zfs/module/icp/core/kcf_mech_tabs.c

785 lines
22 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <sys/crypto/impl.h>
#include <sys/modhash.h>
/* Cryptographic mechanisms tables and their access functions */
/*
* Internal numbers assigned to mechanisms are coded as follows:
*
* +----------------+----------------+
* | mech. class | mech. index |
* <--- 32-bits --->+<--- 32-bits --->
*
* the mech_class identifies the table the mechanism belongs to.
* mech_index is the index for that mechanism in the table.
* A mechanism belongs to exactly 1 table.
* The tables are:
* . digest_mechs_tab[] for the msg digest mechs.
* . cipher_mechs_tab[] for encrypt/decrypt and wrap/unwrap mechs.
* . mac_mechs_tab[] for MAC mechs.
* . sign_mechs_tab[] for sign & verify mechs.
* . keyops_mechs_tab[] for key/key pair generation, and key derivation.
* . misc_mechs_tab[] for mechs that don't belong to any of the above.
*
* There are no holes in the tables.
*/
/*
* Locking conventions:
* --------------------
* A global mutex, kcf_mech_tabs_lock, serializes writes to the
* mechanism table via kcf_create_mech_entry().
*
* A mutex is associated with every entry of the tables.
* The mutex is acquired whenever the entry is accessed for
* 1) retrieving the mech_id (comparing the mech name)
* 2) finding a provider for an xxx_init() or atomic operation.
* 3) altering the mechs entry to add or remove a provider.
*
* In 2), after a provider is chosen, its prov_desc is held and the
* entry's mutex must be dropped. The provider's working function (SPI) is
* called outside the mech_entry's mutex.
*
* The number of providers for a particular mechanism is not expected to be
* long enough to justify the cost of using rwlocks, so the per-mechanism
* entry mutex won't be very *hot*.
*
* When both kcf_mech_tabs_lock and a mech_entry mutex need to be held,
* kcf_mech_tabs_lock must always be acquired first.
*
*/
/* Mechanisms tables */
/* RFE 4687834 Will deal with the extensibility of these tables later */
static kcf_mech_entry_t kcf_digest_mechs_tab[KCF_MAXDIGEST];
static kcf_mech_entry_t kcf_cipher_mechs_tab[KCF_MAXCIPHER];
static kcf_mech_entry_t kcf_mac_mechs_tab[KCF_MAXMAC];
static kcf_mech_entry_t kcf_sign_mechs_tab[KCF_MAXSIGN];
static kcf_mech_entry_t kcf_keyops_mechs_tab[KCF_MAXKEYOPS];
static kcf_mech_entry_t kcf_misc_mechs_tab[KCF_MAXMISC];
const kcf_mech_entry_tab_t kcf_mech_tabs_tab[KCF_LAST_OPSCLASS + 1] = {
{0, NULL}, /* No class zero */
{KCF_MAXDIGEST, kcf_digest_mechs_tab},
{KCF_MAXCIPHER, kcf_cipher_mechs_tab},
{KCF_MAXMAC, kcf_mac_mechs_tab},
{KCF_MAXSIGN, kcf_sign_mechs_tab},
{KCF_MAXKEYOPS, kcf_keyops_mechs_tab},
{KCF_MAXMISC, kcf_misc_mechs_tab}
};
/*
* Per-algorithm internal thresholds for the minimum input size of before
* offloading to hardware provider.
* Dispatching a crypto operation to a hardware provider entails paying the
* cost of an additional context switch. Measurements with Sun Accelerator 4000
* shows that 512-byte jobs or smaller are better handled in software.
* There is room for refinement here.
*
*/
static const int kcf_md5_threshold = 512;
static const int kcf_sha1_threshold = 512;
static const int kcf_des_threshold = 512;
static const int kcf_des3_threshold = 512;
static const int kcf_aes_threshold = 512;
static const int kcf_bf_threshold = 512;
static const int kcf_rc4_threshold = 512;
static kmutex_t kcf_mech_tabs_lock;
static uint32_t kcf_gen_swprov = 0;
static const int kcf_mech_hash_size = 256;
static mod_hash_t *kcf_mech_hash; /* mech name to id hash */
static crypto_mech_type_t
kcf_mech_hash_find(const char *mechname)
{
mod_hash_val_t hv;
crypto_mech_type_t mt;
mt = CRYPTO_MECH_INVALID;
if (mod_hash_find(kcf_mech_hash, (mod_hash_key_t)mechname, &hv) == 0) {
mt = *(crypto_mech_type_t *)hv;
ASSERT(mt != CRYPTO_MECH_INVALID);
}
return (mt);
}
void
kcf_destroy_mech_tabs(void)
{
int i, max;
kcf_ops_class_t class;
kcf_mech_entry_t *me_tab;
if (kcf_mech_hash)
mod_hash_destroy_hash(kcf_mech_hash);
mutex_destroy(&kcf_mech_tabs_lock);
for (class = KCF_FIRST_OPSCLASS; class <= KCF_LAST_OPSCLASS; class++) {
max = kcf_mech_tabs_tab[class].met_size;
me_tab = kcf_mech_tabs_tab[class].met_tab;
for (i = 0; i < max; i++)
mutex_destroy(&(me_tab[i].me_mutex));
}
}
/*
* kcf_init_mech_tabs()
*
* Called by the misc/kcf's _init() routine to initialize the tables
* of mech_entry's.
*/
void
kcf_init_mech_tabs(void)
{
kcf_ops_class_t class;
kcf_mech_entry_t *me_tab;
/* Initializes the mutex locks. */
mutex_init(&kcf_mech_tabs_lock, NULL, MUTEX_DEFAULT, NULL);
/* Then the pre-defined mechanism entries */
/* Two digests */
(void) strncpy(kcf_digest_mechs_tab[0].me_name, SUN_CKM_MD5,
CRYPTO_MAX_MECH_NAME);
kcf_digest_mechs_tab[0].me_threshold = kcf_md5_threshold;
(void) strncpy(kcf_digest_mechs_tab[1].me_name, SUN_CKM_SHA1,
CRYPTO_MAX_MECH_NAME);
kcf_digest_mechs_tab[1].me_threshold = kcf_sha1_threshold;
/* The symmetric ciphers in various modes */
(void) strncpy(kcf_cipher_mechs_tab[0].me_name, SUN_CKM_DES_CBC,
CRYPTO_MAX_MECH_NAME);
kcf_cipher_mechs_tab[0].me_threshold = kcf_des_threshold;
(void) strncpy(kcf_cipher_mechs_tab[1].me_name, SUN_CKM_DES3_CBC,
CRYPTO_MAX_MECH_NAME);
kcf_cipher_mechs_tab[1].me_threshold = kcf_des3_threshold;
(void) strncpy(kcf_cipher_mechs_tab[2].me_name, SUN_CKM_DES_ECB,
CRYPTO_MAX_MECH_NAME);
kcf_cipher_mechs_tab[2].me_threshold = kcf_des_threshold;
(void) strncpy(kcf_cipher_mechs_tab[3].me_name, SUN_CKM_DES3_ECB,
CRYPTO_MAX_MECH_NAME);
kcf_cipher_mechs_tab[3].me_threshold = kcf_des3_threshold;
(void) strncpy(kcf_cipher_mechs_tab[4].me_name, SUN_CKM_BLOWFISH_CBC,
CRYPTO_MAX_MECH_NAME);
kcf_cipher_mechs_tab[4].me_threshold = kcf_bf_threshold;
(void) strncpy(kcf_cipher_mechs_tab[5].me_name, SUN_CKM_BLOWFISH_ECB,
CRYPTO_MAX_MECH_NAME);
kcf_cipher_mechs_tab[5].me_threshold = kcf_bf_threshold;
(void) strncpy(kcf_cipher_mechs_tab[6].me_name, SUN_CKM_AES_CBC,
CRYPTO_MAX_MECH_NAME);
kcf_cipher_mechs_tab[6].me_threshold = kcf_aes_threshold;
(void) strncpy(kcf_cipher_mechs_tab[7].me_name, SUN_CKM_AES_ECB,
CRYPTO_MAX_MECH_NAME);
kcf_cipher_mechs_tab[7].me_threshold = kcf_aes_threshold;
(void) strncpy(kcf_cipher_mechs_tab[8].me_name, SUN_CKM_RC4,
CRYPTO_MAX_MECH_NAME);
kcf_cipher_mechs_tab[8].me_threshold = kcf_rc4_threshold;
/* 4 HMACs */
(void) strncpy(kcf_mac_mechs_tab[0].me_name, SUN_CKM_MD5_HMAC,
CRYPTO_MAX_MECH_NAME);
kcf_mac_mechs_tab[0].me_threshold = kcf_md5_threshold;
(void) strncpy(kcf_mac_mechs_tab[1].me_name, SUN_CKM_MD5_HMAC_GENERAL,
CRYPTO_MAX_MECH_NAME);
kcf_mac_mechs_tab[1].me_threshold = kcf_md5_threshold;
(void) strncpy(kcf_mac_mechs_tab[2].me_name, SUN_CKM_SHA1_HMAC,
CRYPTO_MAX_MECH_NAME);
kcf_mac_mechs_tab[2].me_threshold = kcf_sha1_threshold;
(void) strncpy(kcf_mac_mechs_tab[3].me_name, SUN_CKM_SHA1_HMAC_GENERAL,
CRYPTO_MAX_MECH_NAME);
kcf_mac_mechs_tab[3].me_threshold = kcf_sha1_threshold;
/* 1 random number generation pseudo mechanism */
(void) strncpy(kcf_misc_mechs_tab[0].me_name, SUN_RANDOM,
CRYPTO_MAX_MECH_NAME);
kcf_mech_hash = mod_hash_create_strhash_nodtr("kcf mech2id hash",
kcf_mech_hash_size, mod_hash_null_valdtor);
for (class = KCF_FIRST_OPSCLASS; class <= KCF_LAST_OPSCLASS; class++) {
int max = kcf_mech_tabs_tab[class].met_size;
me_tab = kcf_mech_tabs_tab[class].met_tab;
for (int i = 0; i < max; i++) {
mutex_init(&(me_tab[i].me_mutex), NULL,
MUTEX_DEFAULT, NULL);
if (me_tab[i].me_name[0] != 0) {
me_tab[i].me_mechid = KCF_MECHID(class, i);
(void) mod_hash_insert(kcf_mech_hash,
(mod_hash_key_t)me_tab[i].me_name,
(mod_hash_val_t)&(me_tab[i].me_mechid));
}
}
}
}
/*
* kcf_create_mech_entry()
*
* Arguments:
* . The class of mechanism.
* . the name of the new mechanism.
*
* Description:
* Creates a new mech_entry for a mechanism not yet known to the
* framework.
* This routine is called by kcf_add_mech_provider, which is
* in turn invoked for each mechanism supported by a provider.
* The'class' argument depends on the crypto_func_group_t bitmask
* in the registering provider's mech_info struct for this mechanism.
* When there is ambiguity in the mapping between the crypto_func_group_t
* and a class (dual ops, ...) the KCF_MISC_CLASS should be used.
*
* Context:
* User context only.
*
* Returns:
* KCF_INVALID_MECH_CLASS or KCF_INVALID_MECH_NAME if the class or
* the mechname is bogus.
* KCF_MECH_TAB_FULL when there is no room left in the mech. tabs.
* KCF_SUCCESS otherwise.
*/
static int
kcf_create_mech_entry(kcf_ops_class_t class, char *mechname)
{
crypto_mech_type_t mt;
kcf_mech_entry_t *me_tab;
int i = 0, size;
if ((class < KCF_FIRST_OPSCLASS) || (class > KCF_LAST_OPSCLASS))
return (KCF_INVALID_MECH_CLASS);
if ((mechname == NULL) || (mechname[0] == 0))
return (KCF_INVALID_MECH_NAME);
/*
* First check if the mechanism is already in one of the tables.
* The mech_entry could be in another class.
*/
mutex_enter(&kcf_mech_tabs_lock);
mt = kcf_mech_hash_find(mechname);
if (mt != CRYPTO_MECH_INVALID) {
/* Nothing to do, regardless the suggested class. */
mutex_exit(&kcf_mech_tabs_lock);
return (KCF_SUCCESS);
}
/* Now take the next unused mech entry in the class's tab */
me_tab = kcf_mech_tabs_tab[class].met_tab;
size = kcf_mech_tabs_tab[class].met_size;
while (i < size) {
mutex_enter(&(me_tab[i].me_mutex));
if (me_tab[i].me_name[0] == 0) {
/* Found an empty spot */
(void) strlcpy(me_tab[i].me_name, mechname,
CRYPTO_MAX_MECH_NAME);
me_tab[i].me_name[CRYPTO_MAX_MECH_NAME-1] = '\0';
me_tab[i].me_mechid = KCF_MECHID(class, i);
/*
* No a-priori information about the new mechanism, so
* the threshold is set to zero.
*/
me_tab[i].me_threshold = 0;
mutex_exit(&(me_tab[i].me_mutex));
/* Add the new mechanism to the hash table */
(void) mod_hash_insert(kcf_mech_hash,
(mod_hash_key_t)me_tab[i].me_name,
(mod_hash_val_t)&(me_tab[i].me_mechid));
break;
}
mutex_exit(&(me_tab[i].me_mutex));
i++;
}
mutex_exit(&kcf_mech_tabs_lock);
if (i == size) {
return (KCF_MECH_TAB_FULL);
}
return (KCF_SUCCESS);
}
/*
* kcf_add_mech_provider()
*
* Arguments:
* . An index in to the provider mechanism array
* . A pointer to the provider descriptor
* . A storage for the kcf_prov_mech_desc_t the entry was added at.
*
* Description:
* Adds a new provider of a mechanism to the mechanism's mech_entry
* chain.
*
* Context:
* User context only.
*
* Returns
* KCF_SUCCESS on success
* KCF_MECH_TAB_FULL otherwise.
*/
int
kcf_add_mech_provider(short mech_indx,
kcf_provider_desc_t *prov_desc, kcf_prov_mech_desc_t **pmdpp)
{
int error;
kcf_mech_entry_t *mech_entry = NULL;
crypto_mech_info_t *mech_info;
crypto_mech_type_t kcf_mech_type, mt;
kcf_prov_mech_desc_t *prov_mech, *prov_mech2;
crypto_func_group_t simple_fg_mask, dual_fg_mask;
crypto_mech_info_t *dmi;
crypto_mech_info_list_t *mil, *mil2;
kcf_mech_entry_t *me;
int i;
ASSERT(prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER);
mech_info = &prov_desc->pd_mechanisms[mech_indx];
/*
* A mechanism belongs to exactly one mechanism table.
* Find the class corresponding to the function group flag of
* the mechanism.
*/
kcf_mech_type = kcf_mech_hash_find(mech_info->cm_mech_name);
if (kcf_mech_type == CRYPTO_MECH_INVALID) {
crypto_func_group_t fg = mech_info->cm_func_group_mask;
kcf_ops_class_t class;
if (fg & CRYPTO_FG_DIGEST || fg & CRYPTO_FG_DIGEST_ATOMIC)
class = KCF_DIGEST_CLASS;
else if (fg & CRYPTO_FG_ENCRYPT || fg & CRYPTO_FG_DECRYPT ||
fg & CRYPTO_FG_ENCRYPT_ATOMIC ||
fg & CRYPTO_FG_DECRYPT_ATOMIC)
class = KCF_CIPHER_CLASS;
else if (fg & CRYPTO_FG_MAC || fg & CRYPTO_FG_MAC_ATOMIC)
class = KCF_MAC_CLASS;
else if (fg & CRYPTO_FG_SIGN || fg & CRYPTO_FG_VERIFY ||
fg & CRYPTO_FG_SIGN_ATOMIC ||
fg & CRYPTO_FG_VERIFY_ATOMIC ||
fg & CRYPTO_FG_SIGN_RECOVER ||
fg & CRYPTO_FG_VERIFY_RECOVER)
class = KCF_SIGN_CLASS;
else if (fg & CRYPTO_FG_GENERATE ||
fg & CRYPTO_FG_GENERATE_KEY_PAIR ||
fg & CRYPTO_FG_WRAP || fg & CRYPTO_FG_UNWRAP ||
fg & CRYPTO_FG_DERIVE)
class = KCF_KEYOPS_CLASS;
else
class = KCF_MISC_CLASS;
/*
* Attempt to create a new mech_entry for the specified
* mechanism. kcf_create_mech_entry() can handle the case
* where such an entry already exists.
*/
if ((error = kcf_create_mech_entry(class,
mech_info->cm_mech_name)) != KCF_SUCCESS) {
return (error);
}
/* get the KCF mech type that was assigned to the mechanism */
kcf_mech_type = kcf_mech_hash_find(mech_info->cm_mech_name);
ASSERT(kcf_mech_type != CRYPTO_MECH_INVALID);
}
error = kcf_get_mech_entry(kcf_mech_type, &mech_entry);
ASSERT(error == KCF_SUCCESS);
/* allocate and initialize new kcf_prov_mech_desc */
prov_mech = kmem_zalloc(sizeof (kcf_prov_mech_desc_t), KM_SLEEP);
bcopy(mech_info, &prov_mech->pm_mech_info, sizeof (crypto_mech_info_t));
prov_mech->pm_prov_desc = prov_desc;
prov_desc->pd_mech_indx[KCF_MECH2CLASS(kcf_mech_type)]
[KCF_MECH2INDEX(kcf_mech_type)] = mech_indx;
KCF_PROV_REFHOLD(prov_desc);
KCF_PROV_IREFHOLD(prov_desc);
dual_fg_mask = mech_info->cm_func_group_mask & CRYPTO_FG_DUAL_MASK;
if (dual_fg_mask == ((crypto_func_group_t)0))
goto add_entry;
simple_fg_mask = (mech_info->cm_func_group_mask &
CRYPTO_FG_SIMPLEOP_MASK) | CRYPTO_FG_RANDOM;
for (i = 0; i < prov_desc->pd_mech_list_count; i++) {
dmi = &prov_desc->pd_mechanisms[i];
/* skip self */
if (dmi->cm_mech_number == mech_info->cm_mech_number)
continue;
/* skip if not a dual operation mechanism */
if (!(dmi->cm_func_group_mask & dual_fg_mask) ||
(dmi->cm_func_group_mask & simple_fg_mask))
continue;
mt = kcf_mech_hash_find(dmi->cm_mech_name);
if (mt == CRYPTO_MECH_INVALID)
continue;
if (kcf_get_mech_entry(mt, &me) != KCF_SUCCESS)
continue;
mil = kmem_zalloc(sizeof (*mil), KM_SLEEP);
mil2 = kmem_zalloc(sizeof (*mil2), KM_SLEEP);
/*
* Ignore hard-coded entries in the mech table
* if the provider hasn't registered.
*/
mutex_enter(&me->me_mutex);
if (me->me_hw_prov_chain == NULL && me->me_sw_prov == NULL) {
mutex_exit(&me->me_mutex);
kmem_free(mil, sizeof (*mil));
kmem_free(mil2, sizeof (*mil2));
continue;
}
/*
* Add other dual mechanisms that have registered
* with the framework to this mechanism's
* cross-reference list.
*/
mil->ml_mech_info = *dmi; /* struct assignment */
mil->ml_kcf_mechid = mt;
/* add to head of list */
mil->ml_next = prov_mech->pm_mi_list;
prov_mech->pm_mi_list = mil;
if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
prov_mech2 = me->me_hw_prov_chain;
else
prov_mech2 = me->me_sw_prov;
if (prov_mech2 == NULL) {
kmem_free(mil2, sizeof (*mil2));
mutex_exit(&me->me_mutex);
continue;
}
/*
* Update all other cross-reference lists by
* adding this new mechanism.
*/
while (prov_mech2 != NULL) {
if (prov_mech2->pm_prov_desc == prov_desc) {
/* struct assignment */
mil2->ml_mech_info = *mech_info;
mil2->ml_kcf_mechid = kcf_mech_type;
/* add to head of list */
mil2->ml_next = prov_mech2->pm_mi_list;
prov_mech2->pm_mi_list = mil2;
break;
}
prov_mech2 = prov_mech2->pm_next;
}
if (prov_mech2 == NULL)
kmem_free(mil2, sizeof (*mil2));
mutex_exit(&me->me_mutex);
}
add_entry:
/*
* Add new kcf_prov_mech_desc at the front of HW providers
* chain.
*/
switch (prov_desc->pd_prov_type) {
case CRYPTO_HW_PROVIDER:
mutex_enter(&mech_entry->me_mutex);
prov_mech->pm_me = mech_entry;
prov_mech->pm_next = mech_entry->me_hw_prov_chain;
mech_entry->me_hw_prov_chain = prov_mech;
mech_entry->me_num_hwprov++;
mutex_exit(&mech_entry->me_mutex);
break;
case CRYPTO_SW_PROVIDER:
mutex_enter(&mech_entry->me_mutex);
if (mech_entry->me_sw_prov != NULL) {
/*
* There is already a SW provider for this mechanism.
* Since we allow only one SW provider per mechanism,
* report this condition.
*/
cmn_err(CE_WARN, "The cryptographic software provider "
"\"%s\" will not be used for %s. The provider "
"\"%s\" will be used for this mechanism "
"instead.", prov_desc->pd_description,
mech_info->cm_mech_name,
mech_entry->me_sw_prov->pm_prov_desc->
pd_description);
KCF_PROV_REFRELE(prov_desc);
kmem_free(prov_mech, sizeof (kcf_prov_mech_desc_t));
prov_mech = NULL;
} else {
/*
* Set the provider as the software provider for
* this mechanism.
*/
mech_entry->me_sw_prov = prov_mech;
/* We'll wrap around after 4 billion registrations! */
mech_entry->me_gen_swprov = kcf_gen_swprov++;
}
mutex_exit(&mech_entry->me_mutex);
break;
default:
break;
}
*pmdpp = prov_mech;
return (KCF_SUCCESS);
}
/*
* kcf_remove_mech_provider()
*
* Arguments:
* . mech_name: the name of the mechanism.
* . prov_desc: The provider descriptor
*
* Description:
* Removes a provider from chain of provider descriptors.
* The provider is made unavailable to kernel consumers for the specified
* mechanism.
*
* Context:
* User context only.
*/
void
kcf_remove_mech_provider(char *mech_name, kcf_provider_desc_t *prov_desc)
{
crypto_mech_type_t mech_type;
kcf_prov_mech_desc_t *prov_mech = NULL, *prov_chain;
kcf_prov_mech_desc_t **prev_entry_next;
kcf_mech_entry_t *mech_entry;
crypto_mech_info_list_t *mil, *mil2, *next, **prev_next;
ASSERT(prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER);
/* get the KCF mech type that was assigned to the mechanism */
if ((mech_type = kcf_mech_hash_find(mech_name)) ==
CRYPTO_MECH_INVALID) {
/*
* Provider was not allowed for this mech due to policy or
* configuration.
*/
return;
}
/* get a ptr to the mech_entry that was created */
if (kcf_get_mech_entry(mech_type, &mech_entry) != KCF_SUCCESS) {
/*
* Provider was not allowed for this mech due to policy or
* configuration.
*/
return;
}
mutex_enter(&mech_entry->me_mutex);
switch (prov_desc->pd_prov_type) {
case CRYPTO_HW_PROVIDER:
/* find the provider in the mech_entry chain */
prev_entry_next = &mech_entry->me_hw_prov_chain;
prov_mech = mech_entry->me_hw_prov_chain;
while (prov_mech != NULL &&
prov_mech->pm_prov_desc != prov_desc) {
prev_entry_next = &prov_mech->pm_next;
prov_mech = prov_mech->pm_next;
}
if (prov_mech == NULL) {
/* entry not found, simply return */
mutex_exit(&mech_entry->me_mutex);
return;
}
/* remove provider entry from mech_entry chain */
*prev_entry_next = prov_mech->pm_next;
ASSERT(mech_entry->me_num_hwprov > 0);
mech_entry->me_num_hwprov--;
break;
case CRYPTO_SW_PROVIDER:
if (mech_entry->me_sw_prov == NULL ||
mech_entry->me_sw_prov->pm_prov_desc != prov_desc) {
/* not the software provider for this mechanism */
mutex_exit(&mech_entry->me_mutex);
return;
}
prov_mech = mech_entry->me_sw_prov;
mech_entry->me_sw_prov = NULL;
break;
default:
/* unexpected crypto_provider_type_t */
mutex_exit(&mech_entry->me_mutex);
return;
}
mutex_exit(&mech_entry->me_mutex);
/* Free the dual ops cross-reference lists */
mil = prov_mech->pm_mi_list;
while (mil != NULL) {
next = mil->ml_next;
if (kcf_get_mech_entry(mil->ml_kcf_mechid,
&mech_entry) != KCF_SUCCESS) {
mil = next;
continue;
}
mutex_enter(&mech_entry->me_mutex);
if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
prov_chain = mech_entry->me_hw_prov_chain;
else
prov_chain = mech_entry->me_sw_prov;
while (prov_chain != NULL) {
if (prov_chain->pm_prov_desc == prov_desc) {
prev_next = &prov_chain->pm_mi_list;
mil2 = prov_chain->pm_mi_list;
while (mil2 != NULL &&
mil2->ml_kcf_mechid != mech_type) {
prev_next = &mil2->ml_next;
mil2 = mil2->ml_next;
}
if (mil2 != NULL) {
*prev_next = mil2->ml_next;
kmem_free(mil2, sizeof (*mil2));
}
break;
}
prov_chain = prov_chain->pm_next;
}
mutex_exit(&mech_entry->me_mutex);
kmem_free(mil, sizeof (crypto_mech_info_list_t));
mil = next;
}
/* free entry */
KCF_PROV_REFRELE(prov_mech->pm_prov_desc);
KCF_PROV_IREFRELE(prov_mech->pm_prov_desc);
kmem_free(prov_mech, sizeof (kcf_prov_mech_desc_t));
}
/*
* kcf_get_mech_entry()
*
* Arguments:
* . The framework mechanism type
* . Storage for the mechanism entry
*
* Description:
* Retrieves the mechanism entry for the mech.
*
* Context:
* User and interrupt contexts.
*
* Returns:
* KCF_MECHANISM_XXX appropriate error code.
* KCF_SUCCESS otherwise.
*/
int
kcf_get_mech_entry(crypto_mech_type_t mech_type, kcf_mech_entry_t **mep)
{
kcf_ops_class_t class;
int index;
const kcf_mech_entry_tab_t *me_tab;
ASSERT(mep != NULL);
class = KCF_MECH2CLASS(mech_type);
if ((class < KCF_FIRST_OPSCLASS) || (class > KCF_LAST_OPSCLASS)) {
/* the caller won't need to know it's an invalid class */
return (KCF_INVALID_MECH_NUMBER);
}
me_tab = &kcf_mech_tabs_tab[class];
index = KCF_MECH2INDEX(mech_type);
if ((index < 0) || (index >= me_tab->met_size)) {
return (KCF_INVALID_MECH_NUMBER);
}
*mep = &((me_tab->met_tab)[index]);
return (KCF_SUCCESS);
}
/* CURRENTLY UNSUPPORTED: attempting to load the module if it isn't found */
/*
* Lookup the hash table for an entry that matches the mechname.
* If there are no hardware or software providers for the mechanism,
* but there is an unloaded software provider, this routine will attempt
* to load it.
*/
crypto_mech_type_t
crypto_mech2id_common(const char *mechname, boolean_t load_module)
{
(void) load_module;
return (kcf_mech_hash_find(mechname));
}