zfs/include/sys/zfs_debug.h

112 lines
3.3 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
2008-11-20 20:01:55 +00:00
*/
#ifndef _SYS_ZFS_DEBUG_H
#define _SYS_ZFS_DEBUG_H
#ifdef __cplusplus
extern "C" {
#endif
2008-11-20 20:01:55 +00:00
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
extern int zfs_flags;
extern int zfs_recover;
extern int zfs_free_leak_on_eio;
extern int zfs_dbgmsg_enable;
2008-11-20 20:01:55 +00:00
#define ZFS_DEBUG_DPRINTF (1 << 0)
#define ZFS_DEBUG_DBUF_VERIFY (1 << 1)
#define ZFS_DEBUG_DNODE_VERIFY (1 << 2)
#define ZFS_DEBUG_SNAPNAMES (1 << 3)
#define ZFS_DEBUG_MODIFY (1 << 4)
/* 1<<5 was previously used, try not to reuse */
#define ZFS_DEBUG_ZIO_FREE (1 << 6)
#define ZFS_DEBUG_HISTOGRAM_VERIFY (1 << 7)
#define ZFS_DEBUG_METASLAB_VERIFY (1 << 8)
#define ZFS_DEBUG_SET_ERROR (1 << 9)
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
#define ZFS_DEBUG_INDIRECT_REMAP (1 << 10)
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
#define ZFS_DEBUG_TRIM (1 << 11)
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
#define ZFS_DEBUG_LOG_SPACEMAP (1 << 12)
2008-11-20 20:01:55 +00:00
extern void __set_error(const char *file, const char *func, int line, int err);
extern void __zfs_dbgmsg(char *buf);
extern void __dprintf(boolean_t dprint, const char *file, const char *func,
Swap DTRACE_PROBE* with Linux tracepoints This patch leverages Linux tracepoints from within the ZFS on Linux code base. It also refactors the debug code to bring it back in sync with Illumos. The information exported via tracepoints can be used for a variety of reasons (e.g. debugging, tuning, general exploration/understanding, etc). It is advantageous to use Linux tracepoints as the mechanism to export this kind of information (as opposed to something else) for a number of reasons: * A number of external tools can make use of our tracepoints "automatically" (e.g. perf, systemtap) * Tracepoints are designed to be extremely cheap when disabled * It's one of the "accepted" ways to export this kind of information; many other kernel subsystems use tracepoints too. Unfortunately, though, there are a few caveats as well: * Linux tracepoints appear to only be available to GPL licensed modules due to the way certain kernel functions are exported. Thus, to actually make use of the tracepoints introduced by this patch, one might have to patch and re-compile the kernel; exporting the necessary functions to non-GPL modules. * Prior to upstream kernel version v3.14-rc6-30-g66cc69e, Linux tracepoints are not available for unsigned kernel modules (tracepoints will get disabled due to the module's 'F' taint). Thus, one either has to sign the zfs kernel module prior to loading it, or use a kernel versioned v3.14-rc6-30-g66cc69e or newer. Assuming the above two requirements are satisfied, lets look at an example of how this patch can be used and what information it exposes (all commands run as 'root'): # list all zfs tracepoints available $ ls /sys/kernel/debug/tracing/events/zfs enable filter zfs_arc__delete zfs_arc__evict zfs_arc__hit zfs_arc__miss zfs_l2arc__evict zfs_l2arc__hit zfs_l2arc__iodone zfs_l2arc__miss zfs_l2arc__read zfs_l2arc__write zfs_new_state__mfu zfs_new_state__mru # enable all zfs tracepoints, clear the tracepoint ring buffer $ echo 1 > /sys/kernel/debug/tracing/events/zfs/enable $ echo 0 > /sys/kernel/debug/tracing/trace # import zpool called 'tank', inspect tracepoint data (each line was # truncated, they're too long for a commit message otherwise) $ zpool import tank $ cat /sys/kernel/debug/tracing/trace | head -n35 # tracer: nop # # entries-in-buffer/entries-written: 1219/1219 #P:8 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr... z_rd_int/0-30156 [003] .... 91344.200611: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.201173: zfs_arc__miss: hdr... z_rd_int/1-30157 [003] .... 91344.201756: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.201795: zfs_arc__miss: hdr... z_rd_int/2-30158 [003] .... 91344.202099: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202126: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202130: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202134: zfs_arc__hit: hdr ... lt-zpool-30132 [003] .... 91344.202146: zfs_arc__miss: hdr... z_rd_int/3-30159 [003] .... 91344.202457: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202484: zfs_arc__miss: hdr... z_rd_int/4-30160 [003] .... 91344.202866: zfs_new_state__mru... lt-zpool-30132 [003] .... 91344.202891: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.203034: zfs_arc__miss: hdr... z_rd_iss/1-30149 [001] .... 91344.203749: zfs_new_state__mru... lt-zpool-30132 [001] .... 91344.203789: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.203878: zfs_arc__miss: hdr... z_rd_iss/3-30151 [001] .... 91344.204315: zfs_new_state__mru... lt-zpool-30132 [001] .... 91344.204332: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204337: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204352: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204356: zfs_arc__hit: hdr ... lt-zpool-30132 [001] .... 91344.204360: zfs_arc__hit: hdr ... To highlight the kind of detailed information that is being exported using this infrastructure, I've taken the first tracepoint line from the output above and reformatted it such that it fits in 80 columns: lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr { dva 0x1:0x40082 birth 15491 cksum0 0x163edbff3a flags 0x640 datacnt 1 type 1 size 2048 spa 3133524293419867460 state_type 0 access 0 mru_hits 0 mru_ghost_hits 0 mfu_hits 0 mfu_ghost_hits 0 l2_hits 0 refcount 1 } bp { dva0 0x1:0x40082 dva1 0x1:0x3000e5 dva2 0x1:0x5a006e cksum 0x163edbff3a:0x75af30b3dd6:0x1499263ff5f2b:0x288bd118815e00 lsize 2048 } zb { objset 0 object 0 level -1 blkid 0 } For the specific tracepoint shown here, 'zfs_arc__miss', data is exported detailing the arc_buf_hdr_t (hdr), blkptr_t (bp), and zbookmark_t (zb) that caused the ARC miss (down to the exact DVA!). This kind of precise and detailed information can be extremely valuable when trying to answer certain kinds of questions. For anybody unfamiliar but looking to build on this, I found the XFS source code along with the following three web links to be extremely helpful: * http://lwn.net/Articles/379903/ * http://lwn.net/Articles/381064/ * http://lwn.net/Articles/383362/ I should also node the more "boring" aspects of this patch: * The ZFS_LINUX_COMPILE_IFELSE autoconf macro was modified to support a sixth paramter. This parameter is used to populate the contents of the new conftest.h file. If no sixth parameter is provided, conftest.h will be empty. * The ZFS_LINUX_TRY_COMPILE_HEADER autoconf macro was introduced. This macro is nearly identical to the ZFS_LINUX_TRY_COMPILE macro, except it has support for a fifth option that is then passed as the sixth parameter to ZFS_LINUX_COMPILE_IFELSE. These autoconf changes were needed to test the availability of the Linux tracepoint macros. Due to the odd nature of the Linux tracepoint macro API, a separate ".h" must be created (the path and filename is used internally by the kernel's define_trace.h file). * The HAVE_DECLARE_EVENT_CLASS autoconf macro was introduced. This is to determine if we can safely enable the Linux tracepoint functionality. We need to selectively disable the tracepoint code due to the kernel exporting certain functions as GPL only. Without this check, the build process will fail at link time. In addition, the SET_ERROR macro was modified into a tracepoint as well. To do this, the 'sdt.h' file was moved into the 'include/sys' directory and now contains a userspace portion and a kernel space portion. The dprintf and zfs_dbgmsg* interfaces are now implemented as tracepoint as well. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2014-06-13 17:54:48 +00:00
int line, const char *fmt, ...);
/*
* Some general principles for using zfs_dbgmsg():
* 1. We don't want to pollute the log with typically-irrelevant messages,
* so don't print too many messages in the "normal" code path - O(1)
* per txg.
* 2. We want to know for sure what happened, so make the message specific
* (e.g. *which* thing am I operating on).
* 3. Do print a message when something unusual or unexpected happens
* (e.g. error cases).
* 4. Print a message when making user-initiated on-disk changes.
*
* Note that besides principle 1, another reason that we don't want to
* use zfs_dbgmsg in high-frequency routines is the potential impact
* that it can have on performance.
*/
#define zfs_dbgmsg(...) \
if (zfs_dbgmsg_enable) \
__dprintf(B_FALSE, __FILE__, __func__, __LINE__, __VA_ARGS__)
#ifdef ZFS_DEBUG
/*
* To enable this:
*
* $ echo 1 >/sys/module/zfs/parameters/zfs_flags
*/
#define dprintf(...) \
if (zfs_flags & ZFS_DEBUG_DPRINTF) \
__dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__)
#else
#define dprintf(...) ((void)0)
#endif /* ZFS_DEBUG */
extern void zfs_panic_recover(const char *fmt, ...);
extern void zfs_dbgmsg_init(void);
extern void zfs_dbgmsg_fini(void);
#ifndef _KERNEL
extern int dprintf_find_string(const char *string);
extern void zfs_dbgmsg_print(const char *tag);
#endif
#ifdef __cplusplus
}
#endif
2008-11-20 20:01:55 +00:00
#endif /* _SYS_ZFS_DEBUG_H */