zfs/module/zfs/spa_config.c

615 lines
17 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
* Copyright 2017 Joyent, Inc.
2008-11-20 20:01:55 +00:00
*/
#include <sys/spa.h>
#include <sys/fm/fs/zfs.h>
2008-11-20 20:01:55 +00:00
#include <sys/spa_impl.h>
#include <sys/nvpair.h>
#include <sys/uio.h>
#include <sys/fs/zfs.h>
#include <sys/vdev_impl.h>
#include <sys/zfs_ioctl.h>
#include <sys/systeminfo.h>
#include <sys/sunddi.h>
#include <sys/zfeature.h>
2008-11-20 20:01:55 +00:00
#ifdef _KERNEL
#include <sys/kobj.h>
2009-02-18 20:51:31 +00:00
#include <sys/zone.h>
2008-11-20 20:01:55 +00:00
#endif
/*
* Pool configuration repository.
*
* Pool configuration is stored as a packed nvlist on the filesystem. By
* default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
* (when the ZFS module is loaded). Pools can also have the 'cachefile'
* property set that allows them to be stored in an alternate location until
* the control of external software.
*
* For each cache file, we have a single nvlist which holds all the
* configuration information. When the module loads, we read this information
* from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is
* maintained independently in spa.c. Whenever the namespace is modified, or
* the configuration of a pool is changed, we call spa_config_sync(), which
* walks through all the active pools and writes the configuration to disk.
*/
static uint64_t spa_config_generation = 1;
/*
* This can be overridden in userland to preserve an alternate namespace for
* userland pools when doing testing.
*/
char *spa_config_path = ZPOOL_CACHE;
int zfs_autoimport_disable = 1;
2008-11-20 20:01:55 +00:00
/*
* Called when the module is first loaded, this routine loads the configuration
* file into the SPA namespace. It does not actually open or load the pools; it
* only populates the namespace.
*/
void
spa_config_load(void)
{
void *buf = NULL;
nvlist_t *nvlist, *child;
nvpair_t *nvpair;
char *pathname;
2008-11-20 20:01:55 +00:00
struct _buf *file;
uint64_t fsize;
#ifdef _KERNEL
if (zfs_autoimport_disable)
return;
#endif
2008-11-20 20:01:55 +00:00
/*
* Open the configuration file.
*/
pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) snprintf(pathname, MAXPATHLEN, "%s%s",
(rootdir != NULL) ? "./" : "", spa_config_path);
2008-11-20 20:01:55 +00:00
file = kobj_open_file(pathname);
kmem_free(pathname, MAXPATHLEN);
2008-11-20 20:01:55 +00:00
if (file == (struct _buf *)-1)
return;
if (kobj_get_filesize(file, &fsize) != 0)
goto out;
buf = kmem_alloc(fsize, KM_SLEEP);
2008-11-20 20:01:55 +00:00
/*
* Read the nvlist from the file.
*/
if (kobj_read_file(file, buf, fsize, 0) < 0)
goto out;
/*
* Unpack the nvlist.
*/
if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
2008-11-20 20:01:55 +00:00
goto out;
/*
* Iterate over all elements in the nvlist, creating a new spa_t for
* each one with the specified configuration.
*/
mutex_enter(&spa_namespace_lock);
nvpair = NULL;
while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
continue;
child = fnvpair_value_nvlist(nvpair);
2008-11-20 20:01:55 +00:00
if (spa_lookup(nvpair_name(nvpair)) != NULL)
continue;
(void) spa_add(nvpair_name(nvpair), child, NULL);
2008-11-20 20:01:55 +00:00
}
mutex_exit(&spa_namespace_lock);
nvlist_free(nvlist);
out:
if (buf != NULL)
kmem_free(buf, fsize);
kobj_close_file(file);
}
static int
spa_config_remove(spa_config_dirent_t *dp)
{
#if defined(__linux__) && defined(_KERNEL)
int error, flags = FWRITE | FTRUNC;
uio_seg_t seg = UIO_SYSSPACE;
vnode_t *vp;
error = vn_open(dp->scd_path, seg, flags, 0644, &vp, 0, 0);
if (error == 0) {
(void) VOP_FSYNC(vp, FSYNC, kcred, NULL);
(void) VOP_CLOSE(vp, 0, 1, 0, kcred, NULL);
}
return (error);
#else
return (vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE));
#endif
}
static int
spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
2008-11-20 20:01:55 +00:00
{
size_t buflen;
char *buf;
vnode_t *vp;
int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
char *temp;
int err;
/*
* If the nvlist is empty (NULL), then remove the old cachefile.
*/
if (nvl == NULL) {
err = spa_config_remove(dp);
if (err == ENOENT)
err = 0;
return (err);
}
2008-11-20 20:01:55 +00:00
/*
* Pack the configuration into a buffer.
*/
buf = fnvlist_pack(nvl, &buflen);
temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
2008-11-20 20:01:55 +00:00
#if defined(__linux__) && defined(_KERNEL)
Linux 4.2 compat: vfs_rename() The spa_config_write() function relies on the classic method of making sure updates to the /etc/zfs/zpool.cache file are atomic. It writes out a temporary version of the file and then uses vn_rename() to switch it in to place. This way there can never exist a partial version of the file, it's all or nothing. Conceptually this is a good strategy and it makes good sense for platforms where it's easy to do a rename within the kernel. Unfortunately, Linux is not one of those platforms. Even doing basic I/O to a file system from within the kernel is strongly discouraged. In order to support this at all the vn_rename() implementation ends up being complex and fragile. So fragile that recent Linux 4.2 changes have broken it. While it is possible to update vn_rename() to work with the latest kernels a better long term strategy is to stop using vn_rename() entirely. Then all this complex, fragile code can be removed. Achieving this is straight forward because config_write() is the only consumer of vn_rename(). This patch reworks spa_config_write() to update the cache file in place. The file will be truncated, written out, and then synced to disk. If an error is encountered the file will be unlinked leaving the system in a consistent state. This does expose a tiny tiny tiny window where a system could crash at exactly the wrong moment could leave a partially written cache file. However, this is highly unlikely because the cache file is 1) infrequently updated, 2) only a few kilobytes in size, and 3) written with a single vn_rdwr() call. If this were to somehow happen it poses no risk to pool. Simply removing the cache file will allow the pool to be imported cleanly. Going forward this will be even less of an issue as we intend to disable the use of a cache file by default. Bottom line not using vn_rename() allows us to make ZoL more robust against upstream kernel changes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3653
2015-07-28 23:45:17 +00:00
/*
* Write the configuration to disk. Due to the complexity involved
* in performing a rename and remove from within the kernel the file
* is instead truncated and overwritten in place. This way we always
* have a consistent view of the data or a zero length file.
Linux 4.2 compat: vfs_rename() The spa_config_write() function relies on the classic method of making sure updates to the /etc/zfs/zpool.cache file are atomic. It writes out a temporary version of the file and then uses vn_rename() to switch it in to place. This way there can never exist a partial version of the file, it's all or nothing. Conceptually this is a good strategy and it makes good sense for platforms where it's easy to do a rename within the kernel. Unfortunately, Linux is not one of those platforms. Even doing basic I/O to a file system from within the kernel is strongly discouraged. In order to support this at all the vn_rename() implementation ends up being complex and fragile. So fragile that recent Linux 4.2 changes have broken it. While it is possible to update vn_rename() to work with the latest kernels a better long term strategy is to stop using vn_rename() entirely. Then all this complex, fragile code can be removed. Achieving this is straight forward because config_write() is the only consumer of vn_rename(). This patch reworks spa_config_write() to update the cache file in place. The file will be truncated, written out, and then synced to disk. If an error is encountered the file will be unlinked leaving the system in a consistent state. This does expose a tiny tiny tiny window where a system could crash at exactly the wrong moment could leave a partially written cache file. However, this is highly unlikely because the cache file is 1) infrequently updated, 2) only a few kilobytes in size, and 3) written with a single vn_rdwr() call. If this were to somehow happen it poses no risk to pool. Simply removing the cache file will allow the pool to be imported cleanly. Going forward this will be even less of an issue as we intend to disable the use of a cache file by default. Bottom line not using vn_rename() allows us to make ZoL more robust against upstream kernel changes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3653
2015-07-28 23:45:17 +00:00
*/
err = vn_open(dp->scd_path, UIO_SYSSPACE, oflags, 0644, &vp, 0, 0);
if (err == 0) {
err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0,
Linux 4.2 compat: vfs_rename() The spa_config_write() function relies on the classic method of making sure updates to the /etc/zfs/zpool.cache file are atomic. It writes out a temporary version of the file and then uses vn_rename() to switch it in to place. This way there can never exist a partial version of the file, it's all or nothing. Conceptually this is a good strategy and it makes good sense for platforms where it's easy to do a rename within the kernel. Unfortunately, Linux is not one of those platforms. Even doing basic I/O to a file system from within the kernel is strongly discouraged. In order to support this at all the vn_rename() implementation ends up being complex and fragile. So fragile that recent Linux 4.2 changes have broken it. While it is possible to update vn_rename() to work with the latest kernels a better long term strategy is to stop using vn_rename() entirely. Then all this complex, fragile code can be removed. Achieving this is straight forward because config_write() is the only consumer of vn_rename(). This patch reworks spa_config_write() to update the cache file in place. The file will be truncated, written out, and then synced to disk. If an error is encountered the file will be unlinked leaving the system in a consistent state. This does expose a tiny tiny tiny window where a system could crash at exactly the wrong moment could leave a partially written cache file. However, this is highly unlikely because the cache file is 1) infrequently updated, 2) only a few kilobytes in size, and 3) written with a single vn_rdwr() call. If this were to somehow happen it poses no risk to pool. Simply removing the cache file will allow the pool to be imported cleanly. Going forward this will be even less of an issue as we intend to disable the use of a cache file by default. Bottom line not using vn_rename() allows us to make ZoL more robust against upstream kernel changes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3653
2015-07-28 23:45:17 +00:00
UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, NULL);
if (err == 0)
err = VOP_FSYNC(vp, FSYNC, kcred, NULL);
Linux 4.2 compat: vfs_rename() The spa_config_write() function relies on the classic method of making sure updates to the /etc/zfs/zpool.cache file are atomic. It writes out a temporary version of the file and then uses vn_rename() to switch it in to place. This way there can never exist a partial version of the file, it's all or nothing. Conceptually this is a good strategy and it makes good sense for platforms where it's easy to do a rename within the kernel. Unfortunately, Linux is not one of those platforms. Even doing basic I/O to a file system from within the kernel is strongly discouraged. In order to support this at all the vn_rename() implementation ends up being complex and fragile. So fragile that recent Linux 4.2 changes have broken it. While it is possible to update vn_rename() to work with the latest kernels a better long term strategy is to stop using vn_rename() entirely. Then all this complex, fragile code can be removed. Achieving this is straight forward because config_write() is the only consumer of vn_rename(). This patch reworks spa_config_write() to update the cache file in place. The file will be truncated, written out, and then synced to disk. If an error is encountered the file will be unlinked leaving the system in a consistent state. This does expose a tiny tiny tiny window where a system could crash at exactly the wrong moment could leave a partially written cache file. However, this is highly unlikely because the cache file is 1) infrequently updated, 2) only a few kilobytes in size, and 3) written with a single vn_rdwr() call. If this were to somehow happen it poses no risk to pool. Simply removing the cache file will allow the pool to be imported cleanly. Going forward this will be even less of an issue as we intend to disable the use of a cache file by default. Bottom line not using vn_rename() allows us to make ZoL more robust against upstream kernel changes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3653
2015-07-28 23:45:17 +00:00
(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
if (err)
(void) spa_config_remove(dp);
Linux 4.2 compat: vfs_rename() The spa_config_write() function relies on the classic method of making sure updates to the /etc/zfs/zpool.cache file are atomic. It writes out a temporary version of the file and then uses vn_rename() to switch it in to place. This way there can never exist a partial version of the file, it's all or nothing. Conceptually this is a good strategy and it makes good sense for platforms where it's easy to do a rename within the kernel. Unfortunately, Linux is not one of those platforms. Even doing basic I/O to a file system from within the kernel is strongly discouraged. In order to support this at all the vn_rename() implementation ends up being complex and fragile. So fragile that recent Linux 4.2 changes have broken it. While it is possible to update vn_rename() to work with the latest kernels a better long term strategy is to stop using vn_rename() entirely. Then all this complex, fragile code can be removed. Achieving this is straight forward because config_write() is the only consumer of vn_rename(). This patch reworks spa_config_write() to update the cache file in place. The file will be truncated, written out, and then synced to disk. If an error is encountered the file will be unlinked leaving the system in a consistent state. This does expose a tiny tiny tiny window where a system could crash at exactly the wrong moment could leave a partially written cache file. However, this is highly unlikely because the cache file is 1) infrequently updated, 2) only a few kilobytes in size, and 3) written with a single vn_rdwr() call. If this were to somehow happen it poses no risk to pool. Simply removing the cache file will allow the pool to be imported cleanly. Going forward this will be even less of an issue as we intend to disable the use of a cache file by default. Bottom line not using vn_rename() allows us to make ZoL more robust against upstream kernel changes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3653
2015-07-28 23:45:17 +00:00
}
#else
2008-11-20 20:01:55 +00:00
/*
* Write the configuration to disk. We need to do the traditional
* 'write to temporary file, sync, move over original' to make sure we
* always have a consistent view of the data.
*/
(void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
2008-11-20 20:01:55 +00:00
err = vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0);
if (err == 0) {
err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
0, RLIM64_INFINITY, kcred, NULL);
if (err == 0)
err = VOP_FSYNC(vp, FSYNC, kcred, NULL);
if (err == 0)
err = vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
2008-11-20 20:01:55 +00:00
}
(void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
Linux 4.2 compat: vfs_rename() The spa_config_write() function relies on the classic method of making sure updates to the /etc/zfs/zpool.cache file are atomic. It writes out a temporary version of the file and then uses vn_rename() to switch it in to place. This way there can never exist a partial version of the file, it's all or nothing. Conceptually this is a good strategy and it makes good sense for platforms where it's easy to do a rename within the kernel. Unfortunately, Linux is not one of those platforms. Even doing basic I/O to a file system from within the kernel is strongly discouraged. In order to support this at all the vn_rename() implementation ends up being complex and fragile. So fragile that recent Linux 4.2 changes have broken it. While it is possible to update vn_rename() to work with the latest kernels a better long term strategy is to stop using vn_rename() entirely. Then all this complex, fragile code can be removed. Achieving this is straight forward because config_write() is the only consumer of vn_rename(). This patch reworks spa_config_write() to update the cache file in place. The file will be truncated, written out, and then synced to disk. If an error is encountered the file will be unlinked leaving the system in a consistent state. This does expose a tiny tiny tiny window where a system could crash at exactly the wrong moment could leave a partially written cache file. However, this is highly unlikely because the cache file is 1) infrequently updated, 2) only a few kilobytes in size, and 3) written with a single vn_rdwr() call. If this were to somehow happen it poses no risk to pool. Simply removing the cache file will allow the pool to be imported cleanly. Going forward this will be even less of an issue as we intend to disable the use of a cache file by default. Bottom line not using vn_rename() allows us to make ZoL more robust against upstream kernel changes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3653
2015-07-28 23:45:17 +00:00
#endif
2008-11-20 20:01:55 +00:00
fnvlist_pack_free(buf, buflen);
kmem_free(temp, MAXPATHLEN);
return (err);
2008-11-20 20:01:55 +00:00
}
/*
* Synchronize pool configuration to disk. This must be called with the
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-07 20:16:22 +00:00
* namespace lock held. Synchronizing the pool cache is typically done after
* the configuration has been synced to the MOS. This exposes a window where
* the MOS config will have been updated but the cache file has not. If
* the system were to crash at that instant then the cached config may not
* contain the correct information to open the pool and an explicit import
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-07 20:16:22 +00:00
* would be required.
2008-11-20 20:01:55 +00:00
*/
void
spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
2008-11-20 20:01:55 +00:00
{
spa_config_dirent_t *dp, *tdp;
nvlist_t *nvl;
char *pool_name;
boolean_t ccw_failure;
int error = 0;
2008-11-20 20:01:55 +00:00
ASSERT(MUTEX_HELD(&spa_namespace_lock));
2009-08-18 18:43:27 +00:00
if (rootdir == NULL || !(spa_mode_global & FWRITE))
2009-01-15 21:59:39 +00:00
return;
/*
* Iterate over all cachefiles for the pool, past or present. When the
* cachefile is changed, the new one is pushed onto this list, allowing
* us to update previous cachefiles that no longer contain this pool.
*/
ccw_failure = B_FALSE;
for (dp = list_head(&target->spa_config_list); dp != NULL;
dp = list_next(&target->spa_config_list, dp)) {
spa_t *spa = NULL;
if (dp->scd_path == NULL)
continue;
/*
* Iterate over all pools, adding any matching pools to 'nvl'.
*/
nvl = NULL;
while ((spa = spa_next(spa)) != NULL) {
/*
* Skip over our own pool if we're about to remove
* ourselves from the spa namespace or any pool that
* is readonly. Since we cannot guarantee that a
* readonly pool would successfully import upon reboot,
* we don't allow them to be written to the cache file.
*/
if ((spa == target && removing) ||
!spa_writeable(spa))
continue;
mutex_enter(&spa->spa_props_lock);
tdp = list_head(&spa->spa_config_list);
if (spa->spa_config == NULL ||
tdp == NULL ||
tdp->scd_path == NULL ||
strcmp(tdp->scd_path, dp->scd_path) != 0) {
mutex_exit(&spa->spa_props_lock);
continue;
}
if (nvl == NULL)
nvl = fnvlist_alloc();
if (spa->spa_import_flags & ZFS_IMPORT_TEMP_NAME)
pool_name = fnvlist_lookup_string(
spa->spa_config, ZPOOL_CONFIG_POOL_NAME);
else
pool_name = spa_name(spa);
fnvlist_add_nvlist(nvl, pool_name, spa->spa_config);
mutex_exit(&spa->spa_props_lock);
}
error = spa_config_write(dp, nvl);
if (error != 0)
ccw_failure = B_TRUE;
nvlist_free(nvl);
}
2008-11-20 20:01:55 +00:00
if (ccw_failure) {
/*
* Keep trying so that configuration data is
* written if/when any temporary filesystem
* resource issues are resolved.
*/
if (target->spa_ccw_fail_time == 0) {
zfs_ereport_post(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 17:36:48 +00:00
target, NULL, NULL, NULL, 0, 0);
}
target->spa_ccw_fail_time = gethrtime();
spa_async_request(target, SPA_ASYNC_CONFIG_UPDATE);
} else {
/*
* Do not rate limit future attempts to update
* the config cache.
*/
target->spa_ccw_fail_time = 0;
}
2008-11-20 20:01:55 +00:00
/*
* Remove any config entries older than the current one.
2008-11-20 20:01:55 +00:00
*/
dp = list_head(&target->spa_config_list);
while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
list_remove(&target->spa_config_list, tdp);
if (tdp->scd_path != NULL)
spa_strfree(tdp->scd_path);
kmem_free(tdp, sizeof (spa_config_dirent_t));
2008-11-20 20:01:55 +00:00
}
spa_config_generation++;
if (postsysevent)
spa_event_notify(target, NULL, NULL, ESC_ZFS_CONFIG_SYNC);
2008-11-20 20:01:55 +00:00
}
/*
* Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
* and we don't want to allow the local zone to see all the pools anyway.
* So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
* information for all pool visible within the zone.
*/
nvlist_t *
spa_all_configs(uint64_t *generation)
{
nvlist_t *pools;
spa_t *spa = NULL;
2008-11-20 20:01:55 +00:00
if (*generation == spa_config_generation)
return (NULL);
pools = fnvlist_alloc();
2008-11-20 20:01:55 +00:00
mutex_enter(&spa_namespace_lock);
while ((spa = spa_next(spa)) != NULL) {
if (INGLOBALZONE(curproc) ||
zone_dataset_visible(spa_name(spa), NULL)) {
mutex_enter(&spa->spa_props_lock);
fnvlist_add_nvlist(pools, spa_name(spa),
spa->spa_config);
mutex_exit(&spa->spa_props_lock);
2008-11-20 20:01:55 +00:00
}
}
*generation = spa_config_generation;
mutex_exit(&spa_namespace_lock);
2008-11-20 20:01:55 +00:00
return (pools);
}
void
spa_config_set(spa_t *spa, nvlist_t *config)
{
mutex_enter(&spa->spa_props_lock);
nvlist_free(spa->spa_config);
2008-11-20 20:01:55 +00:00
spa->spa_config = config;
mutex_exit(&spa->spa_props_lock);
2008-11-20 20:01:55 +00:00
}
/*
* Generate the pool's configuration based on the current in-core state.
*
2008-11-20 20:01:55 +00:00
* We infer whether to generate a complete config or just one top-level config
* based on whether vd is the root vdev.
*/
nvlist_t *
spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
{
nvlist_t *config, *nvroot;
vdev_t *rvd = spa->spa_root_vdev;
unsigned long hostid = 0;
boolean_t locked = B_FALSE;
uint64_t split_guid;
char *pool_name;
2008-11-20 20:01:55 +00:00
if (vd == NULL) {
2008-11-20 20:01:55 +00:00
vd = rvd;
locked = B_TRUE;
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
}
ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
(SCL_CONFIG | SCL_STATE));
2008-11-20 20:01:55 +00:00
/*
* If txg is -1, report the current value of spa->spa_config_txg.
*/
if (txg == -1ULL)
txg = spa->spa_config_txg;
/*
* Originally, users had to handle spa namespace collisions by either
* exporting the already imported pool or by specifying a new name for
* the pool with a conflicting name. In the case of root pools from
* virtual guests, neither approach to collision resolution is
* reasonable. This is addressed by extending the new name syntax with
* an option to specify that the new name is temporary. When specified,
* ZFS_IMPORT_TEMP_NAME will be set in spa->spa_import_flags to tell us
* to use the previous name, which we do below.
*/
if (spa->spa_import_flags & ZFS_IMPORT_TEMP_NAME) {
VERIFY0(nvlist_lookup_string(spa->spa_config,
ZPOOL_CONFIG_POOL_NAME, &pool_name));
} else
pool_name = spa_name(spa);
config = fnvlist_alloc();
fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, pool_name);
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, spa_state(spa));
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, txg);
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, spa->spa_errata);
if (spa->spa_comment != NULL)
fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT,
spa->spa_comment);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 03:20:35 +00:00
hostid = spa_get_hostid();
if (hostid != 0)
fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid);
fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, utsname()->nodename);
2008-11-20 20:01:55 +00:00
int config_gen_flags = 0;
2008-11-20 20:01:55 +00:00
if (vd != rvd) {
fnvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
vd->vdev_top->vdev_guid);
fnvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
vd->vdev_guid);
2008-11-20 20:01:55 +00:00
if (vd->vdev_isspare)
fnvlist_add_uint64(config,
ZPOOL_CONFIG_IS_SPARE, 1ULL);
2008-11-20 20:01:55 +00:00
if (vd->vdev_islog)
fnvlist_add_uint64(config,
ZPOOL_CONFIG_IS_LOG, 1ULL);
2008-11-20 20:01:55 +00:00
vd = vd->vdev_top; /* label contains top config */
} else {
/*
* Only add the (potentially large) split information
* in the mos config, and not in the vdev labels
*/
if (spa->spa_config_splitting != NULL)
fnvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
spa->spa_config_splitting);
fnvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS);
config_gen_flags |= VDEV_CONFIG_MOS;
2008-11-20 20:01:55 +00:00
}
/*
* Add the top-level config. We even add this on pools which
* don't support holes in the namespace.
*/
vdev_top_config_generate(spa, config);
/*
* If we're splitting, record the original pool's guid.
*/
if (spa->spa_config_splitting != NULL &&
nvlist_lookup_uint64(spa->spa_config_splitting,
ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
fnvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, split_guid);
}
nvroot = vdev_config_generate(spa, vd, getstats, config_gen_flags);
fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot);
2008-11-20 20:01:55 +00:00
nvlist_free(nvroot);
/*
* Store what's necessary for reading the MOS in the label.
*/
fnvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
spa->spa_label_features);
if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
ddt_histogram_t *ddh;
ddt_stat_t *dds;
ddt_object_t *ddo;
ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
ddt_get_dedup_histogram(spa, ddh);
fnvlist_add_uint64_array(config,
ZPOOL_CONFIG_DDT_HISTOGRAM,
(uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t));
kmem_free(ddh, sizeof (ddt_histogram_t));
ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
ddt_get_dedup_object_stats(spa, ddo);
fnvlist_add_uint64_array(config,
ZPOOL_CONFIG_DDT_OBJ_STATS,
(uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t));
kmem_free(ddo, sizeof (ddt_object_t));
dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
ddt_get_dedup_stats(spa, dds);
fnvlist_add_uint64_array(config,
ZPOOL_CONFIG_DDT_STATS,
(uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t));
kmem_free(dds, sizeof (ddt_stat_t));
}
if (locked)
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
2008-11-20 20:01:55 +00:00
return (config);
}
/*
* Update all disk labels, generate a fresh config based on the current
* in-core state, and sync the global config cache (do not sync the config
* cache if this is a booting rootpool).
*/
void
2009-08-18 18:43:27 +00:00
spa_config_update(spa_t *spa, int what)
2008-11-20 20:01:55 +00:00
{
vdev_t *rvd = spa->spa_root_vdev;
uint64_t txg;
int c;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2008-11-20 20:01:55 +00:00
txg = spa_last_synced_txg(spa) + 1;
if (what == SPA_CONFIG_UPDATE_POOL) {
vdev_config_dirty(rvd);
} else {
/*
* If we have top-level vdevs that were added but have
* not yet been prepared for allocation, do that now.
* (It's safe now because the config cache is up to date,
* so it will be able to translate the new DVAs.)
* See comments in spa_vdev_add() for full details.
*/
for (c = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
2009-07-02 22:44:48 +00:00
if (tvd->vdev_ms_array == 0)
vdev_metaslab_set_size(tvd);
vdev_expand(tvd, txg);
2008-11-20 20:01:55 +00:00
}
}
spa_config_exit(spa, SCL_ALL, FTAG);
2008-11-20 20:01:55 +00:00
/*
* Wait for the mosconfig to be regenerated and synced.
*/
txg_wait_synced(spa->spa_dsl_pool, txg);
/*
* Update the global config cache to reflect the new mosconfig.
*/
2009-08-18 18:43:27 +00:00
if (!spa->spa_is_root)
spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
2008-11-20 20:01:55 +00:00
if (what == SPA_CONFIG_UPDATE_POOL)
2009-08-18 18:43:27 +00:00
spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
2008-11-20 20:01:55 +00:00
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(spa_config_sync);
EXPORT_SYMBOL(spa_config_load);
EXPORT_SYMBOL(spa_all_configs);
EXPORT_SYMBOL(spa_config_set);
EXPORT_SYMBOL(spa_config_generate);
EXPORT_SYMBOL(spa_config_update);
module_param(spa_config_path, charp, 0444);
MODULE_PARM_DESC(spa_config_path, "SPA config file (/etc/zfs/zpool.cache)");
module_param(zfs_autoimport_disable, int, 0644);
MODULE_PARM_DESC(zfs_autoimport_disable, "Disable pool import at module load");
#endif