zfs/module/splat/splat-mutex.c

349 lines
9.6 KiB
C
Raw Normal View History

/*
* This file is part of the SPL: Solaris Porting Layer.
*
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory
* Written by:
* Brian Behlendorf <behlendorf1@llnl.gov>,
* Herb Wartens <wartens2@llnl.gov>,
* Jim Garlick <garlick@llnl.gov>
* UCRL-CODE-235197
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "splat-internal.h"
#define SPLAT_SUBSYSTEM_MUTEX 0x0400
#define SPLAT_MUTEX_NAME "mutex"
#define SPLAT_MUTEX_DESC "Kernel Mutex Tests"
#define SPLAT_MUTEX_TEST1_ID 0x0401
#define SPLAT_MUTEX_TEST1_NAME "tryenter"
#define SPLAT_MUTEX_TEST1_DESC "Validate mutex_tryenter() correctness"
#define SPLAT_MUTEX_TEST2_ID 0x0402
#define SPLAT_MUTEX_TEST2_NAME "race"
#define SPLAT_MUTEX_TEST2_DESC "Many threads entering/exiting the mutex"
#define SPLAT_MUTEX_TEST3_ID 0x0403
#define SPLAT_MUTEX_TEST3_NAME "owned"
#define SPLAT_MUTEX_TEST3_DESC "Validate mutex_owned() correctness"
#define SPLAT_MUTEX_TEST4_ID 0x0404
#define SPLAT_MUTEX_TEST4_NAME "owner"
#define SPLAT_MUTEX_TEST4_DESC "Validate mutex_owner() correctness"
#define SPLAT_MUTEX_TEST_MAGIC 0x115599DDUL
#define SPLAT_MUTEX_TEST_NAME "mutex_test"
#define SPLAT_MUTEX_TEST_WORKQ "mutex_wq"
#define SPLAT_MUTEX_TEST_COUNT 128
typedef struct mutex_priv {
unsigned long mp_magic;
struct file *mp_file;
struct work_struct mp_work[SPLAT_MUTEX_TEST_COUNT];
kmutex_t mp_mtx;
int mp_rc;
} mutex_priv_t;
static void
splat_mutex_test1_work(void *priv)
{
mutex_priv_t *mp;
mp = spl_get_work_data(priv, mutex_priv_t, mp_work.work);
ASSERT(mp->mp_magic == SPLAT_MUTEX_TEST_MAGIC);
mp->mp_rc = 0;
if (!mutex_tryenter(&mp->mp_mtx))
mp->mp_rc = -EBUSY;
}
static int
splat_mutex_test1(struct file *file, void *arg)
{
struct workqueue_struct *wq;
struct work_struct work;
mutex_priv_t *mp;
int rc = 0;
mp = (mutex_priv_t *)kmalloc(sizeof(*mp), GFP_KERNEL);
if (mp == NULL)
return -ENOMEM;
wq = create_singlethread_workqueue(SPLAT_MUTEX_TEST_WORKQ);
if (wq == NULL) {
rc = -ENOMEM;
goto out2;
}
mutex_init(&(mp->mp_mtx), SPLAT_MUTEX_TEST_NAME, MUTEX_DEFAULT, NULL);
mutex_enter(&(mp->mp_mtx));
mp->mp_magic = SPLAT_MUTEX_TEST_MAGIC;
mp->mp_file = file;
spl_init_work(&work, splat_mutex_test1_work, mp);
/* Schedule a work item which will try and aquire the mutex via
* mutex_tryenter() while its held. This should fail and the work
* item will indicte this status in the passed private data. */
if (!queue_work(wq, &work)) {
mutex_exit(&(mp->mp_mtx));
rc = -EINVAL;
goto out;
}
flush_workqueue(wq);
mutex_exit(&(mp->mp_mtx));
/* Work item successfully aquired mutex, very bad! */
if (mp->mp_rc != -EBUSY) {
rc = -EINVAL;
goto out;
}
splat_vprint(file, SPLAT_MUTEX_TEST1_NAME, "%s",
"mutex_trylock() correctly failed when mutex held\n");
/* Schedule a work item which will try and aquire the mutex via
* mutex_tryenter() while it is not held. This should work and
* the item will indicte this status in the passed private data. */
if (!queue_work(wq, &work)) {
rc = -EINVAL;
goto out;
}
flush_workqueue(wq);
/* Work item failed to aquire mutex, very bad! */
if (mp->mp_rc != 0) {
rc = -EINVAL;
goto out;
}
splat_vprint(file, SPLAT_MUTEX_TEST1_NAME, "%s",
"mutex_trylock() correctly succeeded when mutex unheld\n");
out:
mutex_destroy(&(mp->mp_mtx));
destroy_workqueue(wq);
out2:
kfree(mp);
return rc;
}
static void
splat_mutex_test2_work(void *priv)
{
mutex_priv_t *mp;
int rc;
mp = spl_get_work_data(priv, mutex_priv_t, mp_work.work);
ASSERT(mp->mp_magic == SPLAT_MUTEX_TEST_MAGIC);
/* Read the value before sleeping and write it after we wake up to
* maximize the chance of a race if mutexs are not working properly */
mutex_enter(&mp->mp_mtx);
rc = mp->mp_rc;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(HZ / 100); /* 1/100 of a second */
mp->mp_rc = rc + 1;
mutex_exit(&mp->mp_mtx);
}
static int
splat_mutex_test2(struct file *file, void *arg)
{
struct workqueue_struct *wq;
mutex_priv_t *mp;
int i, rc = 0;
mp = (mutex_priv_t *)kmalloc(sizeof(*mp), GFP_KERNEL);
if (mp == NULL)
return -ENOMEM;
/* Create a thread per CPU items on queue will race */
wq = create_workqueue(SPLAT_MUTEX_TEST_WORKQ);
if (wq == NULL) {
rc = -ENOMEM;
goto out;
}
mutex_init(&(mp->mp_mtx), SPLAT_MUTEX_TEST_NAME, MUTEX_DEFAULT, NULL);
mp->mp_magic = SPLAT_MUTEX_TEST_MAGIC;
mp->mp_file = file;
mp->mp_rc = 0;
/* Schedule N work items to the work queue each of which enters the
* mutex, sleeps briefly, then exits the mutex. On a multiprocessor
* box these work items will be handled by all available CPUs. The
* mutex is instrumented such that if any two processors are in the
* critical region at the same time the system will panic. If the
* mutex is implemented right this will never happy, that's a pass. */
for (i = 0; i < SPLAT_MUTEX_TEST_COUNT; i++) {
spl_init_work(&(mp->mp_work[i]), splat_mutex_test2_work, mp);
if (!queue_work(wq, &(mp->mp_work[i]))) {
splat_vprint(file, SPLAT_MUTEX_TEST2_NAME,
"Failed to queue work id %d\n", i);
rc = -EINVAL;
}
}
flush_workqueue(wq);
if (mp->mp_rc == SPLAT_MUTEX_TEST_COUNT) {
splat_vprint(file, SPLAT_MUTEX_TEST2_NAME, "%d racing threads "
"correctly entered/exited the mutex %d times\n",
num_online_cpus(), mp->mp_rc);
} else {
splat_vprint(file, SPLAT_MUTEX_TEST2_NAME, "%d racing threads "
"only processed %d/%d mutex work items\n",
num_online_cpus(), mp->mp_rc, SPLAT_MUTEX_TEST_COUNT);
rc = -EINVAL;
}
mutex_destroy(&(mp->mp_mtx));
destroy_workqueue(wq);
out:
kfree(mp);
return rc;
}
static int
splat_mutex_test3(struct file *file, void *arg)
{
kmutex_t mtx;
int rc = 0;
mutex_init(&mtx, SPLAT_MUTEX_TEST_NAME, MUTEX_DEFAULT, NULL);
mutex_enter(&mtx);
/* Mutex should be owned by current */
if (!mutex_owned(&mtx)) {
splat_vprint(file, SPLAT_MUTEX_TEST3_NAME, "Mutex should "
"be owned by pid %d but is owned by pid %d\n",
current->pid, mtx.km_owner ? mtx.km_owner->pid : -1);
rc = -EINVAL;
goto out;
}
mutex_exit(&mtx);
/* Mutex should not be owned by any task */
if (mutex_owned(&mtx)) {
splat_vprint(file, SPLAT_MUTEX_TEST3_NAME, "Mutex should "
"not be owned but is owned by pid %d\n",
mtx.km_owner ? mtx.km_owner->pid : -1);
rc = -EINVAL;
goto out;
}
splat_vprint(file, SPLAT_MUTEX_TEST3_NAME, "%s",
"Correct mutex_owned() behavior\n");
out:
mutex_destroy(&mtx);
return rc;
}
static int
splat_mutex_test4(struct file *file, void *arg)
{
kmutex_t mtx;
kthread_t *owner;
int rc = 0;
mutex_init(&mtx, SPLAT_MUTEX_TEST_NAME, MUTEX_DEFAULT, NULL);
mutex_enter(&mtx);
/* Mutex should be owned by current */
owner = mutex_owner(&mtx);
if (current != owner) {
splat_vprint(file, SPLAT_MUTEX_TEST3_NAME, "Mutex should "
"be owned by pid %d but is owned by pid %d\n",
current->pid, owner ? owner->pid : -1);
rc = -EINVAL;
goto out;
}
mutex_exit(&mtx);
/* Mutex should not be owned by any task */
owner = mutex_owner(&mtx);
if (owner) {
splat_vprint(file, SPLAT_MUTEX_TEST3_NAME, "Mutex should not "
"be owned but is owned by pid %d\n", owner->pid);
rc = -EINVAL;
goto out;
}
splat_vprint(file, SPLAT_MUTEX_TEST3_NAME, "%s",
"Correct mutex_owner() behavior\n");
out:
mutex_destroy(&mtx);
return rc;
}
splat_subsystem_t *
splat_mutex_init(void)
{
splat_subsystem_t *sub;
sub = kmalloc(sizeof(*sub), GFP_KERNEL);
if (sub == NULL)
return NULL;
memset(sub, 0, sizeof(*sub));
strncpy(sub->desc.name, SPLAT_MUTEX_NAME, SPLAT_NAME_SIZE);
strncpy(sub->desc.desc, SPLAT_MUTEX_DESC, SPLAT_DESC_SIZE);
INIT_LIST_HEAD(&sub->subsystem_list);
INIT_LIST_HEAD(&sub->test_list);
spin_lock_init(&sub->test_lock);
sub->desc.id = SPLAT_SUBSYSTEM_MUTEX;
SPLAT_TEST_INIT(sub, SPLAT_MUTEX_TEST1_NAME, SPLAT_MUTEX_TEST1_DESC,
SPLAT_MUTEX_TEST1_ID, splat_mutex_test1);
SPLAT_TEST_INIT(sub, SPLAT_MUTEX_TEST2_NAME, SPLAT_MUTEX_TEST2_DESC,
SPLAT_MUTEX_TEST2_ID, splat_mutex_test2);
SPLAT_TEST_INIT(sub, SPLAT_MUTEX_TEST3_NAME, SPLAT_MUTEX_TEST3_DESC,
SPLAT_MUTEX_TEST3_ID, splat_mutex_test3);
SPLAT_TEST_INIT(sub, SPLAT_MUTEX_TEST4_NAME, SPLAT_MUTEX_TEST4_DESC,
SPLAT_MUTEX_TEST4_ID, splat_mutex_test4);
return sub;
}
void
splat_mutex_fini(splat_subsystem_t *sub)
{
ASSERT(sub);
SPLAT_TEST_FINI(sub, SPLAT_MUTEX_TEST4_ID);
SPLAT_TEST_FINI(sub, SPLAT_MUTEX_TEST3_ID);
SPLAT_TEST_FINI(sub, SPLAT_MUTEX_TEST2_ID);
SPLAT_TEST_FINI(sub, SPLAT_MUTEX_TEST1_ID);
kfree(sub);
}
int
splat_mutex_id(void) {
return SPLAT_SUBSYSTEM_MUTEX;
}