zfs/include/zfs_deleg.h

100 lines
2.7 KiB
C
Raw Permalink Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2010 Nexenta Systems, Inc. All rights reserved.
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
* Copyright (c) 2013, 2015 by Delphix. All rights reserved.
2008-11-20 20:01:55 +00:00
*/
#ifndef _ZFS_DELEG_H
#define _ZFS_DELEG_H
#include <sys/fs/zfs.h>
#ifdef __cplusplus
extern "C" {
#endif
#define ZFS_DELEG_SET_NAME_CHR '@' /* set name lead char */
#define ZFS_DELEG_FIELD_SEP_CHR '$' /* field separator */
/*
* Max name length for a delegation attribute
*/
#define ZFS_MAX_DELEG_NAME 128
#define ZFS_DELEG_LOCAL 'l'
#define ZFS_DELEG_DESCENDENT 'd'
#define ZFS_DELEG_NA '-'
typedef enum {
ZFS_DELEG_NOTE_CREATE,
ZFS_DELEG_NOTE_DESTROY,
ZFS_DELEG_NOTE_SNAPSHOT,
ZFS_DELEG_NOTE_ROLLBACK,
ZFS_DELEG_NOTE_CLONE,
ZFS_DELEG_NOTE_PROMOTE,
ZFS_DELEG_NOTE_RENAME,
ZFS_DELEG_NOTE_SEND,
2008-11-20 20:01:55 +00:00
ZFS_DELEG_NOTE_RECEIVE,
ZFS_DELEG_NOTE_ALLOW,
ZFS_DELEG_NOTE_USERPROP,
ZFS_DELEG_NOTE_MOUNT,
ZFS_DELEG_NOTE_SHARE,
2009-07-02 22:44:48 +00:00
ZFS_DELEG_NOTE_USERQUOTA,
ZFS_DELEG_NOTE_GROUPQUOTA,
ZFS_DELEG_NOTE_USERUSED,
ZFS_DELEG_NOTE_GROUPUSED,
ZFS_DELEG_NOTE_USEROBJQUOTA,
ZFS_DELEG_NOTE_GROUPOBJQUOTA,
ZFS_DELEG_NOTE_USEROBJUSED,
ZFS_DELEG_NOTE_GROUPOBJUSED,
2009-08-18 18:43:27 +00:00
ZFS_DELEG_NOTE_HOLD,
ZFS_DELEG_NOTE_RELEASE,
ZFS_DELEG_NOTE_DIFF,
ZFS_DELEG_NOTE_BOOKMARK,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 17:36:48 +00:00
ZFS_DELEG_NOTE_LOAD_KEY,
ZFS_DELEG_NOTE_CHANGE_KEY,
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-13 22:54:54 +00:00
ZFS_DELEG_NOTE_PROJECTUSED,
ZFS_DELEG_NOTE_PROJECTQUOTA,
ZFS_DELEG_NOTE_PROJECTOBJUSED,
ZFS_DELEG_NOTE_PROJECTOBJQUOTA,
2008-11-20 20:01:55 +00:00
ZFS_DELEG_NOTE_NONE
} zfs_deleg_note_t;
typedef struct zfs_deleg_perm_tab {
char *z_perm;
zfs_deleg_note_t z_note;
} zfs_deleg_perm_tab_t;
extern zfs_deleg_perm_tab_t zfs_deleg_perm_tab[];
int zfs_deleg_verify_nvlist(nvlist_t *nvlist);
void zfs_deleg_whokey(char *attr, zfs_deleg_who_type_t type,
char checkflag, void *data);
const char *zfs_deleg_canonicalize_perm(const char *perm);
#ifdef __cplusplus
}
#endif
#endif /* _ZFS_DELEG_H */