_t(void *arg, range_seg64_t *physical_rs);
extern boolean_t vdev_xlate_is_empty(range_seg64_t *rs);
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 17:36:03 +00:00
extern void vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-13 21:51:51 +00:00
range_seg64_t *physical_rs, range_seg64_t *remain_rs);
extern void vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
vdev_xlate_func_t *func, void *arg);
Add -lhHpw options to "zpool iostat" for avg latency, histograms, & queues Update the zfs module to collect statistics on average latencies, queue sizes, and keep an internal histogram of all IO latencies. Along with this, update "zpool iostat" with some new options to print out the stats: -l: Include average IO latencies stats: total_wait disk_wait syncq_wait asyncq_wait scrub read write read write read write read write wait ----- ----- ----- ----- ----- ----- ----- ----- ----- - 41ms - 2ms - 46ms - 4ms - - 5ms - 1ms - 1us - 4ms - - 5ms - 1ms - 1us - 4ms - - - - - - - - - - - 49ms - 2ms - 47ms - - - - - - - - - - - - - 2ms - 1ms - - - 1ms - ----- ----- ----- ----- ----- ----- ----- ----- ----- 1ms 1ms 1ms 413us 16us 25us - 5ms - 1ms 1ms 1ms 413us 16us 25us - 5ms - 2ms 1ms 2ms 412us 26us 25us - 5ms - - 1ms - 413us - 25us - 5ms - - 1ms - 460us - 29us - 5ms - 196us 1ms 196us 370us 7us 23us - 5ms - ----- ----- ----- ----- ----- ----- ----- ----- ----- -w: Print out latency histograms: sdb total disk sync_queue async_queue latency read write read write read write read write scrub ------- ------ ------ ------ ------ ------ ------ ------ ------ ------ 1ns 0 0 0 0 0 0 0 0 0 ... 33us 0 0 0 0 0 0 0 0 0 66us 0 0 107 2486 2 788 12 12 0 131us 2 797 359 4499 10 558 184 184 6 262us 22 801 264 1563 10 286 287 287 24 524us 87 575 71 52086 15 1063 136 136 92 1ms 152 1190 5 41292 4 1693 252 252 141 2ms 245 2018 0 50007 0 2322 371 371 220 4ms 189 7455 22 162957 0 3912 6726 6726 199 8ms 108 9461 0 102320 0 5775 2526 2526 86 17ms 23 11287 0 37142 0 8043 1813 1813 19 34ms 0 14725 0 24015 0 11732 3071 3071 0 67ms 0 23597 0 7914 0 18113 5025 5025 0 134ms 0 33798 0 254 0 25755 7326 7326 0 268ms 0 51780 0 12 0 41593 10002 10002 0 537ms 0 77808 0 0 0 64255 13120 13120 0 1s 0 105281 0 0 0 83805 20841 20841 0 2s 0 88248 0 0 0 73772 14006 14006 0 4s 0 47266 0 0 0 29783 17176 17176 0 9s 0 10460 0 0 0 4130 6295 6295 0 17s 0 0 0 0 0 0 0 0 0 34s 0 0 0 0 0 0 0 0 0 69s 0 0 0 0 0 0 0 0 0 137s 0 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------------- -h: Help -H: Scripted mode. Do not display headers, and separate fields by a single tab instead of arbitrary space. -q: Include current number of entries in sync & async read/write queues, and scrub queue: syncq_read syncq_write asyncq_read asyncq_write scrubq_read pend activ pend activ pend activ pend activ pend activ ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 0 0 0 0 78 29 0 0 0 0 0 0 0 0 78 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 0 0 227 394 0 19 0 0 0 0 0 0 227 394 0 19 0 0 0 0 0 0 108 98 0 19 0 0 0 0 0 0 19 98 0 0 0 0 0 0 0 0 78 98 0 0 0 0 0 0 0 0 19 88 0 0 0 0 0 0 ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -p: Display numbers in parseable (exact) values. Also, update iostat syntax to allow the user to specify specific vdevs to show statistics for. The three options for choosing pools/vdevs are: Display a list of pools: zpool iostat ... [pool ...] Display a list of vdevs from a specific pool: zpool iostat ... [pool vdev ...] Display a list of vdevs from any pools: zpool iostat ... [vdev ...] Lastly, allow zpool command "interval" value to be floating point: zpool iostat -v 0.5 Signed-off-by: Tony Hutter <hutter2@llnl.gov Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4433
2016-02-29 18:05:23 +00:00
extern void vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx);
Set aside a metaslab for ZIL blocks Mixing ZIL and normal allocations has several problems: 1. The ZIL allocations are allocated, written to disk, and then a few seconds later freed. This leaves behind holes (free segments) where the ZIL blocks used to be, which increases fragmentation, which negatively impacts performance. 2. When under moderate load, ZIL allocations are of 128KB. If the pool is fairly fragmented, there may not be many free chunks of that size. This causes ZFS to load more metaslabs to locate free segments of 128KB or more. The loading happens synchronously (from zil_commit()), and can take around a second even if the metaslab's spacemap is cached in the ARC. All concurrent synchronous operations on this filesystem must wait while the metaslab is loading. This can cause a significant performance impact. 3. If the pool is very fragmented, there may be zero free chunks of 128KB or more. In this case, the ZIL falls back to txg_wait_synced(), which has an enormous performance impact. These problems can be eliminated by using a dedicated log device ("slog"), even one with the same performance characteristics as the normal devices. This change sets aside one metaslab from each top-level vdev that is preferentially used for ZIL allocations (vdev_log_mg, spa_embedded_log_class). From an allocation perspective, this is similar to having a dedicated log device, and it eliminates the above-mentioned performance problems. Log (ZIL) blocks can be allocated from the following locations. Each one is tried in order until the allocation succeeds: 1. dedicated log vdevs, aka "slog" (spa_log_class) 2. embedded slog metaslabs (spa_embedded_log_class) 3. other metaslabs in normal vdevs (spa_normal_class) The space required for the embedded slog metaslabs is usually between 0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop" space that is not available for user data. On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity, and recordsize=8k, testing shows a ~50% performance increase on random 8k sync writes. On even more fragmented systems (which hit problem #3 above and call txg_wait_synced()), the performance improvement can be arbitrarily large (>100x). Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Don Brady <don.brady@delphix.com> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #11389
2021-01-21 23:12:54 +00:00
extern metaslab_group_t *vdev_get_mg(vdev_t *vd, metaslab_class_t *mc);
2008-11-20 20:01:55 +00:00
extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs);
extern void vdev_clear_stats(vdev_t *vd);
extern void vdev_stat_update(zio_t *zio, uint64_t psize);
extern void vdev_scan_stat_init(vdev_t *vd);
2008-11-20 20:01:55 +00:00
extern void vdev_propagate_state(vdev_t *vd);
extern void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state,
vdev_aux_t aux);
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 14:39:36 +00:00
extern boolean_t vdev_children_are_offline(vdev_t *vd);
2008-11-20 20:01:55 +00:00
extern void vdev_space_update(vdev_t *vd,
int64_t alloc_delta, int64_t defer_delta, int64_t space_delta);
2008-11-20 20:01:55 +00:00
extern int64_t vdev_deflated_space(vdev_t *vd, int64_t space);
2008-11-20 20:01:55 +00:00
extern uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize);
/*
* Return the amount of space allocated for a gang block header.
*/
static inline uint64_t
vdev_gang_header_asize(vdev_t *vd)
{
return (vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE));
}
extern int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux);
extern int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux);
2008-11-20 20:01:55 +00:00
extern int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
vdev_state_t *);
extern int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags);
extern void vdev_clear(spa_t *spa, vdev_t *vd);
2008-11-20 20:01:55 +00:00
extern boolean_t vdev_is_dead(vdev_t *vd);
extern boolean_t vdev_readable(vdev_t *vd);
extern boolean_t vdev_writeable(vdev_t *vd);
extern boolean_t vdev_allocatable(vdev_t *vd);
extern boolean_t vdev_accessible(vdev_t *vd, zio_t *zio);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
extern boolean_t vdev_is_spacemap_addressable(vdev_t *vd);
2008-11-20 20:01:55 +00:00
extern void vdev_cache_init(vdev_t *vd);
extern void vdev_cache_fini(vdev_t *vd);
extern boolean_t vdev_cache_read(zio_t *zio);
2008-11-20 20:01:55 +00:00
extern void vdev_cache_write(zio_t *zio);
extern void vdev_cache_purge(vdev_t *vd);
extern void vdev_queue_init(vdev_t *vd);
extern void vdev_queue_fini(vdev_t *vd);
extern zio_t *vdev_queue_io(zio_t *zio);
extern void vdev_queue_io_done(zio_t *zio);
extern void vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority);
2008-11-20 20:01:55 +00:00
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 01:47:22 +00:00
extern int vdev_queue_length(vdev_t *vd);
extern uint64_t vdev_queue_last_offset(vdev_t *vd);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 01:47:22 +00:00
2008-11-20 20:01:55 +00:00
extern void vdev_config_dirty(vdev_t *vd);
extern void vdev_config_clean(vdev_t *vd);
extern int vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg);
2008-11-20 20:01:55 +00:00
extern void vdev_state_dirty(vdev_t *vd);
extern void vdev_state_clean(vdev_t *vd);
extern void vdev_defer_resilver(vdev_t *vd);
extern boolean_t vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx);
typedef enum vdev_config_flag {
VDEV_CONFIG_SPARE = 1 << 0,
VDEV_CONFIG_L2CACHE = 1 << 1,
VDEV_CONFIG_REMOVING = 1 << 2,
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 14:39:36 +00:00
VDEV_CONFIG_MOS = 1 << 3,
VDEV_CONFIG_MISSING = 1 << 4
} vdev_config_flag_t;
extern void vdev_top_config_generate(spa_t *spa, nvlist_t *config);
2008-11-20 20:01:55 +00:00
extern nvlist_t *vdev_config_generate(spa_t *spa, vdev_t *vd,
boolean_t getstats, vdev_config_flag_t flags);
2008-11-20 20:01:55 +00:00
/*
* Label routines
*/
struct uberblock;
extern uint64_t vdev_label_offset(uint64_t psize, int l, uint64_t offset);
extern int vdev_label_number(uint64_t psise, uint64_t offset);
extern nvlist_t *vdev_label_read_config(vdev_t *vd, uint64_t txg);
extern void vdev_uberblock_load(vdev_t *, struct uberblock *, nvlist_t **);
Add -lhHpw options to "zpool iostat" for avg latency, histograms, & queues Update the zfs module to collect statistics on average latencies, queue sizes, and keep an internal histogram of all IO latencies. Along with this, update "zpool iostat" with some new options to print out the stats: -l: Include average IO latencies stats: total_wait disk_wait syncq_wait asyncq_wait scrub read write read write read write read write wait ----- ----- ----- ----- ----- ----- ----- ----- ----- - 41ms - 2ms - 46ms - 4ms - - 5ms - 1ms - 1us - 4ms - - 5ms - 1ms - 1us - 4ms - - - - - - - - - - - 49ms - 2ms - 47ms - - - - - - - - - - - - - 2ms - 1ms - - - 1ms - ----- ----- ----- ----- ----- ----- ----- ----- ----- 1ms 1ms 1ms 413us 16us 25us - 5ms - 1ms 1ms 1ms 413us 16us 25us - 5ms - 2ms 1ms 2ms 412us 26us 25us - 5ms - - 1ms - 413us - 25us - 5ms - - 1ms - 460us - 29us - 5ms - 196us 1ms 196us 370us 7us 23us - 5ms - ----- ----- ----- ----- ----- ----- ----- ----- ----- -w: Print out latency histograms: sdb total disk sync_queue async_queue latency read write read write read write read write scrub ------- ------ ------ ------ ------ ------ ------ ------ ------ ------ 1ns 0 0 0 0 0 0 0 0 0 ... 33us 0 0 0 0 0 0 0 0 0 66us 0 0 107 2486 2 788 12 12 0 131us 2 797 359 4499 10 558 184 184 6 262us 22 801 264 1563 10 286 287 287 24 524us 87 575 71 52086 15 1063 136 136 92 1ms 152 1190 5 41292 4 1693 252 252 141 2ms 245 2018 0 50007 0 2322 371 371 220 4ms 189 7455 22 162957 0 3912 6726 6726 199 8ms 108 9461 0 102320 0 5775 2526 2526 86 17ms 23 11287 0 37142 0 8043 1813 1813 19 34ms 0 14725 0 24015 0 11732 3071 3071 0 67ms 0 23597 0 7914 0 18113 5025 5025 0 134ms 0 33798 0 254 0 25755 7326 7326 0 268ms 0 51780 0 12 0 41593 10002 10002 0 537ms 0 77808 0 0 0 64255 13120 13120 0 1s 0 105281 0 0 0 83805 20841 20841 0 2s 0 88248 0 0 0 73772 14006 14006 0 4s 0 47266 0 0 0 29783 17176 17176 0 9s 0 10460 0 0 0 4130 6295 6295 0 17s 0 0 0 0 0 0 0 0 0 34s 0 0 0 0 0 0 0 0 0 69s 0 0 0 0 0 0 0 0 0 137s 0 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------------- -h: Help -H: Scripted mode. Do not display headers, and separate fields by a single tab instead of arbitrary space. -q: Include current number of entries in sync & async read/write queues, and scrub queue: syncq_read syncq_write asyncq_read asyncq_write scrubq_read pend activ pend activ pend activ pend activ pend activ ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 0 0 0 0 78 29 0 0 0 0 0 0 0 0 78 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 0 0 227 394 0 19 0 0 0 0 0 0 227 394 0 19 0 0 0 0 0 0 108 98 0 19 0 0 0 0 0 0 19 98 0 0 0 0 0 0 0 0 78 98 0 0 0 0 0 0 0 0 19 88 0 0 0 0 0 0 ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -p: Display numbers in parseable (exact) values. Also, update iostat syntax to allow the user to specify specific vdevs to show statistics for. The three options for choosing pools/vdevs are: Display a list of pools: zpool iostat ... [pool ...] Display a list of vdevs from a specific pool: zpool iostat ... [pool vdev ...] Display a list of vdevs from any pools: zpool iostat ... [vdev ...] Lastly, allow zpool command "interval" value to be floating point: zpool iostat -v 0.5 Signed-off-by: Tony Hutter <hutter2@llnl.gov Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4433
2016-02-29 18:05:23 +00:00
extern void vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
extern void vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t
offset, uint64_t size, zio_done_func_t *done, void *priv, int flags);
Add support for boot environment data to be stored in the label Modern bootloaders leverage data stored in the root filesystem to enable some of their powerful features. GRUB specifically has a grubenv file which can store large amounts of configuration data that can be read and written at boot time and during normal operation. This allows sysadmins to configure useful features like automated failover after failed boot attempts. Unfortunately, due to the Copy-on-Write nature of ZFS, the standard behavior of these tools cannot handle writing to ZFS files safely at boot time. We need an alternative way to store data that allows the bootloader to make changes to the data. This work is very similar to work that was done on Illumos to enable similar functionality in the FreeBSD bootloader. This patch is different in that the data being stored is a raw grubenv file; this file can store arbitrary variables and values, and the scripting provided by grub is powerful enough that special structures are not required to implement advanced behavior. We repurpose the second padding area in each label to store the grubenv file, protected by an embedded checksum. We add two ioctls to get and set this data, and libzfs_core and libzfs functions to access them more easily. There are no direct command line interfaces to these functions; these will be added directly to the bootloader utilities. Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #10009
2020-05-07 16:36:33 +00:00
extern int vdev_label_read_bootenv(vdev_t *, nvlist_t *);
extern int vdev_label_write_bootenv(vdev_t *, nvlist_t *);
2008-11-20 20:01:55 +00:00
typedef enum {
VDEV_LABEL_CREATE, /* create/add a new device */
VDEV_LABEL_REPLACE, /* replace an existing device */
VDEV_LABEL_SPARE, /* add a new hot spare */
VDEV_LABEL_REMOVE, /* remove an existing device */
VDEV_LABEL_L2CACHE, /* add an L2ARC cache device */
VDEV_LABEL_SPLIT /* generating new label for split-off dev */
2008-11-20 20:01:55 +00:00
} vdev_labeltype_t;
extern int vdev_label_init(vdev_t *vd, uint64_t txg, vdev_labeltype_t reason);
extern int vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl);
extern int vdev_prop_get(vdev_t *vd, nvlist_t *nvprops, nvlist_t *outnvl);
2008-11-20 20:01:55 +00:00
#ifdef __cplusplus
}
#endif
#endif /* _SYS_VDEV_H */