SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _VDEV_RAIDZ_H
|
|
|
|
#define _VDEV_RAIDZ_H
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/debug.h>
|
|
|
|
#include <sys/kstat.h>
|
2016-07-22 15:52:49 +00:00
|
|
|
#include <sys/abd.h>
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
#include <sys/vdev_impl.h>
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define CODE_P (0U)
|
|
|
|
#define CODE_Q (1U)
|
|
|
|
#define CODE_R (2U)
|
|
|
|
|
|
|
|
#define PARITY_P (1U)
|
|
|
|
#define PARITY_PQ (2U)
|
|
|
|
#define PARITY_PQR (3U)
|
|
|
|
|
|
|
|
#define TARGET_X (0U)
|
|
|
|
#define TARGET_Y (1U)
|
|
|
|
#define TARGET_Z (2U)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Parity generation methods indexes
|
|
|
|
*/
|
|
|
|
enum raidz_math_gen_op {
|
|
|
|
RAIDZ_GEN_P = 0,
|
|
|
|
RAIDZ_GEN_PQ,
|
|
|
|
RAIDZ_GEN_PQR,
|
|
|
|
RAIDZ_GEN_NUM = 3
|
|
|
|
};
|
|
|
|
/*
|
|
|
|
* Data reconstruction methods indexes
|
|
|
|
*/
|
|
|
|
enum raidz_rec_op {
|
|
|
|
RAIDZ_REC_P = 0,
|
|
|
|
RAIDZ_REC_Q,
|
|
|
|
RAIDZ_REC_R,
|
|
|
|
RAIDZ_REC_PQ,
|
|
|
|
RAIDZ_REC_PR,
|
|
|
|
RAIDZ_REC_QR,
|
|
|
|
RAIDZ_REC_PQR,
|
|
|
|
RAIDZ_REC_NUM = 7
|
|
|
|
};
|
|
|
|
|
|
|
|
extern const char *raidz_gen_name[RAIDZ_GEN_NUM];
|
|
|
|
extern const char *raidz_rec_name[RAIDZ_REC_NUM];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Methods used to define raidz implementation
|
|
|
|
*
|
|
|
|
* @raidz_gen_f Parity generation function
|
|
|
|
* @par1 pointer to raidz_map
|
|
|
|
* @raidz_rec_f Data reconstruction function
|
|
|
|
* @par1 pointer to raidz_map
|
|
|
|
* @par2 array of reconstruction targets
|
|
|
|
* @will_work_f Function returns TRUE if impl. is supported on the system
|
|
|
|
* @init_impl_f Function is called once on init
|
|
|
|
* @fini_impl_f Function is called once on fini
|
|
|
|
*/
|
|
|
|
typedef void (*raidz_gen_f)(void *);
|
|
|
|
typedef int (*raidz_rec_f)(void *, const int *);
|
|
|
|
typedef boolean_t (*will_work_f)(void);
|
|
|
|
typedef void (*init_impl_f)(void);
|
|
|
|
typedef void (*fini_impl_f)(void);
|
|
|
|
|
2020-01-23 19:01:24 +00:00
|
|
|
#define RAIDZ_IMPL_NAME_MAX (20)
|
2016-07-17 17:41:11 +00:00
|
|
|
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
typedef struct raidz_impl_ops {
|
|
|
|
init_impl_f init;
|
|
|
|
fini_impl_f fini;
|
|
|
|
raidz_gen_f gen[RAIDZ_GEN_NUM]; /* Parity generate functions */
|
|
|
|
raidz_rec_f rec[RAIDZ_REC_NUM]; /* Data reconstruction functions */
|
|
|
|
will_work_f is_supported; /* Support check function */
|
2016-07-17 17:41:11 +00:00
|
|
|
char name[RAIDZ_IMPL_NAME_MAX]; /* Name of the implementation */
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
} raidz_impl_ops_t;
|
|
|
|
|
|
|
|
typedef struct raidz_col {
|
2018-01-09 22:46:52 +00:00
|
|
|
uint64_t rc_devidx; /* child device index for I/O */
|
|
|
|
uint64_t rc_offset; /* device offset */
|
|
|
|
uint64_t rc_size; /* I/O size */
|
2021-01-20 19:24:37 +00:00
|
|
|
abd_t rc_abdstruct; /* rc_abd probably points here */
|
2016-07-22 15:52:49 +00:00
|
|
|
abd_t *rc_abd; /* I/O data */
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
void *rc_orig_data; /* pre-reconstruction */
|
|
|
|
abd_t *rc_gdata; /* used to store the "good" version */
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
int rc_error; /* I/O error for this device */
|
2018-01-09 22:46:52 +00:00
|
|
|
uint8_t rc_tried; /* Did we attempt this I/O column? */
|
|
|
|
uint8_t rc_skipped; /* Did we skip this I/O column? */
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
uint8_t rc_need_orig_restore; /* need to restore from orig_data? */
|
|
|
|
uint8_t rc_repair; /* Write good data to this column */
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
} raidz_col_t;
|
|
|
|
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
typedef struct raidz_row {
|
|
|
|
uint64_t rr_cols; /* Regular column count */
|
|
|
|
uint64_t rr_scols; /* Count including skipped columns */
|
|
|
|
uint64_t rr_bigcols; /* Remainder data column count */
|
|
|
|
uint64_t rr_missingdata; /* Count of missing data devices */
|
|
|
|
uint64_t rr_missingparity; /* Count of missing parity devices */
|
|
|
|
uint64_t rr_firstdatacol; /* First data column/parity count */
|
|
|
|
abd_t *rr_abd_copy; /* rm_asize-buffer of copied data */
|
|
|
|
abd_t *rr_abd_empty; /* dRAID empty sector buffer */
|
|
|
|
int rr_nempty; /* empty sectors included in parity */
|
|
|
|
#ifdef ZFS_DEBUG
|
|
|
|
uint64_t rr_offset; /* Logical offset for *_io_verify() */
|
|
|
|
uint64_t rr_size; /* Physical size for *_io_verify() */
|
|
|
|
#endif
|
|
|
|
raidz_col_t rr_col[0]; /* Flexible array of I/O columns */
|
|
|
|
} raidz_row_t;
|
|
|
|
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
typedef struct raidz_map {
|
2018-01-09 22:46:52 +00:00
|
|
|
uintptr_t rm_reports; /* # of referencing checksum reports */
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
boolean_t rm_freed; /* map no longer has referencing ZIO */
|
|
|
|
boolean_t rm_ecksuminjected; /* checksum error was injected */
|
|
|
|
int rm_nrows; /* Regular row count */
|
|
|
|
int rm_nskip; /* RAIDZ sectors skipped for padding */
|
|
|
|
int rm_skipstart; /* Column index of padding start */
|
2019-07-12 16:31:20 +00:00
|
|
|
const raidz_impl_ops_t *rm_ops; /* RAIDZ math operations */
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
raidz_row_t *rm_row[0]; /* flexible array of rows */
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
} raidz_map_t;
|
|
|
|
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
|
2016-07-17 17:41:11 +00:00
|
|
|
#define RAIDZ_ORIGINAL_IMPL (INT_MAX)
|
|
|
|
|
2016-06-28 17:49:53 +00:00
|
|
|
extern const raidz_impl_ops_t vdev_raidz_scalar_impl;
|
2020-06-11 20:38:25 +00:00
|
|
|
extern boolean_t raidz_will_scalar_work(void);
|
|
|
|
|
2016-06-28 17:49:53 +00:00
|
|
|
#if defined(__x86_64) && defined(HAVE_SSE2) /* only x86_64 for now */
|
|
|
|
extern const raidz_impl_ops_t vdev_raidz_sse2_impl;
|
|
|
|
#endif
|
|
|
|
#if defined(__x86_64) && defined(HAVE_SSSE3) /* only x86_64 for now */
|
|
|
|
extern const raidz_impl_ops_t vdev_raidz_ssse3_impl;
|
|
|
|
#endif
|
|
|
|
#if defined(__x86_64) && defined(HAVE_AVX2) /* only x86_64 for now */
|
|
|
|
extern const raidz_impl_ops_t vdev_raidz_avx2_impl;
|
|
|
|
#endif
|
2016-11-02 19:40:23 +00:00
|
|
|
#if defined(__x86_64) && defined(HAVE_AVX512F) /* only x86_64 for now */
|
|
|
|
extern const raidz_impl_ops_t vdev_raidz_avx512f_impl;
|
|
|
|
#endif
|
|
|
|
#if defined(__x86_64) && defined(HAVE_AVX512BW) /* only x86_64 for now */
|
|
|
|
extern const raidz_impl_ops_t vdev_raidz_avx512bw_impl;
|
|
|
|
#endif
|
Add parity generation/rebuild using 128-bits NEON for Aarch64
This re-use the framework established for SSE2, SSSE3 and
AVX2. However, GCC is using FP registers on Aarch64, so
unlike SSE/AVX2 we can't rely on the registers being left alone
between ASM statements. So instead, the NEON code uses
C variables and GCC extended ASM syntax. Note that since
the kernel explicitly disable vector registers, they
have to be locally re-enabled explicitly.
As we use the variable's number to define the symbolic
name, and GCC won't allow duplicate symbolic names,
numbers have to be unique. Even when the code is not
going to be used (e.g. the case for 4 registers when
using the macro with only 2). Only the actually used
variables should be declared, otherwise the build
will fails in debug mode.
This requires the replacement of the XOR(X,X) syntax
by a new ZERO(X) macro, which does the same thing but
without repeating the argument. And perhaps someday
there will be a machine where there is a more efficient
way to zero a register than XOR with itself. This affects
scalar, SSE2, SSSE3 and AVX2 as they need the new macro.
It's possible to write faster implementations (different
scheduling, different unrolling, interleaving NEON and
scalar, ...) for various cores, but this one has the
advantage of fitting in the current state of the code,
and thus is likely easier to review/check/merge.
The only difference between aarch64-neon and aarch64-neonx2
is that aarch64-neonx2 unroll some functions some more.
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes #4801
2016-10-03 16:44:00 +00:00
|
|
|
#if defined(__aarch64__)
|
|
|
|
extern const raidz_impl_ops_t vdev_raidz_aarch64_neon_impl;
|
|
|
|
extern const raidz_impl_ops_t vdev_raidz_aarch64_neonx2_impl;
|
|
|
|
#endif
|
2020-01-23 19:01:24 +00:00
|
|
|
#if defined(__powerpc__)
|
|
|
|
extern const raidz_impl_ops_t vdev_raidz_powerpc_altivec_impl;
|
|
|
|
#endif
|
2016-06-28 17:49:53 +00:00
|
|
|
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
/*
|
|
|
|
* Commonly used raidz_map helpers
|
|
|
|
*
|
|
|
|
* raidz_parity Returns parity of the RAIDZ block
|
|
|
|
* raidz_ncols Returns number of columns the block spans
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
* Note, all rows have the same number of columns.
|
2019-08-30 16:53:15 +00:00
|
|
|
* raidz_nbigcols Returns number of big columns
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
* raidz_col_p Returns pointer to a column
|
|
|
|
* raidz_col_size Returns size of a column
|
|
|
|
* raidz_big_size Returns size of big columns
|
|
|
|
* raidz_short_size Returns size of short columns
|
|
|
|
*/
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
#define raidz_parity(rm) ((rm)->rm_row[0]->rr_firstdatacol)
|
|
|
|
#define raidz_ncols(rm) ((rm)->rm_row[0]->rr_cols)
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
#define raidz_nbigcols(rm) ((rm)->rm_bigcols)
|
|
|
|
#define raidz_col_p(rm, c) ((rm)->rm_col + (c))
|
|
|
|
#define raidz_col_size(rm, c) ((rm)->rm_col[c].rc_size)
|
|
|
|
#define raidz_big_size(rm) (raidz_col_size(rm, CODE_P))
|
|
|
|
#define raidz_short_size(rm) (raidz_col_size(rm, raidz_ncols(rm)-1))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macro defines an RAIDZ parity generation method
|
|
|
|
*
|
|
|
|
* @code parity the function produce
|
|
|
|
* @impl name of the implementation
|
|
|
|
*/
|
2016-12-12 18:46:26 +00:00
|
|
|
#define _RAIDZ_GEN_WRAP(code, impl) \
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
static void \
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
impl ## _gen_ ## code(void *rrp) \
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
{ \
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
raidz_row_t *rr = (raidz_row_t *)rrp; \
|
|
|
|
raidz_generate_## code ## _impl(rr); \
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macro defines an RAIDZ data reconstruction method
|
|
|
|
*
|
|
|
|
* @code parity the function produce
|
|
|
|
* @impl name of the implementation
|
|
|
|
*/
|
2016-12-12 18:46:26 +00:00
|
|
|
#define _RAIDZ_REC_WRAP(code, impl) \
|
|
|
|
static int \
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
impl ## _rec_ ## code(void *rrp, const int *tgtidx) \
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
{ \
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
raidz_row_t *rr = (raidz_row_t *)rrp; \
|
|
|
|
return (raidz_reconstruct_## code ## _impl(rr, tgtidx)); \
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Define all gen methods for an implementation
|
|
|
|
*
|
|
|
|
* @impl name of the implementation
|
|
|
|
*/
|
|
|
|
#define DEFINE_GEN_METHODS(impl) \
|
|
|
|
_RAIDZ_GEN_WRAP(p, impl); \
|
|
|
|
_RAIDZ_GEN_WRAP(pq, impl); \
|
|
|
|
_RAIDZ_GEN_WRAP(pqr, impl)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Define all rec functions for an implementation
|
|
|
|
*
|
|
|
|
* @impl name of the implementation
|
|
|
|
*/
|
|
|
|
#define DEFINE_REC_METHODS(impl) \
|
|
|
|
_RAIDZ_REC_WRAP(p, impl); \
|
|
|
|
_RAIDZ_REC_WRAP(q, impl); \
|
|
|
|
_RAIDZ_REC_WRAP(r, impl); \
|
|
|
|
_RAIDZ_REC_WRAP(pq, impl); \
|
|
|
|
_RAIDZ_REC_WRAP(pr, impl); \
|
|
|
|
_RAIDZ_REC_WRAP(qr, impl); \
|
|
|
|
_RAIDZ_REC_WRAP(pqr, impl)
|
|
|
|
|
|
|
|
#define RAIDZ_GEN_METHODS(impl) \
|
|
|
|
{ \
|
|
|
|
[RAIDZ_GEN_P] = & impl ## _gen_p, \
|
|
|
|
[RAIDZ_GEN_PQ] = & impl ## _gen_pq, \
|
|
|
|
[RAIDZ_GEN_PQR] = & impl ## _gen_pqr \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define RAIDZ_REC_METHODS(impl) \
|
|
|
|
{ \
|
|
|
|
[RAIDZ_REC_P] = & impl ## _rec_p, \
|
|
|
|
[RAIDZ_REC_Q] = & impl ## _rec_q, \
|
|
|
|
[RAIDZ_REC_R] = & impl ## _rec_r, \
|
|
|
|
[RAIDZ_REC_PQ] = & impl ## _rec_pq, \
|
|
|
|
[RAIDZ_REC_PR] = & impl ## _rec_pr, \
|
|
|
|
[RAIDZ_REC_QR] = & impl ## _rec_qr, \
|
|
|
|
[RAIDZ_REC_PQR] = & impl ## _rec_pqr \
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct raidz_impl_kstat {
|
2016-07-18 13:10:17 +00:00
|
|
|
uint64_t gen[RAIDZ_GEN_NUM]; /* gen method speed B/s */
|
|
|
|
uint64_t rec[RAIDZ_REC_NUM]; /* rec method speed B/s */
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
} raidz_impl_kstat_t;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Enumerate various multiplication constants
|
|
|
|
* used in reconstruction methods
|
|
|
|
*/
|
|
|
|
typedef enum raidz_mul_info {
|
|
|
|
/* Reconstruct Q */
|
|
|
|
MUL_Q_X = 0,
|
|
|
|
/* Reconstruct R */
|
|
|
|
MUL_R_X = 0,
|
|
|
|
/* Reconstruct PQ */
|
|
|
|
MUL_PQ_X = 0,
|
|
|
|
MUL_PQ_Y = 1,
|
|
|
|
/* Reconstruct PR */
|
|
|
|
MUL_PR_X = 0,
|
|
|
|
MUL_PR_Y = 1,
|
|
|
|
/* Reconstruct QR */
|
|
|
|
MUL_QR_XQ = 0,
|
|
|
|
MUL_QR_X = 1,
|
|
|
|
MUL_QR_YQ = 2,
|
|
|
|
MUL_QR_Y = 3,
|
|
|
|
/* Reconstruct PQR */
|
|
|
|
MUL_PQR_XP = 0,
|
|
|
|
MUL_PQR_XQ = 1,
|
|
|
|
MUL_PQR_XR = 2,
|
|
|
|
MUL_PQR_YU = 3,
|
|
|
|
MUL_PQR_YP = 4,
|
|
|
|
MUL_PQR_YQ = 5,
|
|
|
|
|
|
|
|
MUL_CNT = 6
|
|
|
|
} raidz_mul_info_t;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Powers of 2 in the Galois field.
|
|
|
|
*/
|
|
|
|
extern const uint8_t vdev_raidz_pow2[256] __attribute__((aligned(256)));
|
|
|
|
/* Logs of 2 in the Galois field defined above. */
|
|
|
|
extern const uint8_t vdev_raidz_log2[256] __attribute__((aligned(256)));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Multiply a given number by 2 raised to the given power.
|
|
|
|
*/
|
|
|
|
static inline uint8_t
|
|
|
|
vdev_raidz_exp2(const uint8_t a, const unsigned exp)
|
|
|
|
{
|
|
|
|
if (a == 0)
|
|
|
|
return (0);
|
|
|
|
|
2016-12-12 18:46:26 +00:00
|
|
|
return (vdev_raidz_pow2[(exp + (unsigned)vdev_raidz_log2[a]) % 255]);
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Galois Field operations.
|
|
|
|
*
|
|
|
|
* gf_exp2 - computes 2 raised to the given power
|
|
|
|
* gf_exp2 - computes 4 raised to the given power
|
|
|
|
* gf_mul - multiplication
|
|
|
|
* gf_div - division
|
|
|
|
* gf_inv - multiplicative inverse
|
|
|
|
*/
|
|
|
|
typedef unsigned gf_t;
|
|
|
|
typedef unsigned gf_log_t;
|
|
|
|
|
|
|
|
static inline gf_t
|
|
|
|
gf_mul(const gf_t a, const gf_t b)
|
|
|
|
{
|
|
|
|
gf_log_t logsum;
|
|
|
|
|
|
|
|
if (a == 0 || b == 0)
|
|
|
|
return (0);
|
|
|
|
|
2016-12-12 18:46:26 +00:00
|
|
|
logsum = (gf_log_t)vdev_raidz_log2[a] + (gf_log_t)vdev_raidz_log2[b];
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
|
2016-12-12 18:46:26 +00:00
|
|
|
return ((gf_t)vdev_raidz_pow2[logsum % 255]);
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline gf_t
|
|
|
|
gf_div(const gf_t a, const gf_t b)
|
|
|
|
{
|
|
|
|
gf_log_t logsum;
|
|
|
|
|
|
|
|
ASSERT3U(b, >, 0);
|
|
|
|
if (a == 0)
|
|
|
|
return (0);
|
|
|
|
|
2016-12-12 18:46:26 +00:00
|
|
|
logsum = (gf_log_t)255 + (gf_log_t)vdev_raidz_log2[a] -
|
|
|
|
(gf_log_t)vdev_raidz_log2[b];
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
|
2016-12-12 18:46:26 +00:00
|
|
|
return ((gf_t)vdev_raidz_pow2[logsum % 255]);
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline gf_t
|
|
|
|
gf_inv(const gf_t a)
|
|
|
|
{
|
|
|
|
gf_log_t logsum;
|
|
|
|
|
|
|
|
ASSERT3U(a, >, 0);
|
|
|
|
|
2016-12-12 18:46:26 +00:00
|
|
|
logsum = (gf_log_t)255 - (gf_log_t)vdev_raidz_log2[a];
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
|
2016-12-12 18:46:26 +00:00
|
|
|
return ((gf_t)vdev_raidz_pow2[logsum]);
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline gf_t
|
|
|
|
gf_exp2(gf_log_t exp)
|
|
|
|
{
|
|
|
|
return (vdev_raidz_pow2[exp % 255]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline gf_t
|
|
|
|
gf_exp4(gf_log_t exp)
|
|
|
|
{
|
|
|
|
ASSERT3U(exp, <=, 255);
|
2016-12-12 18:46:26 +00:00
|
|
|
return ((gf_t)vdev_raidz_pow2[(2 * exp) % 255]);
|
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-04-25 08:04:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _VDEV_RAIDZ_H */
|