zfs/module/icp/api/kcf_cipher.c

858 lines
26 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/crypto/api.h>
#include <sys/crypto/spi.h>
#include <sys/crypto/sched_impl.h>
/*
* Encryption and decryption routines.
*/
/*
* The following are the possible returned values common to all the routines
* below. The applicability of some of these return values depends on the
* presence of the arguments.
*
* CRYPTO_SUCCESS: The operation completed successfully.
* CRYPTO_QUEUED: A request was submitted successfully. The callback
* routine will be called when the operation is done.
* CRYPTO_INVALID_MECH_NUMBER, CRYPTO_INVALID_MECH_PARAM, or
* CRYPTO_INVALID_MECH for problems with the 'mech'.
* CRYPTO_INVALID_DATA for bogus 'data'
* CRYPTO_HOST_MEMORY for failure to allocate memory to handle this work.
* CRYPTO_INVALID_CONTEXT: Not a valid context.
* CRYPTO_BUSY: Cannot process the request now. Schedule a
* crypto_bufcall(), or try later.
* CRYPTO_NOT_SUPPORTED and CRYPTO_MECH_NOT_SUPPORTED: No provider is
* capable of a function or a mechanism.
* CRYPTO_INVALID_KEY: bogus 'key' argument.
* CRYPTO_INVALID_PLAINTEXT: bogus 'plaintext' argument.
* CRYPTO_INVALID_CIPHERTEXT: bogus 'ciphertext' argument.
*/
/*
* crypto_cipher_init_prov()
*
* Arguments:
*
* pd: provider descriptor
* sid: session id
* mech: crypto_mechanism_t pointer.
* mech_type is a valid value previously returned by
* crypto_mech2id();
* When the mech's parameter is not NULL, its definition depends
* on the standard definition of the mechanism.
* key: pointer to a crypto_key_t structure.
* tmpl: a crypto_ctx_template_t, opaque template of a context of an
* encryption or decryption with the 'mech' using 'key'.
* 'tmpl' is created by a previous call to
* crypto_create_ctx_template().
* ctxp: Pointer to a crypto_context_t.
* func: CRYPTO_FG_ENCRYPT or CRYPTO_FG_DECRYPT.
* cr: crypto_call_req_t calling conditions and call back info.
*
* Description:
* This is a common function invoked internally by both
* crypto_encrypt_init() and crypto_decrypt_init().
* Asynchronously submits a request for, or synchronously performs the
* initialization of an encryption or a decryption operation.
* When possible and applicable, will internally use the pre-expanded key
* schedule from the context template, tmpl.
* When complete and successful, 'ctxp' will contain a crypto_context_t
* valid for later calls to encrypt_update() and encrypt_final(), or
* decrypt_update() and decrypt_final().
* The caller should hold a reference on the specified provider
* descriptor before calling this function.
*
* Context:
* Process or interrupt, according to the semantics dictated by the 'cr'.
*
* Returns:
* See comment in the beginning of the file.
*/
static int
crypto_cipher_init_prov(crypto_provider_t provider, crypto_session_id_t sid,
crypto_mechanism_t *mech, crypto_key_t *key,
crypto_spi_ctx_template_t tmpl, crypto_context_t *ctxp,
crypto_call_req_t *crq, crypto_func_group_t func)
{
int error;
crypto_ctx_t *ctx;
kcf_req_params_t params;
kcf_provider_desc_t *pd = provider;
kcf_provider_desc_t *real_provider = pd;
ASSERT(KCF_PROV_REFHELD(pd));
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
if (func == CRYPTO_FG_ENCRYPT) {
error = kcf_get_hardware_provider(mech->cm_type,
CRYPTO_MECH_INVALID, CHECK_RESTRICT(crq), pd,
&real_provider, CRYPTO_FG_ENCRYPT);
} else {
error = kcf_get_hardware_provider(mech->cm_type,
CRYPTO_MECH_INVALID, CHECK_RESTRICT(crq), pd,
&real_provider, CRYPTO_FG_DECRYPT);
}
if (error != CRYPTO_SUCCESS)
return (error);
}
/* Allocate and initialize the canonical context */
if ((ctx = kcf_new_ctx(crq, real_provider, sid)) == NULL) {
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)
KCF_PROV_REFRELE(real_provider);
return (CRYPTO_HOST_MEMORY);
}
/* The fast path for SW providers. */
if (CHECK_FASTPATH(crq, pd)) {
crypto_mechanism_t lmech;
lmech = *mech;
KCF_SET_PROVIDER_MECHNUM(mech->cm_type, real_provider, &lmech);
if (func == CRYPTO_FG_ENCRYPT)
error = KCF_PROV_ENCRYPT_INIT(real_provider, ctx,
&lmech, key, tmpl, KCF_SWFP_RHNDL(crq));
else {
ASSERT(func == CRYPTO_FG_DECRYPT);
error = KCF_PROV_DECRYPT_INIT(real_provider, ctx,
&lmech, key, tmpl, KCF_SWFP_RHNDL(crq));
}
KCF_PROV_INCRSTATS(pd, error);
goto done;
}
/* Check if context sharing is possible */
if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
key->ck_format == CRYPTO_KEY_RAW &&
KCF_CAN_SHARE_OPSTATE(pd, mech->cm_type)) {
kcf_context_t *tctxp = (kcf_context_t *)ctx;
kcf_provider_desc_t *tpd = NULL;
const crypto_mech_info_t *sinfo;
if ((kcf_get_sw_prov(mech->cm_type, &tpd, &tctxp->kc_mech,
B_FALSE) == CRYPTO_SUCCESS)) {
int tlen;
sinfo = &(KCF_TO_PROV_MECHINFO(tpd, mech->cm_type));
/*
* key->ck_length from the consumer is always in bits.
* We convert it to be in the same unit registered by
* the provider in order to do a comparison.
*/
if (sinfo->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BYTES)
tlen = key->ck_length >> 3;
else
tlen = key->ck_length;
/*
* Check if the software provider can support context
* sharing and support this key length.
*/
if ((sinfo->cm_mech_flags & CRYPTO_CAN_SHARE_OPSTATE) &&
(tlen >= sinfo->cm_min_key_length) &&
(tlen <= sinfo->cm_max_key_length)) {
ctx->cc_flags = CRYPTO_INIT_OPSTATE;
tctxp->kc_sw_prov_desc = tpd;
} else
KCF_PROV_REFRELE(tpd);
}
}
if (func == CRYPTO_FG_ENCRYPT) {
KCF_WRAP_ENCRYPT_OPS_PARAMS(&params, KCF_OP_INIT, sid,
mech, key, NULL, NULL, tmpl);
} else {
ASSERT(func == CRYPTO_FG_DECRYPT);
KCF_WRAP_DECRYPT_OPS_PARAMS(&params, KCF_OP_INIT, sid,
mech, key, NULL, NULL, tmpl);
}
error = kcf_submit_request(real_provider, ctx, crq, &params);
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)
KCF_PROV_REFRELE(real_provider);
done:
if ((error == CRYPTO_SUCCESS) || (error == CRYPTO_QUEUED))
*ctxp = (crypto_context_t)ctx;
else {
/* Release the hold done in kcf_new_ctx(). */
KCF_CONTEXT_REFRELE((kcf_context_t *)ctx->cc_framework_private);
}
return (error);
}
/*
* Same as crypto_cipher_init_prov(), but relies on the scheduler to pick
* an appropriate provider. See crypto_cipher_init_prov() comments for more
* details.
*/
static int
crypto_cipher_init(crypto_mechanism_t *mech, crypto_key_t *key,
crypto_ctx_template_t tmpl, crypto_context_t *ctxp,
crypto_call_req_t *crq, crypto_func_group_t func)
{
int error;
kcf_mech_entry_t *me;
kcf_provider_desc_t *pd;
kcf_ctx_template_t *ctx_tmpl;
crypto_spi_ctx_template_t spi_ctx_tmpl = NULL;
kcf_prov_tried_t *list = NULL;
retry:
/* pd is returned held */
if ((pd = kcf_get_mech_provider(mech->cm_type, &me, &error,
list, func, CHECK_RESTRICT(crq), 0)) == NULL) {
if (list != NULL)
kcf_free_triedlist(list);
return (error);
}
/*
* For SW providers, check the validity of the context template
* It is very rare that the generation number mis-matches, so
* is acceptable to fail here, and let the consumer recover by
* freeing this tmpl and create a new one for the key and new SW
* provider
*/
if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) &&
((ctx_tmpl = (kcf_ctx_template_t *)tmpl) != NULL)) {
if (ctx_tmpl->ct_generation != me->me_gen_swprov) {
if (list != NULL)
kcf_free_triedlist(list);
KCF_PROV_REFRELE(pd);
return (CRYPTO_OLD_CTX_TEMPLATE);
} else {
spi_ctx_tmpl = ctx_tmpl->ct_prov_tmpl;
}
}
error = crypto_cipher_init_prov(pd, pd->pd_sid, mech, key,
spi_ctx_tmpl, ctxp, crq, func);
if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED &&
IS_RECOVERABLE(error)) {
/* Add pd to the linked list of providers tried. */
if (kcf_insert_triedlist(&list, pd, KCF_KMFLAG(crq)) != NULL)
goto retry;
}
if (list != NULL)
kcf_free_triedlist(list);
KCF_PROV_REFRELE(pd);
return (error);
}
/*
* crypto_encrypt_prov()
*
* Arguments:
* pd: provider descriptor
* sid: session id
* mech: crypto_mechanism_t pointer.
* mech_type is a valid value previously returned by
* crypto_mech2id();
* When the mech's parameter is not NULL, its definition depends
* on the standard definition of the mechanism.
* key: pointer to a crypto_key_t structure.
* plaintext: The message to be encrypted
* ciphertext: Storage for the encrypted message. The length needed
* depends on the mechanism, and the plaintext's size.
* tmpl: a crypto_ctx_template_t, opaque template of a context of an
* encryption with the 'mech' using 'key'. 'tmpl' is created by
* a previous call to crypto_create_ctx_template().
* cr: crypto_call_req_t calling conditions and call back info.
*
* Description:
* Asynchronously submits a request for, or synchronously performs a
* single-part encryption of 'plaintext' with the mechanism 'mech', using
* the key 'key'.
* When complete and successful, 'ciphertext' will contain the encrypted
* message.
*
* Context:
* Process or interrupt, according to the semantics dictated by the 'cr'.
*
* Returns:
* See comment in the beginning of the file.
*/
int
crypto_encrypt_prov(crypto_provider_t provider, crypto_session_id_t sid,
crypto_mechanism_t *mech, crypto_data_t *plaintext, crypto_key_t *key,
crypto_ctx_template_t tmpl, crypto_data_t *ciphertext,
crypto_call_req_t *crq)
{
kcf_req_params_t params;
kcf_provider_desc_t *pd = provider;
kcf_provider_desc_t *real_provider = pd;
int error;
ASSERT(KCF_PROV_REFHELD(pd));
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
error = kcf_get_hardware_provider(mech->cm_type,
CRYPTO_MECH_INVALID, CHECK_RESTRICT(crq), pd,
&real_provider, CRYPTO_FG_ENCRYPT_ATOMIC);
if (error != CRYPTO_SUCCESS)
return (error);
}
KCF_WRAP_ENCRYPT_OPS_PARAMS(&params, KCF_OP_ATOMIC, sid, mech, key,
plaintext, ciphertext, tmpl);
error = kcf_submit_request(real_provider, NULL, crq, &params);
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)
KCF_PROV_REFRELE(real_provider);
return (error);
}
/*
* Same as crypto_encrypt_prov(), but relies on the scheduler to pick
* a provider. See crypto_encrypt_prov() for more details.
*/
int
crypto_encrypt(crypto_mechanism_t *mech, crypto_data_t *plaintext,
crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_data_t *ciphertext,
crypto_call_req_t *crq)
{
int error;
kcf_mech_entry_t *me;
kcf_req_params_t params;
kcf_provider_desc_t *pd;
kcf_ctx_template_t *ctx_tmpl;
crypto_spi_ctx_template_t spi_ctx_tmpl = NULL;
kcf_prov_tried_t *list = NULL;
retry:
/* pd is returned held */
if ((pd = kcf_get_mech_provider(mech->cm_type, &me, &error,
list, CRYPTO_FG_ENCRYPT_ATOMIC, CHECK_RESTRICT(crq),
plaintext->cd_length)) == NULL) {
if (list != NULL)
kcf_free_triedlist(list);
return (error);
}
/*
* For SW providers, check the validity of the context template
* It is very rare that the generation number mis-matches, so
* is acceptable to fail here, and let the consumer recover by
* freeing this tmpl and create a new one for the key and new SW
* provider
*/
if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) &&
((ctx_tmpl = (kcf_ctx_template_t *)tmpl) != NULL)) {
if (ctx_tmpl->ct_generation != me->me_gen_swprov) {
if (list != NULL)
kcf_free_triedlist(list);
KCF_PROV_REFRELE(pd);
return (CRYPTO_OLD_CTX_TEMPLATE);
} else {
spi_ctx_tmpl = ctx_tmpl->ct_prov_tmpl;
}
}
/* The fast path for SW providers. */
if (CHECK_FASTPATH(crq, pd)) {
crypto_mechanism_t lmech;
lmech = *mech;
KCF_SET_PROVIDER_MECHNUM(mech->cm_type, pd, &lmech);
error = KCF_PROV_ENCRYPT_ATOMIC(pd, pd->pd_sid, &lmech, key,
plaintext, ciphertext, spi_ctx_tmpl, KCF_SWFP_RHNDL(crq));
KCF_PROV_INCRSTATS(pd, error);
} else {
KCF_WRAP_ENCRYPT_OPS_PARAMS(&params, KCF_OP_ATOMIC, pd->pd_sid,
mech, key, plaintext, ciphertext, spi_ctx_tmpl);
error = kcf_submit_request(pd, NULL, crq, &params);
}
if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED &&
IS_RECOVERABLE(error)) {
/* Add pd to the linked list of providers tried. */
if (kcf_insert_triedlist(&list, pd, KCF_KMFLAG(crq)) != NULL)
goto retry;
}
if (list != NULL)
kcf_free_triedlist(list);
KCF_PROV_REFRELE(pd);
return (error);
}
/*
* crypto_encrypt_init_prov()
*
* Calls crypto_cipher_init_prov() to initialize an encryption operation.
*/
int
crypto_encrypt_init_prov(crypto_provider_t pd, crypto_session_id_t sid,
crypto_mechanism_t *mech, crypto_key_t *key,
crypto_ctx_template_t tmpl, crypto_context_t *ctxp,
crypto_call_req_t *crq)
{
return (crypto_cipher_init_prov(pd, sid, mech, key, tmpl, ctxp, crq,
CRYPTO_FG_ENCRYPT));
}
/*
* crypto_encrypt_init()
*
* Calls crypto_cipher_init() to initialize an encryption operation
*/
int
crypto_encrypt_init(crypto_mechanism_t *mech, crypto_key_t *key,
crypto_ctx_template_t tmpl, crypto_context_t *ctxp,
crypto_call_req_t *crq)
{
return (crypto_cipher_init(mech, key, tmpl, ctxp, crq,
CRYPTO_FG_ENCRYPT));
}
/*
* crypto_encrypt_update()
*
* Arguments:
* context: A crypto_context_t initialized by encrypt_init().
* plaintext: The message part to be encrypted
* ciphertext: Storage for the encrypted message part.
* cr: crypto_call_req_t calling conditions and call back info.
*
* Description:
* Asynchronously submits a request for, or synchronously performs a
* part of an encryption operation.
*
* Context:
* Process or interrupt, according to the semantics dictated by the 'cr'.
*
* Returns:
* See comment in the beginning of the file.
*/
int
crypto_encrypt_update(crypto_context_t context, crypto_data_t *plaintext,
crypto_data_t *ciphertext, crypto_call_req_t *cr)
{
crypto_ctx_t *ctx = (crypto_ctx_t *)context;
kcf_context_t *kcf_ctx;
kcf_provider_desc_t *pd;
int error;
kcf_req_params_t params;
if ((ctx == NULL) ||
((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) ||
((pd = kcf_ctx->kc_prov_desc) == NULL)) {
return (CRYPTO_INVALID_CONTEXT);
}
ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER);
/* The fast path for SW providers. */
if (CHECK_FASTPATH(cr, pd)) {
error = KCF_PROV_ENCRYPT_UPDATE(pd, ctx, plaintext,
ciphertext, NULL);
KCF_PROV_INCRSTATS(pd, error);
return (error);
}
/* Check if we should use a software provider for small jobs */
if ((ctx->cc_flags & CRYPTO_USE_OPSTATE) && cr == NULL) {
if (plaintext->cd_length < kcf_ctx->kc_mech->me_threshold &&
kcf_ctx->kc_sw_prov_desc != NULL &&
KCF_IS_PROV_USABLE(kcf_ctx->kc_sw_prov_desc)) {
pd = kcf_ctx->kc_sw_prov_desc;
}
}
KCF_WRAP_ENCRYPT_OPS_PARAMS(&params, KCF_OP_UPDATE,
ctx->cc_session, NULL, NULL, plaintext, ciphertext, NULL);
error = kcf_submit_request(pd, ctx, cr, &params);
return (error);
}
/*
* crypto_encrypt_final()
*
* Arguments:
* context: A crypto_context_t initialized by encrypt_init().
* ciphertext: Storage for the last part of encrypted message
* cr: crypto_call_req_t calling conditions and call back info.
*
* Description:
* Asynchronously submits a request for, or synchronously performs the
* final part of an encryption operation.
*
* Context:
* Process or interrupt, according to the semantics dictated by the 'cr'.
*
* Returns:
* See comment in the beginning of the file.
*/
int
crypto_encrypt_final(crypto_context_t context, crypto_data_t *ciphertext,
crypto_call_req_t *cr)
{
crypto_ctx_t *ctx = (crypto_ctx_t *)context;
kcf_context_t *kcf_ctx;
kcf_provider_desc_t *pd;
int error;
kcf_req_params_t params;
if ((ctx == NULL) ||
((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) ||
((pd = kcf_ctx->kc_prov_desc) == NULL)) {
return (CRYPTO_INVALID_CONTEXT);
}
ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER);
/* The fast path for SW providers. */
if (CHECK_FASTPATH(cr, pd)) {
error = KCF_PROV_ENCRYPT_FINAL(pd, ctx, ciphertext, NULL);
KCF_PROV_INCRSTATS(pd, error);
} else {
KCF_WRAP_ENCRYPT_OPS_PARAMS(&params, KCF_OP_FINAL,
ctx->cc_session, NULL, NULL, NULL, ciphertext, NULL);
error = kcf_submit_request(pd, ctx, cr, &params);
}
/* Release the hold done in kcf_new_ctx() during init step. */
KCF_CONTEXT_COND_RELEASE(error, kcf_ctx);
return (error);
}
/*
* crypto_decrypt_prov()
*
* Arguments:
* pd: provider descriptor
* sid: session id
* mech: crypto_mechanism_t pointer.
* mech_type is a valid value previously returned by
* crypto_mech2id();
* When the mech's parameter is not NULL, its definition depends
* on the standard definition of the mechanism.
* key: pointer to a crypto_key_t structure.
* ciphertext: The message to be encrypted
* plaintext: Storage for the encrypted message. The length needed
* depends on the mechanism, and the plaintext's size.
* tmpl: a crypto_ctx_template_t, opaque template of a context of an
* encryption with the 'mech' using 'key'. 'tmpl' is created by
* a previous call to crypto_create_ctx_template().
* cr: crypto_call_req_t calling conditions and call back info.
*
* Description:
* Asynchronously submits a request for, or synchronously performs a
* single-part decryption of 'ciphertext' with the mechanism 'mech', using
* the key 'key'.
* When complete and successful, 'plaintext' will contain the decrypted
* message.
*
* Context:
* Process or interrupt, according to the semantics dictated by the 'cr'.
*
* Returns:
* See comment in the beginning of the file.
*/
int
crypto_decrypt_prov(crypto_provider_t provider, crypto_session_id_t sid,
crypto_mechanism_t *mech, crypto_data_t *ciphertext, crypto_key_t *key,
crypto_ctx_template_t tmpl, crypto_data_t *plaintext,
crypto_call_req_t *crq)
{
kcf_req_params_t params;
kcf_provider_desc_t *pd = provider;
kcf_provider_desc_t *real_provider = pd;
int rv;
ASSERT(KCF_PROV_REFHELD(pd));
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
rv = kcf_get_hardware_provider(mech->cm_type,
CRYPTO_MECH_INVALID, CHECK_RESTRICT(crq), pd,
&real_provider, CRYPTO_FG_DECRYPT_ATOMIC);
if (rv != CRYPTO_SUCCESS)
return (rv);
}
KCF_WRAP_DECRYPT_OPS_PARAMS(&params, KCF_OP_ATOMIC, sid, mech, key,
ciphertext, plaintext, tmpl);
rv = kcf_submit_request(real_provider, NULL, crq, &params);
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)
KCF_PROV_REFRELE(real_provider);
return (rv);
}
/*
* Same as crypto_decrypt_prov(), but relies on the KCF scheduler to
* choose a provider. See crypto_decrypt_prov() comments for more
* information.
*/
int
crypto_decrypt(crypto_mechanism_t *mech, crypto_data_t *ciphertext,
crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_data_t *plaintext,
crypto_call_req_t *crq)
{
int error;
kcf_mech_entry_t *me;
kcf_req_params_t params;
kcf_provider_desc_t *pd;
kcf_ctx_template_t *ctx_tmpl;
crypto_spi_ctx_template_t spi_ctx_tmpl = NULL;
kcf_prov_tried_t *list = NULL;
retry:
/* pd is returned held */
if ((pd = kcf_get_mech_provider(mech->cm_type, &me, &error,
list, CRYPTO_FG_DECRYPT_ATOMIC, CHECK_RESTRICT(crq),
ciphertext->cd_length)) == NULL) {
if (list != NULL)
kcf_free_triedlist(list);
return (error);
}
/*
* For SW providers, check the validity of the context template
* It is very rare that the generation number mis-matches, so
* is acceptable to fail here, and let the consumer recover by
* freeing this tmpl and create a new one for the key and new SW
* provider
*/
if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) &&
((ctx_tmpl = (kcf_ctx_template_t *)tmpl) != NULL)) {
if (ctx_tmpl->ct_generation != me->me_gen_swprov) {
if (list != NULL)
kcf_free_triedlist(list);
KCF_PROV_REFRELE(pd);
return (CRYPTO_OLD_CTX_TEMPLATE);
} else {
spi_ctx_tmpl = ctx_tmpl->ct_prov_tmpl;
}
}
/* The fast path for SW providers. */
if (CHECK_FASTPATH(crq, pd)) {
crypto_mechanism_t lmech;
lmech = *mech;
KCF_SET_PROVIDER_MECHNUM(mech->cm_type, pd, &lmech);
error = KCF_PROV_DECRYPT_ATOMIC(pd, pd->pd_sid, &lmech, key,
ciphertext, plaintext, spi_ctx_tmpl, KCF_SWFP_RHNDL(crq));
KCF_PROV_INCRSTATS(pd, error);
} else {
KCF_WRAP_DECRYPT_OPS_PARAMS(&params, KCF_OP_ATOMIC, pd->pd_sid,
mech, key, ciphertext, plaintext, spi_ctx_tmpl);
error = kcf_submit_request(pd, NULL, crq, &params);
}
if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED &&
IS_RECOVERABLE(error)) {
/* Add pd to the linked list of providers tried. */
if (kcf_insert_triedlist(&list, pd, KCF_KMFLAG(crq)) != NULL)
goto retry;
}
if (list != NULL)
kcf_free_triedlist(list);
KCF_PROV_REFRELE(pd);
return (error);
}
/*
* crypto_decrypt_init_prov()
*
* Calls crypto_cipher_init_prov() to initialize a decryption operation
*/
int
crypto_decrypt_init_prov(crypto_provider_t pd, crypto_session_id_t sid,
crypto_mechanism_t *mech, crypto_key_t *key,
crypto_ctx_template_t tmpl, crypto_context_t *ctxp,
crypto_call_req_t *crq)
{
return (crypto_cipher_init_prov(pd, sid, mech, key, tmpl, ctxp, crq,
CRYPTO_FG_DECRYPT));
}
/*
* crypto_decrypt_init()
*
* Calls crypto_cipher_init() to initialize a decryption operation
*/
int
crypto_decrypt_init(crypto_mechanism_t *mech, crypto_key_t *key,
crypto_ctx_template_t tmpl, crypto_context_t *ctxp,
crypto_call_req_t *crq)
{
return (crypto_cipher_init(mech, key, tmpl, ctxp, crq,
CRYPTO_FG_DECRYPT));
}
/*
* crypto_decrypt_update()
*
* Arguments:
* context: A crypto_context_t initialized by decrypt_init().
* ciphertext: The message part to be decrypted
* plaintext: Storage for the decrypted message part.
* cr: crypto_call_req_t calling conditions and call back info.
*
* Description:
* Asynchronously submits a request for, or synchronously performs a
* part of an decryption operation.
*
* Context:
* Process or interrupt, according to the semantics dictated by the 'cr'.
*
* Returns:
* See comment in the beginning of the file.
*/
int
crypto_decrypt_update(crypto_context_t context, crypto_data_t *ciphertext,
crypto_data_t *plaintext, crypto_call_req_t *cr)
{
crypto_ctx_t *ctx = (crypto_ctx_t *)context;
kcf_context_t *kcf_ctx;
kcf_provider_desc_t *pd;
int error;
kcf_req_params_t params;
if ((ctx == NULL) ||
((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) ||
((pd = kcf_ctx->kc_prov_desc) == NULL)) {
return (CRYPTO_INVALID_CONTEXT);
}
ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER);
/* The fast path for SW providers. */
if (CHECK_FASTPATH(cr, pd)) {
error = KCF_PROV_DECRYPT_UPDATE(pd, ctx, ciphertext,
plaintext, NULL);
KCF_PROV_INCRSTATS(pd, error);
return (error);
}
/* Check if we should use a software provider for small jobs */
if ((ctx->cc_flags & CRYPTO_USE_OPSTATE) && cr == NULL) {
if (ciphertext->cd_length < kcf_ctx->kc_mech->me_threshold &&
kcf_ctx->kc_sw_prov_desc != NULL &&
KCF_IS_PROV_USABLE(kcf_ctx->kc_sw_prov_desc)) {
pd = kcf_ctx->kc_sw_prov_desc;
}
}
KCF_WRAP_DECRYPT_OPS_PARAMS(&params, KCF_OP_UPDATE,
ctx->cc_session, NULL, NULL, ciphertext, plaintext, NULL);
error = kcf_submit_request(pd, ctx, cr, &params);
return (error);
}
/*
* crypto_decrypt_final()
*
* Arguments:
* context: A crypto_context_t initialized by decrypt_init().
* plaintext: Storage for the last part of the decrypted message
* cr: crypto_call_req_t calling conditions and call back info.
*
* Description:
* Asynchronously submits a request for, or synchronously performs the
* final part of a decryption operation.
*
* Context:
* Process or interrupt, according to the semantics dictated by the 'cr'.
*
* Returns:
* See comment in the beginning of the file.
*/
int
crypto_decrypt_final(crypto_context_t context, crypto_data_t *plaintext,
crypto_call_req_t *cr)
{
crypto_ctx_t *ctx = (crypto_ctx_t *)context;
kcf_context_t *kcf_ctx;
kcf_provider_desc_t *pd;
int error;
kcf_req_params_t params;
if ((ctx == NULL) ||
((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) ||
((pd = kcf_ctx->kc_prov_desc) == NULL)) {
return (CRYPTO_INVALID_CONTEXT);
}
ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER);
/* The fast path for SW providers. */
if (CHECK_FASTPATH(cr, pd)) {
error = KCF_PROV_DECRYPT_FINAL(pd, ctx, plaintext,
NULL);
KCF_PROV_INCRSTATS(pd, error);
} else {
KCF_WRAP_DECRYPT_OPS_PARAMS(&params, KCF_OP_FINAL,
ctx->cc_session, NULL, NULL, NULL, plaintext, NULL);
error = kcf_submit_request(pd, ctx, cr, &params);
}
/* Release the hold done in kcf_new_ctx() during init step. */
KCF_CONTEXT_COND_RELEASE(error, kcf_ctx);
return (error);
}
Update build system and packaging Minimal changes required to integrate the SPL sources in to the ZFS repository build infrastructure and packaging. Build system and packaging: * Renamed SPL_* autoconf m4 macros to ZFS_*. * Removed redundant SPL_* autoconf m4 macros. * Updated the RPM spec files to remove SPL package dependency. * The zfs package obsoletes the spl package, and the zfs-kmod package obsoletes the spl-kmod package. * The zfs-kmod-devel* packages were updated to add compatibility symlinks under /usr/src/spl-x.y.z until all dependent packages can be updated. They will be removed in a future release. * Updated copy-builtin script for in-kernel builds. * Updated DKMS package to include the spl.ko. * Updated stale AUTHORS file to include all contributors. * Updated stale COPYRIGHT and included the SPL as an exception. * Renamed README.markdown to README.md * Renamed OPENSOLARIS.LICENSE to LICENSE. * Renamed DISCLAIMER to NOTICE. Required code changes: * Removed redundant HAVE_SPL macro. * Removed _BOOT from nvpairs since it doesn't apply for Linux. * Initial header cleanup (removal of empty headers, refactoring). * Remove SPL repository clone/build from zimport.sh. * Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due to build issues when forcing C99 compilation. * Replaced legacy ACCESS_ONCE with READ_ONCE. * Include needed headers for `current` and `EXPORT_SYMBOL`. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Olaf Faaland <faaland1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> TEST_ZIMPORT_SKIP="yes" Closes #7556
2018-02-16 01:53:18 +00:00
#if defined(_KERNEL)
EXPORT_SYMBOL(crypto_encrypt_prov);
EXPORT_SYMBOL(crypto_encrypt);
EXPORT_SYMBOL(crypto_encrypt_init_prov);
EXPORT_SYMBOL(crypto_encrypt_init);
EXPORT_SYMBOL(crypto_encrypt_update);
EXPORT_SYMBOL(crypto_encrypt_final);
EXPORT_SYMBOL(crypto_decrypt_prov);
EXPORT_SYMBOL(crypto_decrypt);
EXPORT_SYMBOL(crypto_decrypt_init_prov);
EXPORT_SYMBOL(crypto_decrypt_init);
EXPORT_SYMBOL(crypto_decrypt_update);
EXPORT_SYMBOL(crypto_decrypt_final);
#endif