2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
2010-05-28 20:45:14 +00:00
|
|
|
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <sys/dmu.h>
|
|
|
|
#include <sys/avl.h>
|
|
|
|
#include <sys/zap.h>
|
|
|
|
#include <sys/refcount.h>
|
|
|
|
#include <sys/nvpair.h>
|
|
|
|
#ifdef _KERNEL
|
|
|
|
#include <sys/kidmap.h>
|
|
|
|
#include <sys/sid.h>
|
|
|
|
#include <sys/zfs_vfsops.h>
|
|
|
|
#include <sys/zfs_znode.h>
|
|
|
|
#endif
|
|
|
|
#include <sys/zfs_fuid.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FUID Domain table(s).
|
|
|
|
*
|
|
|
|
* The FUID table is stored as a packed nvlist of an array
|
|
|
|
* of nvlists which contain an index, domain string and offset
|
|
|
|
*
|
|
|
|
* During file system initialization the nvlist(s) are read and
|
|
|
|
* two AVL trees are created. One tree is keyed by the index number
|
|
|
|
* and the other by the domain string. Nodes are never removed from
|
2009-07-02 22:44:48 +00:00
|
|
|
* trees, but new entries may be added. If a new entry is added then
|
|
|
|
* the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
|
|
|
|
* be responsible for calling zfs_fuid_sync() to sync the changes to disk.
|
|
|
|
*
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#define FUID_IDX "fuid_idx"
|
|
|
|
#define FUID_DOMAIN "fuid_domain"
|
|
|
|
#define FUID_OFFSET "fuid_offset"
|
|
|
|
#define FUID_NVP_ARRAY "fuid_nvlist"
|
|
|
|
|
|
|
|
typedef struct fuid_domain {
|
|
|
|
avl_node_t f_domnode;
|
|
|
|
avl_node_t f_idxnode;
|
|
|
|
ksiddomain_t *f_ksid;
|
|
|
|
uint64_t f_idx;
|
|
|
|
} fuid_domain_t;
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
static char *nulldomain = "";
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* Compare two indexes.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
idx_compare(const void *arg1, const void *arg2)
|
|
|
|
{
|
|
|
|
const fuid_domain_t *node1 = arg1;
|
|
|
|
const fuid_domain_t *node2 = arg2;
|
|
|
|
|
|
|
|
if (node1->f_idx < node2->f_idx)
|
|
|
|
return (-1);
|
|
|
|
else if (node1->f_idx > node2->f_idx)
|
|
|
|
return (1);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compare two domain strings.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
domain_compare(const void *arg1, const void *arg2)
|
|
|
|
{
|
|
|
|
const fuid_domain_t *node1 = arg1;
|
|
|
|
const fuid_domain_t *node2 = arg2;
|
|
|
|
int val;
|
|
|
|
|
|
|
|
val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
|
|
|
|
if (val == 0)
|
|
|
|
return (0);
|
|
|
|
return (val > 0 ? 1 : -1);
|
|
|
|
}
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
void
|
|
|
|
zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
|
|
|
|
{
|
|
|
|
avl_create(idx_tree, idx_compare,
|
|
|
|
sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
|
|
|
|
avl_create(domain_tree, domain_compare,
|
|
|
|
sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* load initial fuid domain and idx trees. This function is used by
|
|
|
|
* both the kernel and zdb.
|
|
|
|
*/
|
|
|
|
uint64_t
|
|
|
|
zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
|
|
|
|
avl_tree_t *domain_tree)
|
|
|
|
{
|
|
|
|
dmu_buf_t *db;
|
|
|
|
uint64_t fuid_size;
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
ASSERT(fuid_obj != 0);
|
|
|
|
VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
|
|
|
|
FTAG, &db));
|
2008-11-20 20:01:55 +00:00
|
|
|
fuid_size = *(uint64_t *)db->db_data;
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
|
|
|
|
if (fuid_size) {
|
|
|
|
nvlist_t **fuidnvp;
|
|
|
|
nvlist_t *nvp = NULL;
|
|
|
|
uint_t count;
|
|
|
|
char *packed;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
packed = kmem_alloc(fuid_size, KM_SLEEP);
|
2009-07-02 22:44:48 +00:00
|
|
|
VERIFY(dmu_read(os, fuid_obj, 0,
|
|
|
|
fuid_size, packed, DMU_READ_PREFETCH) == 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
VERIFY(nvlist_unpack(packed, fuid_size,
|
|
|
|
&nvp, 0) == 0);
|
|
|
|
VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
|
|
|
|
&fuidnvp, &count) == 0);
|
|
|
|
|
|
|
|
for (i = 0; i != count; i++) {
|
|
|
|
fuid_domain_t *domnode;
|
|
|
|
char *domain;
|
|
|
|
uint64_t idx;
|
|
|
|
|
|
|
|
VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
|
|
|
|
&domain) == 0);
|
|
|
|
VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
|
|
|
|
&idx) == 0);
|
|
|
|
|
|
|
|
domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
|
|
|
|
|
|
|
|
domnode->f_idx = idx;
|
|
|
|
domnode->f_ksid = ksid_lookupdomain(domain);
|
|
|
|
avl_add(idx_tree, domnode);
|
|
|
|
avl_add(domain_tree, domnode);
|
|
|
|
}
|
|
|
|
nvlist_free(nvp);
|
|
|
|
kmem_free(packed, fuid_size);
|
|
|
|
}
|
|
|
|
return (fuid_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
|
|
|
|
{
|
|
|
|
fuid_domain_t *domnode;
|
|
|
|
void *cookie;
|
|
|
|
|
|
|
|
cookie = NULL;
|
2009-03-11 20:57:47 +00:00
|
|
|
while ((domnode = avl_destroy_nodes(domain_tree, &cookie)))
|
2008-11-20 20:01:55 +00:00
|
|
|
ksiddomain_rele(domnode->f_ksid);
|
|
|
|
|
|
|
|
avl_destroy(domain_tree);
|
|
|
|
cookie = NULL;
|
2009-03-11 20:57:47 +00:00
|
|
|
while ((domnode = avl_destroy_nodes(idx_tree, &cookie)))
|
2008-11-20 20:01:55 +00:00
|
|
|
kmem_free(domnode, sizeof (fuid_domain_t));
|
|
|
|
avl_destroy(idx_tree);
|
|
|
|
}
|
|
|
|
|
|
|
|
char *
|
|
|
|
zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
|
|
|
|
{
|
|
|
|
fuid_domain_t searchnode, *findnode;
|
|
|
|
avl_index_t loc;
|
|
|
|
|
|
|
|
searchnode.f_idx = idx;
|
|
|
|
|
|
|
|
findnode = avl_find(idx_tree, &searchnode, &loc);
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
return (findnode ? findnode->f_ksid->kd_name : nulldomain);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef _KERNEL
|
Linux ZVOL implementation; kernel-side changes
At last a useful user space interface for the Linux ZFS port arrives.
With the addition of the ZVOL real ZFS based block devices are available
and can be compared head to head with Linux's MD and LVM block drivers.
The Linux ZVOL has not yet had any performance work done but from a user
perspective it should be functionally complete and behave like any other
Linux block device.
The ZVOL has so far been tested using zconfig.sh on the following x86_64
based platforms: FC11, CHAOS4, RHEL5, RHEL6, and SLES11. However, more
testing is required to ensure everything is working as designed.
What follows in a somewhat detailed list of changes includes in this
commit to make ZVOL's possible. A few other issues were addressed in
the context of these changes which will also be mentioned.
* Added module/zfs/zvol.c which is based off the original Solaris ZVOL
implementation but rewritten to intergrate with the Linux block device
APIs. The basic design remains the similar in Linux with the major
change being request processing. Request processing is handled by
registering a request function which the elevator calls once all request
merges is finished and the elevator unplugs. This function is called
under a spin lock and the request structure is passed to the block driver
to be queued for IO. The elevator must be notified asyncronously once
the request completes or fails with an error. This allows us the block
driver a chance to handle many request concurrently. For the ZVOL we
maintain a taskq with a service thread per core. As requests are delivered
by the elevator each request is dispatched to the taskq. The task queue
handles each request with a write or read helper function which basically
copies the request data in to our out of the DMU object. Writes single
completion as soon as the DMU has the data unless they are marked sync.
Reads are all handled syncronously however the elevator will merge many
small reads in to a large read before it submitting the request.
* Cachine is worth specifically mentioning. Because both the Linux VFS
and the ZFS ARC both want to fully manage the cache we unfortunately
end up with two caches. This means our memory foot print is larger
than otherwise expected, and it means we have an extra copy between
the caches, but it does not impact correctness. All syncs are barrior
requests I believe are handled correctly. Longer term there is lots of
room for improvement here but it will require fairly extensive changes
to either the Linux VFS and VM layer, or additional DMU interfaces to
handle managing buffer not directly allocated by the ARC.
* Added module/zfs/include/sys/blkdev.h which contains all the Linux
compatibility foo which is required to handle changes in the Linux block
APIs from 2.6.18 thru 2.6.31 based kernels.
* The dmu_{read,write}_uio interfaces which don't make sense on Linux
have been modified to dmu_{read,write}_req functions which consume the
standard Linux IO request structure. Their function fundamentally
remains the same so this happily worked out pretty cleanly.
* The /dev/zfs character device is no longer created through the half
implemented Solaris driver DDI interfaces. It is now simply created
with it's own major number as a Linux misc device which greatly simplifies
everything. It is only capable of handling ioctls() but this fits nicely
because that's all it ever has to do. The ZVOL devices unlike in Solaris
do not leverage the same major number as /dev/zfs but instead register
their own major. Because only one major is allocated and space is reserved
for 16 partitions per-device there is a limit of 16384 concurrent ZVOL
devices. By using multiple majors like the scsi driver this limit could
be addressed if it becomes a problem.
* The {spa,zfs,zvol}_busy() functions have all be removed because they
are not required on a Linux system. Under Linux the registered module
exit function will not be called while the are still references to the
module. Once the exit function is called however it must succeed or
block, it may not fail so returning an error on module unload makes to
sense under Linux.
* With the addition of ZVOL support all the HAVE_ZVOL defines were removed
for obvious reasons. However, the HAVE_ZPL defines have been relocated
in to the linux-{kernel,user}-disk topic branches and must remain until
the ZPL is implemented.
2009-11-20 19:06:59 +00:00
|
|
|
#ifdef HAVE_ZPL
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* Load the fuid table(s) into memory.
|
|
|
|
*/
|
|
|
|
static void
|
2009-07-02 22:44:48 +00:00
|
|
|
zfs_fuid_init(zfsvfs_t *zfsvfs)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
|
|
|
|
|
|
|
|
if (zfsvfs->z_fuid_loaded) {
|
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
|
|
|
|
ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
|
2008-12-03 20:09:06 +00:00
|
|
|
if (zfsvfs->z_fuid_obj != 0) {
|
|
|
|
zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
|
|
|
|
zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
|
|
|
|
&zfsvfs->z_fuid_domain);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
zfsvfs->z_fuid_loaded = B_TRUE;
|
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sync out AVL trees to persistent storage.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
nvlist_t *nvp;
|
|
|
|
nvlist_t **fuids;
|
|
|
|
size_t nvsize = 0;
|
|
|
|
char *packed;
|
|
|
|
dmu_buf_t *db;
|
|
|
|
fuid_domain_t *domnode;
|
|
|
|
int numnodes;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!zfsvfs->z_fuid_dirty) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* First see if table needs to be created?
|
|
|
|
*/
|
|
|
|
if (zfsvfs->z_fuid_obj == 0) {
|
|
|
|
zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
|
|
|
|
DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
|
|
|
|
sizeof (uint64_t), tx);
|
|
|
|
VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
|
|
|
|
ZFS_FUID_TABLES, sizeof (uint64_t), 1,
|
|
|
|
&zfsvfs->z_fuid_obj, tx) == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
|
|
|
|
numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
|
|
|
|
fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
|
|
|
|
for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
|
|
|
|
domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
|
|
|
|
VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
|
|
|
|
domnode->f_idx) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
|
|
|
|
VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
|
|
|
|
domnode->f_ksid->kd_name) == 0);
|
|
|
|
}
|
|
|
|
VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
|
|
|
|
fuids, numnodes) == 0);
|
|
|
|
for (i = 0; i != numnodes; i++)
|
|
|
|
nvlist_free(fuids[i]);
|
|
|
|
kmem_free(fuids, numnodes * sizeof (void *));
|
|
|
|
VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
|
|
|
|
packed = kmem_alloc(nvsize, KM_SLEEP);
|
|
|
|
VERIFY(nvlist_pack(nvp, &packed, &nvsize,
|
|
|
|
NV_ENCODE_XDR, KM_SLEEP) == 0);
|
|
|
|
nvlist_free(nvp);
|
|
|
|
zfsvfs->z_fuid_size = nvsize;
|
|
|
|
dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
|
|
|
|
zfsvfs->z_fuid_size, packed, tx);
|
|
|
|
kmem_free(packed, zfsvfs->z_fuid_size);
|
|
|
|
VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
|
|
|
|
FTAG, &db));
|
|
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
|
|
|
|
zfsvfs->z_fuid_dirty = B_FALSE;
|
2008-11-20 20:01:55 +00:00
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Query domain table for a given domain.
|
|
|
|
*
|
2009-07-02 22:44:48 +00:00
|
|
|
* If domain isn't found and addok is set, it is added to AVL trees and
|
|
|
|
* the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be
|
|
|
|
* necessary for the caller or another thread to detect the dirty table
|
|
|
|
* and sync out the changes.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
int
|
2009-07-02 22:44:48 +00:00
|
|
|
zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
|
|
|
|
char **retdomain, boolean_t addok)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
fuid_domain_t searchnode, *findnode;
|
|
|
|
avl_index_t loc;
|
2008-12-03 20:09:06 +00:00
|
|
|
krw_t rw = RW_READER;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the dummy "nobody" domain then return an index of 0
|
|
|
|
* to cause the created FUID to be a standard POSIX id
|
|
|
|
* for the user nobody.
|
|
|
|
*/
|
|
|
|
if (domain[0] == '\0') {
|
2009-07-02 22:44:48 +00:00
|
|
|
if (retdomain)
|
|
|
|
*retdomain = nulldomain;
|
2008-11-20 20:01:55 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
searchnode.f_ksid = ksid_lookupdomain(domain);
|
2009-07-02 22:44:48 +00:00
|
|
|
if (retdomain)
|
2008-11-20 20:01:55 +00:00
|
|
|
*retdomain = searchnode.f_ksid->kd_name;
|
|
|
|
if (!zfsvfs->z_fuid_loaded)
|
2009-07-02 22:44:48 +00:00
|
|
|
zfs_fuid_init(zfsvfs);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
retry:
|
|
|
|
rw_enter(&zfsvfs->z_fuid_lock, rw);
|
2008-11-20 20:01:55 +00:00
|
|
|
findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
|
|
|
|
|
|
|
|
if (findnode) {
|
2008-12-03 20:09:06 +00:00
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
2008-11-20 20:01:55 +00:00
|
|
|
ksiddomain_rele(searchnode.f_ksid);
|
|
|
|
return (findnode->f_idx);
|
2009-07-02 22:44:48 +00:00
|
|
|
} else if (addok) {
|
2008-11-20 20:01:55 +00:00
|
|
|
fuid_domain_t *domnode;
|
|
|
|
uint64_t retidx;
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
|
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
|
|
|
rw = RW_WRITER;
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
|
|
|
|
domnode->f_ksid = searchnode.f_ksid;
|
|
|
|
|
|
|
|
retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
|
|
|
|
|
|
|
|
avl_add(&zfsvfs->z_fuid_domain, domnode);
|
|
|
|
avl_add(&zfsvfs->z_fuid_idx, domnode);
|
2009-07-02 22:44:48 +00:00
|
|
|
zfsvfs->z_fuid_dirty = B_TRUE;
|
2008-11-20 20:01:55 +00:00
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
|
|
|
return (retidx);
|
2009-07-02 22:44:48 +00:00
|
|
|
} else {
|
2009-08-18 18:43:27 +00:00
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
2009-07-02 22:44:48 +00:00
|
|
|
return (-1);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Query domain table by index, returning domain string
|
|
|
|
*
|
|
|
|
* Returns a pointer from an avl node of the domain string.
|
|
|
|
*
|
|
|
|
*/
|
2009-07-02 22:44:48 +00:00
|
|
|
const char *
|
2008-11-20 20:01:55 +00:00
|
|
|
zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
|
|
|
|
{
|
|
|
|
char *domain;
|
|
|
|
|
|
|
|
if (idx == 0 || !zfsvfs->z_use_fuids)
|
|
|
|
return (NULL);
|
|
|
|
|
|
|
|
if (!zfsvfs->z_fuid_loaded)
|
2009-07-02 22:44:48 +00:00
|
|
|
zfs_fuid_init(zfsvfs);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
|
2008-12-03 20:09:06 +00:00
|
|
|
domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
|
|
|
|
else
|
|
|
|
domain = nulldomain;
|
2008-11-20 20:01:55 +00:00
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
|
|
|
|
|
|
|
ASSERT(domain);
|
|
|
|
return (domain);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
|
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t fuid, fgid;
|
|
|
|
sa_bulk_attr_t bulk[2];
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
if (IS_EPHEMERAL(zp->z_uid) || IS_EPHEMERAL(zp->z_gid)) {
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zp->z_zfsvfs),
|
|
|
|
NULL, &fuid, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zp->z_zfsvfs),
|
|
|
|
NULL, &fgid, 8);
|
|
|
|
VERIFY(0 == sa_bulk_lookup(zp->z_sa_hdl, bulk, count));
|
|
|
|
}
|
|
|
|
if (IS_EPHEMERAL(zp->z_uid))
|
|
|
|
*uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
|
|
|
|
else
|
|
|
|
*uidp = zp->z_uid;
|
|
|
|
if (IS_EPHEMERAL(zp->z_gid))
|
|
|
|
*gidp = zfs_fuid_map_id(zp->z_zfsvfs,
|
|
|
|
zp->z_gid, cr, ZFS_GROUP);
|
|
|
|
else
|
|
|
|
*gidp = zp->z_gid;
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
uid_t
|
|
|
|
zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
|
|
|
|
cred_t *cr, zfs_fuid_type_t type)
|
|
|
|
{
|
|
|
|
uint32_t index = FUID_INDEX(fuid);
|
2009-07-02 22:44:48 +00:00
|
|
|
const char *domain;
|
2008-11-20 20:01:55 +00:00
|
|
|
uid_t id;
|
|
|
|
|
|
|
|
if (index == 0)
|
|
|
|
return (fuid);
|
|
|
|
|
|
|
|
domain = zfs_fuid_find_by_idx(zfsvfs, index);
|
|
|
|
ASSERT(domain != NULL);
|
|
|
|
|
|
|
|
if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
|
|
|
|
(void) kidmap_getuidbysid(crgetzone(cr), domain,
|
|
|
|
FUID_RID(fuid), &id);
|
|
|
|
} else {
|
|
|
|
(void) kidmap_getgidbysid(crgetzone(cr), domain,
|
|
|
|
FUID_RID(fuid), &id);
|
|
|
|
}
|
|
|
|
return (id);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add a FUID node to the list of fuid's being created for this
|
|
|
|
* ACL
|
|
|
|
*
|
|
|
|
* If ACL has multiple domains, then keep only one copy of each unique
|
|
|
|
* domain.
|
|
|
|
*/
|
2010-05-28 20:45:14 +00:00
|
|
|
void
|
2008-11-20 20:01:55 +00:00
|
|
|
zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
|
|
|
|
uint64_t idx, uint64_t id, zfs_fuid_type_t type)
|
|
|
|
{
|
|
|
|
zfs_fuid_t *fuid;
|
|
|
|
zfs_fuid_domain_t *fuid_domain;
|
|
|
|
zfs_fuid_info_t *fuidp;
|
|
|
|
uint64_t fuididx;
|
|
|
|
boolean_t found = B_FALSE;
|
|
|
|
|
|
|
|
if (*fuidpp == NULL)
|
|
|
|
*fuidpp = zfs_fuid_info_alloc();
|
|
|
|
|
|
|
|
fuidp = *fuidpp;
|
|
|
|
/*
|
|
|
|
* First find fuid domain index in linked list
|
|
|
|
*
|
|
|
|
* If one isn't found then create an entry.
|
|
|
|
*/
|
|
|
|
|
|
|
|
for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
|
|
|
|
fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
|
|
|
|
fuid_domain), fuididx++) {
|
|
|
|
if (idx == fuid_domain->z_domidx) {
|
|
|
|
found = B_TRUE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!found) {
|
|
|
|
fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
|
|
|
|
fuid_domain->z_domain = domain;
|
|
|
|
fuid_domain->z_domidx = idx;
|
|
|
|
list_insert_tail(&fuidp->z_domains, fuid_domain);
|
|
|
|
fuidp->z_domain_str_sz += strlen(domain) + 1;
|
|
|
|
fuidp->z_domain_cnt++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
|
2009-07-02 22:44:48 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* Now allocate fuid entry and add it on the end of the list
|
|
|
|
*/
|
|
|
|
|
|
|
|
fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
|
|
|
|
fuid->z_id = id;
|
|
|
|
fuid->z_domidx = idx;
|
|
|
|
fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
|
|
|
|
|
|
|
|
list_insert_tail(&fuidp->z_fuids, fuid);
|
|
|
|
fuidp->z_fuid_cnt++;
|
|
|
|
} else {
|
|
|
|
if (type == ZFS_OWNER)
|
|
|
|
fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
|
|
|
|
else
|
|
|
|
fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a file system FUID, based on information in the users cred
|
2010-05-28 20:45:14 +00:00
|
|
|
*
|
|
|
|
* If cred contains KSID_OWNER then it should be used to determine
|
|
|
|
* the uid otherwise cred's uid will be used. By default cred's gid
|
|
|
|
* is used unless it's an ephemeral ID in which case KSID_GROUP will
|
|
|
|
* be used if it exists.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
uint64_t
|
|
|
|
zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
|
2009-07-02 22:44:48 +00:00
|
|
|
cred_t *cr, zfs_fuid_info_t **fuidp)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
uint64_t idx;
|
|
|
|
ksid_t *ksid;
|
|
|
|
uint32_t rid;
|
|
|
|
char *kdomain;
|
|
|
|
const char *domain;
|
|
|
|
uid_t id;
|
|
|
|
|
|
|
|
VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
|
|
|
|
id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
|
|
|
|
|
|
|
|
if (IS_EPHEMERAL(id))
|
|
|
|
return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
|
|
|
|
|
|
|
|
return ((uint64_t)id);
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
/*
|
|
|
|
* ksid is present and FUID is supported
|
|
|
|
*/
|
|
|
|
id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
|
|
|
|
|
|
|
|
if (!IS_EPHEMERAL(id))
|
2008-11-20 20:01:55 +00:00
|
|
|
return ((uint64_t)id);
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (type == ZFS_GROUP)
|
|
|
|
id = ksid_getid(ksid);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
rid = ksid_getrid(ksid);
|
|
|
|
domain = ksid_getdomain(ksid);
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
|
|
|
|
|
|
|
|
return (FUID_ENCODE(idx, rid));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a file system FUID for an ACL ace
|
|
|
|
* or a chown/chgrp of the file.
|
|
|
|
* This is similar to zfs_fuid_create_cred, except that
|
|
|
|
* we can't find the domain + rid information in the
|
|
|
|
* cred. Instead we have to query Winchester for the
|
|
|
|
* domain and rid.
|
|
|
|
*
|
|
|
|
* During replay operations the domain+rid information is
|
|
|
|
* found in the zfs_fuid_info_t that the replay code has
|
|
|
|
* attached to the zfsvfs of the file system.
|
|
|
|
*/
|
|
|
|
uint64_t
|
|
|
|
zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
|
2009-07-02 22:44:48 +00:00
|
|
|
zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
const char *domain;
|
|
|
|
char *kdomain;
|
|
|
|
uint32_t fuid_idx = FUID_INDEX(id);
|
|
|
|
uint32_t rid;
|
|
|
|
idmap_stat status;
|
|
|
|
uint64_t idx;
|
|
|
|
zfs_fuid_t *zfuid = NULL;
|
|
|
|
zfs_fuid_info_t *fuidp;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If POSIX ID, or entry is already a FUID then
|
|
|
|
* just return the id
|
|
|
|
*
|
|
|
|
* We may also be handed an already FUID'ized id via
|
|
|
|
* chmod.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
|
|
|
|
return (id);
|
|
|
|
|
2009-01-15 21:59:39 +00:00
|
|
|
if (zfsvfs->z_replay) {
|
2008-11-20 20:01:55 +00:00
|
|
|
fuidp = zfsvfs->z_fuid_replay;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we are passed an ephemeral id, but no
|
|
|
|
* fuid_info was logged then return NOBODY.
|
|
|
|
* This is most likely a result of idmap service
|
|
|
|
* not being available.
|
|
|
|
*/
|
|
|
|
if (fuidp == NULL)
|
|
|
|
return (UID_NOBODY);
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case ZFS_ACE_USER:
|
|
|
|
case ZFS_ACE_GROUP:
|
|
|
|
zfuid = list_head(&fuidp->z_fuids);
|
|
|
|
rid = FUID_RID(zfuid->z_logfuid);
|
|
|
|
idx = FUID_INDEX(zfuid->z_logfuid);
|
|
|
|
break;
|
|
|
|
case ZFS_OWNER:
|
|
|
|
rid = FUID_RID(fuidp->z_fuid_owner);
|
|
|
|
idx = FUID_INDEX(fuidp->z_fuid_owner);
|
|
|
|
break;
|
|
|
|
case ZFS_GROUP:
|
|
|
|
rid = FUID_RID(fuidp->z_fuid_group);
|
|
|
|
idx = FUID_INDEX(fuidp->z_fuid_group);
|
|
|
|
break;
|
|
|
|
};
|
|
|
|
domain = fuidp->z_domain_table[idx -1];
|
|
|
|
} else {
|
|
|
|
if (type == ZFS_OWNER || type == ZFS_ACE_USER)
|
|
|
|
status = kidmap_getsidbyuid(crgetzone(cr), id,
|
|
|
|
&domain, &rid);
|
|
|
|
else
|
|
|
|
status = kidmap_getsidbygid(crgetzone(cr), id,
|
|
|
|
&domain, &rid);
|
|
|
|
|
|
|
|
if (status != 0) {
|
|
|
|
/*
|
|
|
|
* When returning nobody we will need to
|
|
|
|
* make a dummy fuid table entry for logging
|
|
|
|
* purposes.
|
|
|
|
*/
|
|
|
|
rid = UID_NOBODY;
|
2008-12-03 20:09:06 +00:00
|
|
|
domain = nulldomain;
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2009-01-15 21:59:39 +00:00
|
|
|
if (!zfsvfs->z_replay)
|
2009-07-02 22:44:48 +00:00
|
|
|
zfs_fuid_node_add(fuidpp, kdomain,
|
|
|
|
rid, idx, id, type);
|
2008-11-20 20:01:55 +00:00
|
|
|
else if (zfuid != NULL) {
|
|
|
|
list_remove(&fuidp->z_fuids, zfuid);
|
|
|
|
kmem_free(zfuid, sizeof (zfs_fuid_t));
|
|
|
|
}
|
|
|
|
return (FUID_ENCODE(idx, rid));
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
zfs_fuid_destroy(zfsvfs_t *zfsvfs)
|
|
|
|
{
|
|
|
|
rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
|
|
|
|
if (!zfsvfs->z_fuid_loaded) {
|
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
|
|
|
|
rw_exit(&zfsvfs->z_fuid_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate zfs_fuid_info for tracking FUIDs created during
|
|
|
|
* zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
|
|
|
|
*/
|
|
|
|
zfs_fuid_info_t *
|
|
|
|
zfs_fuid_info_alloc(void)
|
|
|
|
{
|
|
|
|
zfs_fuid_info_t *fuidp;
|
|
|
|
|
|
|
|
fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
|
|
|
|
list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
|
|
|
|
offsetof(zfs_fuid_domain_t, z_next));
|
|
|
|
list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
|
|
|
|
offsetof(zfs_fuid_t, z_next));
|
|
|
|
return (fuidp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Release all memory associated with zfs_fuid_info_t
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
|
|
|
|
{
|
|
|
|
zfs_fuid_t *zfuid;
|
|
|
|
zfs_fuid_domain_t *zdomain;
|
|
|
|
|
|
|
|
while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
|
|
|
|
list_remove(&fuidp->z_fuids, zfuid);
|
|
|
|
kmem_free(zfuid, sizeof (zfs_fuid_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fuidp->z_domain_table != NULL)
|
|
|
|
kmem_free(fuidp->z_domain_table,
|
|
|
|
(sizeof (char **)) * fuidp->z_domain_cnt);
|
|
|
|
|
|
|
|
while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
|
|
|
|
list_remove(&fuidp->z_domains, zdomain);
|
|
|
|
kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
kmem_free(fuidp, sizeof (zfs_fuid_info_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check to see if id is a groupmember. If cred
|
|
|
|
* has ksid info then sidlist is checked first
|
|
|
|
* and if still not found then POSIX groups are checked
|
|
|
|
*
|
|
|
|
* Will use a straight FUID compare when possible.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
|
|
|
|
{
|
|
|
|
ksid_t *ksid = crgetsid(cr, KSID_GROUP);
|
2009-07-02 22:44:48 +00:00
|
|
|
ksidlist_t *ksidlist = crgetsidlist(cr);
|
2008-11-20 20:01:55 +00:00
|
|
|
uid_t gid;
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
if (ksid && ksidlist) {
|
2008-11-20 20:01:55 +00:00
|
|
|
int i;
|
|
|
|
ksid_t *ksid_groups;
|
|
|
|
uint32_t idx = FUID_INDEX(id);
|
|
|
|
uint32_t rid = FUID_RID(id);
|
|
|
|
|
|
|
|
ksid_groups = ksidlist->ksl_sids;
|
|
|
|
|
|
|
|
for (i = 0; i != ksidlist->ksl_nsid; i++) {
|
|
|
|
if (idx == 0) {
|
|
|
|
if (id != IDMAP_WK_CREATOR_GROUP_GID &&
|
|
|
|
id == ksid_groups[i].ks_id) {
|
|
|
|
return (B_TRUE);
|
|
|
|
}
|
|
|
|
} else {
|
2009-07-02 22:44:48 +00:00
|
|
|
const char *domain;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
domain = zfs_fuid_find_by_idx(zfsvfs, idx);
|
|
|
|
ASSERT(domain != NULL);
|
|
|
|
|
|
|
|
if (strcmp(domain,
|
|
|
|
IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
|
|
|
|
return (B_FALSE);
|
|
|
|
|
|
|
|
if ((strcmp(domain,
|
|
|
|
ksid_groups[i].ks_domain->kd_name) == 0) &&
|
|
|
|
rid == ksid_groups[i].ks_rid)
|
|
|
|
return (B_TRUE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Not found in ksidlist, check posix groups
|
|
|
|
*/
|
|
|
|
gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
|
|
|
|
return (groupmember(gid, cr));
|
|
|
|
}
|
2009-07-02 22:44:48 +00:00
|
|
|
|
|
|
|
void
|
|
|
|
zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
if (zfsvfs->z_fuid_obj == 0) {
|
|
|
|
dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
|
|
|
|
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
|
|
|
|
FUID_SIZE_ESTIMATE(zfsvfs));
|
|
|
|
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
|
|
|
|
} else {
|
|
|
|
dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
|
|
|
|
dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
|
|
|
|
FUID_SIZE_ESTIMATE(zfsvfs));
|
|
|
|
}
|
|
|
|
}
|
Linux ZVOL implementation; kernel-side changes
At last a useful user space interface for the Linux ZFS port arrives.
With the addition of the ZVOL real ZFS based block devices are available
and can be compared head to head with Linux's MD and LVM block drivers.
The Linux ZVOL has not yet had any performance work done but from a user
perspective it should be functionally complete and behave like any other
Linux block device.
The ZVOL has so far been tested using zconfig.sh on the following x86_64
based platforms: FC11, CHAOS4, RHEL5, RHEL6, and SLES11. However, more
testing is required to ensure everything is working as designed.
What follows in a somewhat detailed list of changes includes in this
commit to make ZVOL's possible. A few other issues were addressed in
the context of these changes which will also be mentioned.
* Added module/zfs/zvol.c which is based off the original Solaris ZVOL
implementation but rewritten to intergrate with the Linux block device
APIs. The basic design remains the similar in Linux with the major
change being request processing. Request processing is handled by
registering a request function which the elevator calls once all request
merges is finished and the elevator unplugs. This function is called
under a spin lock and the request structure is passed to the block driver
to be queued for IO. The elevator must be notified asyncronously once
the request completes or fails with an error. This allows us the block
driver a chance to handle many request concurrently. For the ZVOL we
maintain a taskq with a service thread per core. As requests are delivered
by the elevator each request is dispatched to the taskq. The task queue
handles each request with a write or read helper function which basically
copies the request data in to our out of the DMU object. Writes single
completion as soon as the DMU has the data unless they are marked sync.
Reads are all handled syncronously however the elevator will merge many
small reads in to a large read before it submitting the request.
* Cachine is worth specifically mentioning. Because both the Linux VFS
and the ZFS ARC both want to fully manage the cache we unfortunately
end up with two caches. This means our memory foot print is larger
than otherwise expected, and it means we have an extra copy between
the caches, but it does not impact correctness. All syncs are barrior
requests I believe are handled correctly. Longer term there is lots of
room for improvement here but it will require fairly extensive changes
to either the Linux VFS and VM layer, or additional DMU interfaces to
handle managing buffer not directly allocated by the ARC.
* Added module/zfs/include/sys/blkdev.h which contains all the Linux
compatibility foo which is required to handle changes in the Linux block
APIs from 2.6.18 thru 2.6.31 based kernels.
* The dmu_{read,write}_uio interfaces which don't make sense on Linux
have been modified to dmu_{read,write}_req functions which consume the
standard Linux IO request structure. Their function fundamentally
remains the same so this happily worked out pretty cleanly.
* The /dev/zfs character device is no longer created through the half
implemented Solaris driver DDI interfaces. It is now simply created
with it's own major number as a Linux misc device which greatly simplifies
everything. It is only capable of handling ioctls() but this fits nicely
because that's all it ever has to do. The ZVOL devices unlike in Solaris
do not leverage the same major number as /dev/zfs but instead register
their own major. Because only one major is allocated and space is reserved
for 16 partitions per-device there is a limit of 16384 concurrent ZVOL
devices. By using multiple majors like the scsi driver this limit could
be addressed if it becomes a problem.
* The {spa,zfs,zvol}_busy() functions have all be removed because they
are not required on a Linux system. Under Linux the registered module
exit function will not be called while the are still references to the
module. Once the exit function is called however it must succeed or
block, it may not fail so returning an error on module unload makes to
sense under Linux.
* With the addition of ZVOL support all the HAVE_ZVOL defines were removed
for obvious reasons. However, the HAVE_ZPL defines have been relocated
in to the linux-{kernel,user}-disk topic branches and must remain until
the ZPL is implemented.
2009-11-20 19:06:59 +00:00
|
|
|
#endif /* HAVE_ZPL */
|
2008-11-20 20:01:55 +00:00
|
|
|
#endif
|